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Abstract—In this paper, we report the outcomes of the 2015
data fusion contest organized by the Image Analysis and Data Fu-
sion Technical Committee (IADF TC) of the IEEE Geoscience and
Remote Sensing Society. As for previous years, the IADF TC or-
ganized a data fusion contest aiming at fostering new ideas and
solutions for multisource studies. The 2015 edition of the contest
proposed a multiresolution and multisensorial challenge involving
extremely high resolution RGB images (with a ground sample dis-
tance of 5 cm) and a 3-D light detection and ranging point cloud
(with a point cloud density of approximatively 65 pts/m2 ). The
competition was framed in two parallel tracks, considering 2-D
and 3-D products, respectively. In this Part B, we report the results
obtained by the winners of the 3-D contest, which explored chal-
lenging tasks of road extraction and ISO containers identification,
respectively. The 2-D part of the contest and a detailed presentation
of the dataset are discussed in Part A.

Index Terms—Image analysis and data fusion (IADF), light
detection and ranging (LiDAR), multiresolution-data fusion,
multisource-data fusion, multimodal-data fusion, object identifi-
cation, road detection, very high resolution (VHR) data.

I. INTRODUCTION TO PART B

THREE-DIMENSIONAL high-spatial-resolution data have
become a fundamental part in a growing number of

applications such as urban planning, cartographic mapping,
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environmental impact assessment, cultural heritage protection,
transportation management, and civilian and military emergency
responses [2]. Among the data sources available, a light detec-
tion and ranging (LiDAR) sensor offers a fast and effective way
to acquire 3-D data [3].

In this framework, this paper is the second of a two-part
manuscript presenting and critically discussing the scientific
outcomes of the 2015 edition of the Data Fusion Contest orga-
nized by the IADF TC of the IEEE-GRSS.1 The 2015 Contest
released to the international community of remote sensing a
topical and complex image dataset involving 3-D information,
multiresolution/multisensor imagery, and extremely high spatial
resolutions. The dataset was composed of an RGB orthophoto
and of a LiDAR point cloud acquired over an urban and harbor
area in Zeebruges, Belgium (see [1, Sec. II]).

Given the relevance of this dataset for the modeling and ex-
traction of both 2-D and 3-D thematic results, the Contest was
framed as two independent and parallel competitions. The 2-D
Contest was focused on multisource fusion for the generation
of 2-D processing results at extremely high spatial resolution:
the interested reader can find the presentation and discussion
of the results in [1]. The 3-D Contest explored the synergistic
use of 3-D point cloud and 2-D RGB data for 3-D analysis
at extremely high spatial resolution. Its results are discussed
in detail in this paper. In both cases, participating teams sub-
mitted original open-topic manuscripts proposing scientifically
relevant contributions to the fields of 2-D/3-D extremely high
resolution image analysis. Even though LiDAR [4] and VHR
RGB [5] data were considered in the past contests, for the first
time, a 3-D competition considering their joint use is proposed
to the community.

The LiDAR system (which is made up of the LiDAR sensor,
a GPS receiver, and an inertial measurement unit) emits intense
focused beams of light and measures the time it takes for the
reflections to be detected by the sensor. This information is used
to compute ranges, or distances, to objects. The 3-D coordi-
nates (i.e., x, y, z or latitude, longitude, and elevation) of the
target objects are computed from the time difference between
the laser pulse being emitted and returned, the angle at which
the pulse was emitted, and the absolute location of the sensor
on or above the surface of the Earth [6]. LiDAR instruments can
rapidly measure the Earth’s surface, at sampling rates greater
than 150 kHz. The resulting product is a densely spaced network

1http://www.grss-ieee.org/community/technical-committees/data-fusion/
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of highly accurate georeferenced elevation points, often called a
point cloud, that can be used to generate 3-D representations of
the Earth’s surface and its features. Typically, LiDAR-derived
elevations have absolute accuracies of about 10–20 cm [7], [8].

LiDAR, as a remote-sensing (RS) technique, has several
advantages. Chief among them are high-resolution and high-
accuracy horizontal and vertical spatial point cloud data, large
coverage areas, the ability of users to resample areas quickly
and efficiently, and the extraction of a 3-D presentation of the
scene [9], [10]. The intensity of LiDAR points can be used as
additional useful information for the segmentation of features in
the scene [11], [12]. Moreover, the shadow effects are alleviated
in LiDAR data [13]. However, due to the nature of the point
cloud data (irregular distribution), the laser measurements do
not always allow a precise reconstruction of the 3-D shape of
the target (e.g., building edges) [13], [14]. LiDAR point clouds
have been used successfully for urban object recognition and
reconstruction [15], [16], but the task can be strongly eased
by using LiDAR in conjunction with spectral information [13],
[17], especially when the point density of the LiDAR data is low.

To overcome these shortcomings, integrated approaches fus-
ing LiDAR data and optical images are increasingly used
for the extraction and the classification of objects in urban
scenes [18], [19], such as trees [20]–[22], buildings [14], [23]–
[25], roads [13], [26]–[31], vehicles [17], [32], [33], and other
small objects [33], [34]. Although the combined use of different
data sources is theoretically better than using a single source,
there are still drawbacks. It is costly or sometimes even impos-
sible to obtain different types of data for many applications.
The difficulties of processing are increasing, and when combin-
ing different data or using object cues from multiple sources,
a proper fusion methodology is needed to achieve an accurate
outcome [13]. Nevertheless, these multisource fusion methods
have strict requirements for data acquisition and registration [14]
(e.g., for pixel-based fusion, subpixel accuracy is required). For
this last aspect, several approaches provide frameworks for au-
tomated registration of 2-D images onto 3-D range scans. Most
of the available methods are based on extracting and matching
features (e.g., points, lines, edges, rectangles, or rectangular par-
allelepipeds) [35]–[37]. Others describe solutions that combine
2-D-to-3-D registration with multiview geometry algorithms ob-
tained from the parameters of the camera [38], [39].

A major topic in the LiDAR-RGB fusion literature is the de-
tection of roads and objects (i.e., buildings, containers, marine
vessels, and vehicles). The integration of 2-D optical and 3-D
LiDAR datasets provides photorealistic textured impression that
facilitates the detection and the extraction of large-scale objects
from the scene. The literature mainly covers the topic of feature-
based fusion for building extraction [23], building surface de-
scription [29], [40], detection of roof planes and boundaries [24],
structure monitoring [25], and urban building modeling [41], but
it also addresses the extraction and the identification of small-
to medium-scale objects [32]–[34], [42].

Automatic extraction of roads in complex urban scenes from
remotely sensed data is very difficult to perform using single
RS source [13]. In passive imagery, the occlusion of the road
surface by vertical objects creates artifacts such as shadows,

radiometric inhomogeneity, and mixed spectra that complicate
road detection. The properties of airborne LiDAR imagery make
it a better data source for road extraction in urban scenes. Free-
of-shadow effects, relatively narrow scanning angle (typically
20–40◦ [26]), laser reflectance, and elevation information allow
good separation of roads from other urban objects [12], [27].
However, due to the aforementioned lack of spectral information
and irregular distribution of LiDAR points, more effort is needed
to extract accurate break lines or features, such as road curbs
and sidewalks [13]. Given the pros and the cons of LiDAR
and aerial imagery, it has been suggested that these data be
fused to improve the degree of automation and the robustness
of automatic road detection [13], [26]–[28].

The 2015 Data Fusion Contest involved two datasets ac-
quired simultaneously by passive and active sensors. Both
datasets were acquired on March 13, 2011, using an air-
borne platform flying at an altitude of 300 m over the har-
bor area of Zeebruges, Belgium (51 : 33◦N, 3 : 20◦E). The De-
partment of Communication, Information, Systems and Sen-
sors of the Belgian Royal Military Academy provided the
dataset and evaluated its accuracy, while service provider ac-
quired and processed the data. The passive data are 5-cm-
resolution RGB orthophotos acquired in the visible wave-
length range. The active source is a LiDAR system that
acquires the data using scan rate, angle, and frequency of
125 kHz, 20◦, and 49 Hz, respectively. For obtaining a digi-
tal surface model with a point spacing of 10 cm, the area of
interest was scanned several times in different directions with a
high-density point cloud rate of 65 pts/m2 . The scanning mode
was “last, first and intermediate.” More details on the dataset
can be found in Part A of this paper [1].

In this paper, we present the works of the winning teams of the
3-D contest and provide a general discussion of the results: first
for the 3-D contest and then overall for the 2015 IEEE GRSS
Data Fusion Contest. We invite the readers interested in the 2-D
contest, as well as in the detailed presentation of the datasets
to refer to the sister publication, i.e., the Part A manuscript [1].
For the 3-D track, the papers awarded were:

1) First place: “Aerial laser scanning and imagery data
fusion for road detection in city scale” by A.-V. Vo,
L. Truong-Hong, and D. F. Laefer from University College
Dublin (Ireland) [43].

2) Second place: “Geospatial 2-D and 3-D object-based
classification and 3-D reconstruction of International
Standards Organization (ISO) containers depicted in a
LiDAR dataset and aerial imagery of a harbor” by
D. Tiede, S. d’Oleire-Oltmanns, and A. Baraldi from the
University of Salzburg (Austria) and the University of
Naples Federico II (Italy) [44].

In this paper, the overall set of submissions is presented
in Section II. Then, the approaches proposed by the win-
ning and runner-up teams of the 3-D contest are presented in
Sections III and IV, respectively. A discussion of these ap-
proaches is reported in Section V. Finally, a general discus-
sion on the Data Fusion Contest 2015 concludes the paper in
Section VI.
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Fig. 1. Summary of the ten submissions to the 3-D contest by topics (a) and approaches considered (b).

II. DISCUSSION OF THE 3-D CONTEST: THE SUBMISSIONS

A total of ten submissions were received for the 3-D contest.
The participants mainly addressed object detection as the topic
of their research. In total, 80% of the submissions (see Fig. 1)
used the datasets to extract or improve the detection of different
objects in the urban and the harbor environments either target-
ing specific types of objects (containers, buildings, or vehicles)
or addressing general-purpose object detection tasks. Problems
of 3-D point cloud data classification, orthorectification, and
fusion with crowdsourced data were also considered by the par-
ticipants. In particular, fusion with data from crowdsourcing
has been investigated only recently in RS, and a submission on
this topic further confirms that new challenges were explored in
addition to those that are more traditional for the IADF commu-
nity, a scenario similar to what was also remarked for the 2-D
Contest [1].

Regardless of the prevailing focus on detection problems, and
as may be observed in Fig. 1, the methodological approaches
were highly heterogeneous. Most proposed processing schemes
were complex and time consuming and integrated various learn-
ing and optimization procedures. Several methods made use of
expert systems or ad hoc approaches that were customized to
the expected properties of the targets to be detected. This was
quite an expected result due to the usual need to incorporate
prior information in the identification of ground objects at ex-
tremely high spatial resolution. Segmentation techniques were
also prominent among the submitted manuscripts. Traditional
(e.g., classical region growing) or advanced hierarchical 2-D
segmentation methods were considered. Contributions using 3-
D segmentation algorithms, which operate on 3-D voxel data
rather than 2-D pixel data, are quite popular in other areas
(e.g., computer-aided tomography or ecography), but are less
frequently seen in aerial RS, were also received.

Several learning approaches were integrated into the pro-
posed target detection schemes. From a methodological perspec-
tive, they encompassed Bayesian, ensemble, and active learning,
as well as Markovian minimum energy methods with suitable
graph-theoretic formulations (e.g., graph cuts). From the view-
point of applications, these learning contributions in the sub-

missions to the 3-D Contest were mostly customized to case-
specific classification subproblems involved in the target detec-
tion pipelines. In the two following sections, the approaches
proposed by the first and second ranked teams are presented.

III. AERIAL LASER SCANNING AND IMAGERY DATA FUSION

FOR ROAD DETECTION IN CITY SCALE

Automatic road detection from RS data is useful for many
real-world problems such as autonomous navigation. Similar to
road detection from imagery data [45], existing methods for road
extraction from laser scanning data can be categorized as either
top-down (i.e., model-based) or bottom-up (i.e., data driven).
Top-down methods rely on prior knowledge (i.e., about shape,
color, and intensity) of the objects to be detected. The approach
is often more robust than the bottom-up counterpart. However,
its lack of flexibility due to the reliance on the prior knowledge is
a significant drawback. Authors in [46], [47] provide examples
of top-down road detection methods. The former projected a
spline model atop an existing map to point cloud data to produce
a 3-D road map. Each road segment was then fitted by a 2-D
active contour. The contours were attached to road curbs, which
were indicated by sudden height changes in the point data. The
latter study utilized a Hough transformation to detect roads
where road segments were assumed to have thin straight ribbon
shapes.

Bottom-up solutions exploit the homogeneity (e.g., color, in-
tensity, height) between adjacent data points to segment the
data into homogeneous continuous patches. Over- and under-
segmentation are the common challenges to this solution. As
an example of the bottom-up approach, [48] grouped adjacent
points incrementally based on the difference in the height and
laser reflectance between a point and its neighbors. Other exem-
ples of bottom-up efforts to address this problem can be found
in [49]–[51]. In that research, point data are filtered according
to their laser reflectance and their height with respect to a dig-
ital terrain model before undergoing a connected component
labeling process for a group of points.

While most methods in both categories successfully exploit
laser reflectance, absolute height, and height variance as a means
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Fig. 2. General workflow of the road detection process; bracketed numbers
indicate processing times (in minutes) on an Intel Xeon CPU E5-2665 0 @
2.4 GHz with 32-GB RAM; the processed dataset contains 40 904 208 points
and the number of ground points is 26 251 729 points

for distinguishing road versus nonroad data, when airborne
LiDAR data are considered, the relatively limited data density
makes the accurate delineation a very complex task. Given the
LiDAR point data provided by the Data Fusion Contest 2015
together with high-resolution imagery data, the issue of road
extraction was revisited with the two following objectives in
mind: 1) improve geometric analysis on LiDAR point data to
better exploit the laser data density; and 2) investigate added
benefits of imagery data when being used in conjunction with
LiDAR data.

The awarded approach for the 3-D track introduced three
main components:

1) an end-to-end point cloud processing workflow;
2) a new algorithm for extracting points on road boundaries

from aerial laser scanning (ALS) data fused with aerial
imagery data;

3) an innovative data management strategy which is essential
for large-scale high-resolution data analyses.

A. General Data Processing Workflow

In this section, we briefly introduce the main components of
the proposed workflow and the data management issues. Each
component is then detailed in one of the following sections (see
III-B to III-C).

1) Main Ingredients of the Workflow: The proposed road
extraction workflow is illustrated in Fig. 2. The ALS point clouds
and the orthophotos are fused together to form colored point
clouds based on the spatial relationship between the LiDAR
points and the orthophotos’ pixels. If a 2-D footprint of a point
is enclosed inside a pixel, the fusion assigns the pixel’s color
to the data point. The colored point clouds are then loaded into
an Oracle database and indexed using a hybrid quadtree/kd-
tree indexing scheme. Next, features such as normal vector,
local surface roughness, and hue/saturation/lightness (HSL) are

Fig. 3. Hybrid 2-D quadtree–3-D kd-tree indexing. (a) Top indexing level:
Hilbert coded regular tiles. (b) Bottom indexing level: local kd-tree of tile 0 in
the Euclidean 3-D space. (c) Hybrid index represented as a hierarchical structure.

computed. Then, a supervised classification (see Section III-B)
classifies points in the following three classes:

1) ground;
2) building;
3) unassigned.
Road curbs and other obstacles bounding road regions are

then detected before running a quadtree-based region growing
algorithm (see Section III-C); this algorithm connects an initial
seed road point to other ground points, if an obstacle-free path
exists that connects the seed to the new points.

2) Data Management: For the purpose of the study, tiles 5
and 6 of the given dataset were selected (see [1, Fig. 2]), con-
sisting of approximately 40 million LiDAR points. The large
nature of the data precludes storing the entire point cloud within
the main memory for most conventional computers. So, an out-
of-core data management solution is required. Spatial indexing
is necessary since data retrieval based on spatial conditions is
frequent and computationally demanding during the process. In
this study, a hybrid quadtree/kd-tree structure (see Fig. 3) was
implemented atop an Oracle database storing LiDAR points in
order to enable fast all-nearest-neighbor (ANN) computation
on the points. The hierarchical structure of the hybrid index is
shown in Fig. 3. At the top level, point data were partitioned
into multiple 125 m × 125 m tiles using a Hilbert code im-
plementation [see Fig. 3(a)]. The Hilbert implementation maps
each point in its spatial domain to a numeric code (i.e., Hilbert
code) indicating a unique, finite, rectangular cell containing that
point. The mapping efficiently facilitated by the bit-interleaving
process [52] is used for splitting the data, as well as rapidly
identifying portions of data related to spatial queries during
the workflow. A Morton code or any other spatial locational
code [53] can be used as an alternative to the Hilbert code. The
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tile size was selected based on the amount of memory dedicated
for the index (e.g., approximately 120 megabytes/tile).

Under each tile, a 3-D kd-tree was built [see Fig. 3(b)]. The
kd-tree includes points in a buffer around the tile, plus the points
within this tile itself to avoid discontinuity around the tile bound-
aries [the green region in Fig. 3(b)]. The buffer must be suffi-
ciently large to provide adequate neighboring points for the
Feature Computation and the Road Boundary Detection steps
(see Fig. 2). The neighborhood sizes in those two steps, in turn,
depend on the point data density. The sizes should be sufficiently
large to obtain adequate points for the robust neighbor-based
computations and small enough to expose the local characteris-
tics expected from the computations. In this research, a buffer
size of 1 m is selected. The kd-trees were made reusable by be-
ing serialized and stored as binary large objects in an indexing
table. Each kd-tree was retrieved and deserialized back to the
main memory, once a search within its extent was invoked. This
hybrid indexing adapts well to the spatial distribution of ALS
data (i.e., dominantly horizontal (2-D) at the global level and
fully 3-D at the local level). Within a tile, ANN queries are fast
because its associated 3-D index resides in the main memory.
This implementation is not yet generic, nor optimal, but did
sufficiently support all spatial queries performed in this study.

B. Point Cloud Classification

To reduce the computational efforts of the method, a point
classification is performed on the entire point cloud before ap-
plying a more demanding road extraction process only to the
ground points (see Section III-C). A supervised approach is
employed to classify the point cloud into one of three groups:
building, ground, or unassigned. Even though the class “build-
ing” is not exploited in the later part of the workflow, there is
a possibility of relating buildings in the road detection process,
since roads and buildings have a strong proximity to each other
in an urban design context.

The classification process involves three main steps: first,
point features are computed; then, the best-performing feature
vector among several selected vectors is chosen, and finally, the
entire dataset is classified with the best-performing classifier.
The Weka toolkit was utilized to create classification models in
this study [54].2

After being fused with orthophotos, the point cloud possesses
four raw (i.e., from sensor) attributes: intensity and the three
RGB color values. In this research, raw intensity values were
used, as insufficient information was available under the contest
for a correction process. Even though the raw laser intensity de-
livered from a laser scanner has a certain relationship to scanned
surface characteristics (which is expected for the classification),
the quantity is influenced by other factors including ranges and
angles of incidence [55]. Notably, the registration between 2-D
ortho-rectified images and 3-D laser points is imperfect, par-
ticularly on vertical surfaces (e.g., building façades) and under
overhang structures (e.g., walls underneath overhanging eaves).
In such cases, points (e.g., on walls) can be mistakenly assigned

2http://www.cs.waikato.ac.nz/˜ml/weka/index.html

TABLE I
COMBINATIONS OF POINT FEATURES FOR CLASSIFICATION

colors from objects directly above them (e.g., eaves). Never-
theless, since the objects of interest in this study are mainly
horizontal (i.e., roads and pavements), the registration’s imper-
fection has minor impact on the final results. In addition to the
attributes derived directly from sensor data, there are several
features that can be derived from the point coordinates and the
initial attributes that can be beneficial for point classification. In
this study, the following features were investigated:

1) height: z value of the point;
2) image intensity, described in two color spaces (RGB and

HSV);
3) laser intensity;
4) height variation: maximum variation of z values within a

spherical neighborhood N of the given point;
5) surface roughness: indirectly represented by the quadratic

mean of orthogonal distances of all points in N to a plane
P fitting to all points in N ;

6) normal vector of P , represented as (nx, ny , nz ) in a Carte-
sian coordinate system or (θ, φ) in a radial coordinate
system. An iterative principal component analysis [56]
was implemented with a weighting factor inversely pro-
portional to the point-to-plane distance to improve plane
fitting.

To analyze the influence of the above features, several com-
binations (termed feature vectors) were investigated (FV0 to
FV5 in Table I). FV6 and FV7 compared the differences caused
by the various ways of representing normal vectors and col-
ors. Performance of each feature vector was evaluated by a
training-and-evaluating process. Sixteen different regions se-
lected from the original data covering approximately 16% of
the study area were manually labeled. Two-thirds of the labeled
data were used to build a J48 decision tree classifier with a
Weka machine learning toolkit [54]. J48 is Weka’s name for
its improved implementation of the widely used C4.5 (revi-
sion 8) decision tree by Quinlan [57]. The C4.5 algorithm was
recognized as one of the top ten most influential data-mining
algorithms in 2006 [58]. The classification model is a decision
tree generated by a divide-and-conquer strategy with an ulti-
mate pruning step to avoid overfitting. Classifier accuracy was
estimated against the remaining labeled data. The classification
performance of each feature vector is plotted in Fig. 4 with

http://www.cs.waikato.ac.nz/ml/weka/index.html
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Fig. 4. Performance of the feature vectors in Table I on the held out validation
set.

four measures: F1 score for ground (blue), building (red), and
unassigned points (green), and the number of correctly classi-
fied instances (CCI) including all three classes (purple). The
F1 scores computed for each class are the harmonic means
of precision and recall while evaluated against the testing sets,
F1 = 2(precision × recall)/(precision + recall).

Based on Fig. 4, the most important features for point classifi-
cation were height, normal vector, and local surface roughness.
The CCI was 80.1% when the three core features were used
(FV0) but dropped to 72.3% when excluded (FV1). The absence
of image intensity, laser intensity, and height variation reduced
the CCI by 2.3%, 0.8%, and 0.9%, respectively (FV3, 4, and 5).
Representing normal vectors in a radial form (θ, φ) was better
for classification than Cartesian coordinates (nx, ny , nz ) (FV2
versus FV6) due to the trivial lengths of normal vectors, which
can be discarded when the vectors are represented in a spherical
system. In Cartesian coordinates, the lengths are blended into
all three variables (nx, ny , nz ), which complicates the problem
without improving classification levels. The HSL color provided
better results than the RGB color space (81.7% in FV7 versus
79.7% in FV2) as previously noted by Sithole [59]. While color
is treated in its entirety in this research, there is a possibility
of investigating each single color component (H/S/V or R/G/B)
for point classification (e.g., [60], [61]).

Overall, the classification rates were significantly higher for
the class “ground” than for the other two classes (blue versus
red and green columns in Fig. 4), mainly because of feature con-
sistency. The best-performing feature vector was identified as
the group, which included height, normal vector (θ, φ), rough-
ness, HSL color, intensity, and height variation. To exploit all
the manually labeled data, all data are then used to build the
final classifier. Such a final classifier is applied to the entire

Fig. 5. Classification result. The “A” cross section is visualized in Fig. 6(a).

Fig. 6. Directional height and slope variation computation. (a) Real road cross
section from LiDAR point cloud. (b) Local neighborhood around road curbs.
(c) Directional height and slope variation.

dataset (see Fig. 5). Points classified as “ground” were further
processed for road extraction, as detailed in the next section.

C. Road Extraction

Laser intensity has been used successfully for distinguishing
road surfaces from other materials (e.g., [47], [49], and [50]).
Asphalt appears within a very distinctive range in the laser
intensity spectrum. However, in this study, the roads were made
of various materials, which made intensity less discriminative.
Thus, a new method was needed. The proposed method has
two main steps: 1) the identification of road curbs and obstacles
bounding roads based on the spatial distribution of the point
data; and (2) the extraction of road points using a quadtree-
based region growing algorithm that considers intensity and
color simultaneously.

1) Detection of Road Curbs and Obstacles: Road curbs and
obstacles were defined as objects preventing vehicle progres-
sion due to height or slope variation within a finite spatial extent
(e.g., a 1-m-radius circle). Fig. 6(a) shows an example along
a road cross section located at position A in 5. Small features
(e.g., curbs) are visible due to the high data density. The method
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Fig. 7. Directional slope and height variation versus conventional height
variation and residual. (a) �β ,max height. (b) �β ,max slope. (c) Residual.
(d) Height variation.

computes two features: directional slope variation, ∇slope(pi),
and directional height variation, ∇height(pi). Both are com-
puted for every single point pi among the ground points.

First, the neighboring points N within the spherical neigh-
borhood of pi are partitioned into two point groups, NA and
NB, by a vertical plane P containing pi and making an angle
of β with the x-axis [see Fig. 6(b)]. PA and PB are defined as
the best fit planes to the points in NA and NB. With a given
value of β, ∇slope(pi) is defined as the angle between PA and
PB, whereas ∇height(pi) is the height difference between the
vertical projections of pi on PA and PB. Finally, the maximum
directional slope and height variations are determined with re-
spect to β, ∇maxslope(pi) and ∇maxheight(pi) [see Fig. 6(c)].

Fig. 7(a) and (b) present the results of ∇maxslope and
∇maxheight for a segment of ground points. Road boundaries
are clearly distinguishable and are defined better than using the
residual value—see Section III-A—[see Fig. 7(c)] or the nondi-
rectional height variation approaches [see Fig. 7(d)]. Points hav-
ing∇maxslope > 8◦ and∇maxheight > 5 cm were considered as
obstacles and were used as inputs to the region growing road
extraction algorithm presented in the next section. Thresholds
were selected empirically.

2) Quadtree-Based Region Growing: A seeded region grow-
ing algorithm was combined with a rasterization for perfor-
mance enhancement [62] to extract road points (see Fig. 8).
Region growing requires an initial seed, which is a pixel (i.e.,
node in the quadtree) recognized with high certainty as being a
portion of the road network to be detected. In this study, the se-
lection of the initial seed is performed manually. An example is
given at the plus mark in Fig. 8(b). Around the seed, a buffer ap-
proximating a required clearance for one vehicle is constructed
(e.g., a 0.75-m-radius circle). Every pixel within the buffer, as
well as all points enclosed in the pixel, is labeled as road, if
the buffer is obstacle-free. The newly detected road pixels are
then set as new seeds for the next iterations, if they satisfy ad-
ditional intensity and color conditions (i.e., intensity <550 and
hue ∈ (0.18, 0.3)). Similarly to the directional slope and height
variations criteria, the color and intensity thresholds were em-
pirically defined. Since each pixel often contains more than a

Fig. 8. Road extraction results. (a) Extracted road network. (b) Reference road
map (Google Maps). (c) Barriers at D. (d) Speed bump at C.

single point, intensity and color values of a pixel are set as the
maximum intensity and the average HSL of all points contained
in the pixel. These criteria help distinguish roads from grass,
even though they are insufficient by themselves for direct road
extraction.

D. Discussions and Concluding Remarks

The proposed approach was able to successfully identify most
of major road segments, except those blocked by speed bumps
or other obstacles (e.g., location C&D in Fig. 8). Notably, the
approach is not fully automatic and requires human knowledge
in the form of threshold selection. Arguably, the thresholds for
slope and height variations can be derived from road design
codes taking into account data noise and other artifacts caused
by data acquisition and processing. Nevertheless, a complete
consideration of the issue is complex. Given the time limits of
the contest, this was circumvented by the researchers through
the adoption of a trial-and-error approach. To assist in this, a
graphical user interface was created with sliders to preview the
detected roads of specific regions under various threshold. Once
an initial set of results is considered as satisfactory, further
regions can be tested or the thresholds can be used to popu-
late the entire dataset. Fig. 9 shows the sensitivity of the result
to the height and slope variation thresholds separately. When
more relaxed criteria were selected (i.e., higher values for the
thresholds), more spurious points were detected (see Fig. 9). In
contrast, stricter criteria (i.e., low thresholds) lead to a higher
miss rate. For the time being, controlling the balance between
the two states is left to human intervention. A similar approach
was employed for intensity and color-threshold selections. Most
false alarms were attributable to large parking lots (e.g., location
A in Fig. 8), while most of missed road segments were caused
by vehicle congestion at both ends of the segments. A possible
solution for the latter issue is to filter transient objects including
moving vehicles before conducting the processing. Such a filter-
ing would be straightforward if point data were acquired from
multiple overlapping flight strips such as the case of Dublin
city’s data [63]. Moving objects can be detected based on their
inconsistent appearance in the scans of the same scene given
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Fig. 9. Influences of slope and height variation thresholds on road detection
results; black points are those detected as road. (a) �height < ∞; �slope < 6◦.
(b) �height < ∞; �slope < 7◦. (c) �height < ∞; �slope < 8◦. (d) �height
< ∞; �slope < 9◦. (e) �height < ∞; �slope < 10◦. (f) �height < 3 cm;
�slope < ∞. (g)�height < 4 cm;�slope < ∞. (h)�height < 5 cm;�slope <
∞. (i) �height < 6 cm; �slope < ∞. (j) �height < 7 cm; �slope < ∞.
(k) �height < 5 cm; �slope < 8◦.

that the analysis can exclude other causes of the absence (e.g.,
occlusion) [64].

Evaluation against a manual delineation showed a precision
of 66.1%, recall of 91.9%, and an F1 score of 76.9%. While the
LiDAR point cloud provided the highly accurate dense 3-D data
enabling detection of fine features such as road curbs or barriers,
color from the orthophotos increased the point cloud classifi-
cation accuracy by 2.3%, equivalent to adding approximately
920 000 points. Orthophoto-based color and laser intensity also
helped excluding grassy areas [e.g., B1 and B2 locations in

Fig. 8(a)]. Nevertheless, the usage of color would be impeded,
if input photos contained significant shadows. In such cases, the
additional benefit of using colors is not applicable, and the data
processing would have to rely only on geometric processing.

While minimizing computational cost is not the aim of this
study, the processing time for each single module in the chain
is presented in Fig. 2 (with the total of 18.5 h). Even though the
classification step improves the performance, it is not compul-
sory, and further optimization alleviating the costs is possible.
The proposed approach is more widely applicable than many
other studies in this field, as it does not require a digital ele-
vation model or a 2-D road map as input. The initial seeding
point selection could be automated, as well as the definition of
thresholds for directional slope and height variation. The re-
sults showed all locations accessible from the initial seed point.
On one hand, both data acquisition and processing are mostly
automated; therefore, the maps generated by the proposed ap-
proach are more likely to be up-to-date. On the other hand, such
maps directly imply geometry constraints. Multiple maps can,
therefore, be generated from the same set of data to fit differ-
ent vehicle capacity or user requirements, which may be highly
useful for navigation.

IV. AUTOMATED HIERARCHICAL 2-D AND 3-D
OBJECT-BASED RECOGNITION AND RECONSTRUCTION OF ISO

CONTAINERS IN A HARBOR SCENE

A. Introduction

The inventory of rapidly changing logistics infrastructures,
such as depots and harbors, is crucial to their efficiency. For
example, an optimized exploitation of an intermodal storage
volume for shipping containers requires an inventory where po-
sitional, geometric, and identification attributes of individual
containers are known in real time. In the 3-D track of the 2015
GRSS Data Fusion Contest, this work tackled the problem of
freight container localization and classification at a harbor by
an automated near real-time computer vision (CV) system, in
agreement with the ISO 668—Series 1 freight containers docu-
mentation adopted as a source of a priori (3-D) scene-domain
knowledge [65].

B. Methods

1) Selected 2-D and 3-D Sensory Datasets: Focusing on the
harbor area visible in Tiles #1-2-3-4, refer to [1, Fig. 2], the
input datasets selected for use were the uncalibrated three-band
true-color RGB aerial (2-D) orthophoto featuring very high spa-
tial resolution, below 10 cm, and the dense 3-D LiDAR point
cloud described in [1, Sec. II]. The available DSM was not
used, because it appeared to lack nonstationary surface-elevated
objects, such as cranes and freight containers, in disagreement
with the LiDAR point cloud. In addition, a slight tilting effect
was observed to affect the RGB orthophoto in comparison with
the LiDAR point cloud, across image locations where above-
ground objects, such as container stacks, were depicted. Such
a tilting effect could be caused by an image orthorectification
process employing as input the aforementioned DSM, where
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nonstationary above-ground objects were absent. In practice,
the target CV system was required to cope with the observed
tilting effect when 2-D and 3-D datasets were spatially over-
lapped.

2) In-House DSM Generation From the LiDAR Point Cloud:
To reveal above-ground scene elements, such as containers and
cranes, the 3-D LiDAR point cloud was integrated as a raster
(2-D gridded) point cloud, where the DSM pixel size was the
same of the input orthophoto (5 cm) and the DSM pixel value
was the LiDAR highest elevation value z occurring per pixel.

C. Main Workflow

Human panchromatic vision is nearly as effective as color
vision in the provision of a complete scene-from-image repre-
sentation, from local syntax of individual objects to global gist
and layout of objects in space, including semantic interpreta-
tions and even emotions [66], [67]. This fact means that spatial
information dominates color information in the spatiotemporal
4-D real world-through-time domain, described by humans in
user-speak [65], as well as in a (2-D) VHR image domain, to
be described in technospeak [66], irrespective of data dimen-
sionality reduction from 4-D to 2-D [67], [68]. It agrees with
the increasing popularity of the object-based image analysis
(OBIA) paradigm [69]–[71], proposed as a viable alternative
to traditional 1-D image analysis, where intervector topological
(neighborhood) relationships are lost when a 2-D gridded vec-
tor set is mapped onto a 1-D vector stream [72]. To develop a
CV system capable of 2-D spatial reasoning in a VHR image
domain for 3-D scene reconstruction, a hybrid inference sys-
tem architecture was selected. According to Marr, the linchpin
of success of any data interpretation system is architecture and
knowledge/information representation, rather than algorithms
and implementation [73]. In hybrid inference, deductive and in-
ductive inferences are combined to take advantage of each other
and overcome their shortcomings [67], [70], [71], [74]–[76]. On
one hand, inductive (bottom-up, learning-from-data, statistical
model-based) algorithms, capable of learning from either unsu-
pervised or supervised data, are inherently ill-posed and require
a priori knowledge in addition to data to become better posed for
numerical solution (see [77, p. 39]). In the RS, common practice
inductive algorithms are semiautomatic and site-specific [74],
[75], [78]. On the other hand, expert systems (deductive, top-
down, physical model-based, prior knowledge-based inference
systems) are automated, since they rely on a priori knowledge
available in addition to data, but lack flexibility and scalability
[74], [75], [77], [78]. An original hybrid CV system architecture
was selected to:

1) comply with the OBIA paradigm [69]–[72];
2) start from a first stage of automated deductive inference,

to provide a second stage of inductive learning-from-data
algorithms with initial conditions without user interaction;

3) employ feedback loops, to enforce a “stratified” (driven-
by-knowledge, class-conditional) approach to uncondi-
tional sensory data interpretation [67], [68], [78].

This approach is equivalent to a focus-of-visual-attention
mechanism [67], [77] and to the popular divide-and-conquer

Fig. 10. Adopted workflow. (1) RGB image preprocessing (upper left) and
LiDAR data preprocessing (top right). (2) Integration of two object-based image
and point cloud analyses (center top). (3) Reconstruction (synthesis) of tangible
3-D container objects (bottom).

problem-solving approach [77]. Sketched in Fig. 10, the imple-
mented CV system consisted of three main modules:

1) a first stage of application-independent automated pre-
processing for uncalibrated RGB image harmonization,
enhancement, and preliminary classification;

2) a second stage of high-level classification with spatial
reasoning in a heterogeneous 2-D and 3-D data space;

3) 3-D reconstruction (synthesis) of individual ISO
containers.

D. Automated RGB Image Preprocessing First Stage

1) RGB Color Constancy for Uncalibrated RGB Image Har-
monization: Color constancy is a perceptual property of the hu-
man vision system ensuring that the perceived colors of objects
in a (3-D) scene remain relatively constant under varying illu-
mination conditions [79]. By augmenting image harmonization
and interoperability without relying on radiometric calibration
parameters, it was considered a viable alternative to the radio-
metric calibration (Cal) considered mandatory by the Quality
Assurance Framework for Earth Observation (QA4EO) guide-
lines [80]. The QA4EO’s Cal principle requires dimensionless
digital numbers to be transformed into a physical variable, pro-
vided with a radiometric unit of measure, by means of radio-
metric Cal metadata parameters [59]. Physical variables can be
analyzed by both physical and statistical models, therefore hy-
brid models, too [55]. On the contrary, quantitative variables
provided with no physical unit of measure can be investigated
by statistical models exclusively [55]. An original automated
(self-organizing) statistical model-based algorithm for multi-
spectral (MS) color constancy, including RGB color constancy
as a special case, was designed and implemented in-house (un-
published, patent pending).

2) Forward RGB Image Analysis by Prior Knowledge-Based
Vector Quantization (VQ) and Inverse RGB Image Synthesis
for VQ Quality Assessment: Widely investigated by the CV
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community [79], a finite and discrete dictionary of prior RGB
color names is equivalent to a static (nonadaptive to data) RGB
cube polyhedralization, where polyhedra can be arbitrary, either
convex or not, either connected or not. In the seminal work by
Griffin [81], the hypothesis was proved that the best partition of
a monitor-typical RGB data cube into color categories for prag-
matic purposes coincides with human basic colors (BCs) (see
[81, p. 76]). Central to this consideration is Berlin and Kay’s
landmark study of color words in 20 human languages, where
they claimed that the BC terms of any given language are always
drawn from a universal inventory of eleven color names: black,
white, gray, red, orange, yellow, green, blue, purple, pink, and
brown [82]. These perceptual BC categories are expected to be
“universal,” i.e., users can apply the same universal color repre-
sentation independently of the image-understanding problem at
hand [79]. Equivalent to color naming in natural languages [82],
prior knowledge-based color space discretization is the deduc-
tive automatic counterpart of inductive learning-from-data VQ
algorithms (not to be confused with unsupervised data clustering
algorithms [77]). In machine learning, the class of predictive VQ
optimization problems requires to minimize a known VQ error
function, typically a root-mean-square error (RMSE), where the
number and location of VQ bins are the system free parameters
[77]. For example, in the popular k-means VQ algorithm, the
number of VQ levels, k, must be user-defined based on heuristics
[83]. When they adopt a Euclidean metric distance in their min-
imization criterion and they reached convergence, inductive VQ
algorithms accomplish a Voronoi tessellation of the input vector
space, which is a special case of convex polyhedralization [84].
In contrast with inductive VQ algorithms capable of convex hy-
perpolyhedralizations, prior spectral knowledge-based decision
trees can be designed to partition an input data hyperspace into
hyperpolyhedra of any possible shape and size, either convex
or concave, either connected or not. Unfortunately, when a data
space dimensionality is superior to three, a prior partition of
hyperpolyhedra is difficult to think of and currently impossible
to visualize. This is the case of the Satellite Image Automatic
Mapper (SIAM), an expert software system for MS color nam-
ing presented to the RS community in recent years [68]. By
definition, expert systems require neither training datasets nor
user-defined parameters to run, i.e., they are fully automated.
Inspired by the SIAM expert system [68], a novel RGB Image
Automatic Mapper (RGBIAM) was designed and implemented
(unpublished, patent pending). RGBIAM is an expert software
system for RGB cube partitioning into an a priori dictionary
of RGB color names. By analogy with SIAM, since no total
number k of VQ bins can be considered “best” (universal) in
general, the implemented RGBIAM supports two coexisting
VQ levels, fine and coarse, corresponding to 50 and 12 color
names, respectively, provided with interdictionary parent–child
relationships (see Fig. 11). Whereas the physical model-based
SIAM requires as input a radiometrically calibrated MS im-
age [80], the first-principle model-based RGBIAM requires
as input an uncalibrated RGB image, in either true- or false-
colors, preprocessed by a color constancy algorithm, to guaran-
tee data harmonization and interoperability across images and
sensors.

Fig. 11. RGBIAM is an expert system for a monitor-typical RGB color-space
discretization into two prior quantization levels, consisting of (a) 50 color bins
and (b) 12 color bins, linked by interlegend child–parent relationships. They are
fixed a priori to be community-agreed upon.

Fig. 12. First-stage RGBIAM QNQ transform, consisting of six information
processing blocks identified as 1 to 6, followed by a high-level object-based im-
age analysis (OBIA) second stage, shown as block 7. Blocks 1–5 cope with di-
rect image analysis. 1: Self-organizing statistical algorithm for color constancy.
2: Deductive VQ stage for prior knowledge-based RGB cube polyhedraliza-
tion. 3: Well-posed two-pass connected-component multilevel image labeling.
4: Well-posed extraction of image-object contours. 5: Well-posed STD alloca-
tion and initialization. Block 6: inverse image synthesis, specifically, superpixel
(piecewise)-constant RGB image approximation.

The automated RGBIAM pipeline for a quantitative-to-
nominal-to-quantitative (QNQ) transform of a monitor-typical
true- or false-color RGB image is shown in Fig. 12. It con-
sists of: 1) a forward RGBIAM’s Q-to-N variable transform. It
maps an RGB image onto two multilevel color maps, whose
legends consist of 50 and 12 color names (see Fig. 11). 2) An
inverse RGBIAM’s N-to-Q variable transform. It provides an
RGB color VQ error estimation, specifically, an RMSE image
estimation, in compliance with the QA4EO’s requirements on
validation [80]. To this end, each of the two RGBIAM’s mul-
tilevel color maps was deterministically partitioned into an im-
age segmentation map by a well-known two-pass algorithm for
connected-component multilevel image labeling [75]. The RG-
BIAM’s planar segments identified in the 2-D color map domain,
consisting of connected pixels featuring the same color name,
are traditionally known as texels (texture elements), textons [85],
tokens [73], or superpixels in the recent CV literature [86]. In
other words, RGBIAM works as a texel detector at the Marr’s
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Fig. 13. (Left) Subset of the original uncalibrated RGB image, before color
constancy. (Right) Same subset, after automatic RGB image preprocessing,
consisting of image enhancement by statistical color constancy, RGBIAM’s
image mapping into 50 color names and RGBIAM’s segment-constant edge-
preserving image reconstruction. No image histogram stretching is applied for
visualization purposes.

raw primal sketch in low-level (preattentional) vision. Next, for
each RGB color quantization level, fine or coarse, a segment
description table (SDT) was generated as a tabular representa-
tion of the texel information [67]. In an SDT estimated in one
image pass, each texel was described by its positional (e.g., min-
imum enclosing rectangle), photometric (e.g., mean MS value),
and geometric attributes (e.g., area). Finally, based on each pair
of one SDT and one segmentation map, a texel-constant edge-
preserving approximation of the input RGB image (mean value
of the RGB image per texel object) was automatically generated
in linear time (see Fig. 13). The comparison of the input RGB
image with the output reconstructed RGB image allowed esti-
mation of an RMSE image as a community-agreed quantitative
quality indicator (Q2I) in VQ problems [77], [80].

E. Second-Stage Classification With Spatial Reasoning in a
Heterogeneous 2-D and 3-D Data Space

Traditionally mimicked by fuzzy logic [87], symbolic human
reasoning is grounded on the transformation of a quantitative
(numeric) variable, such as ever-varying sensations, into a qual-
itative (categorical, nominal) variable consisting of fuzzy sets,
such as discrete and stable percepts [67]. The second-stage clas-
sification of our hybrid CV system was input with five geospatial
variables, either quantitative or categorical [88]:

1) A quantitative 3-D LiDAR point cloud.
2) A quantitative LiDAR data-derived DSM.
3) A quantitative piecewise-constant edge-preserving sim-

plification of the original RGB image (see Fig. 13).
4) Two categorical and semisymbolic RGBIAM preclassifi-

cation maps into color names of the input RGB image (see
Fig. 11).

5) Two categorical subsymbolic RGB image segmentation
maps, consisting of planar objects automatically extracted
from the two multilevel preclassification maps, provided
with intermap parent–child relationships.

To infer output variables of higher information quality from
the combination of numeric and categorical geospatial variables,
the second stage of our hybrid CV system adopted two strategies:

1) A “stratified” approach to quantitative variable analysis,
where geospatial numeric variables are conditioned by

geospatial categorical variables in compliance with the
principle of statistical stratification [67], [68], [78].

2) An OBIA approach to spatial symbolic reasoning on
geospatial categorical variables, consisting of discrete ge-
ometric objects, either 2-D or 3-D, by means of physical
model-based syntactic decision trees [75].

Unlike many traditional data fusion techniques, where
geospatial numeric (quantitative) variables are stacked before
1-D (context-insensitive topology-independent) image analysis,
typically by means of supervised data classification techniques,
the proposed CV system investigates geospatial numeric vari-
ables (e.g., height values provided by the LiDAR point cloud)
conditioned by geospatial categorical (nominal) variables in the
(2-D) image domain (e.g., RGB texels), in compliance with the
principle of statistical stratification and the OBIA paradigm.
The implemented classification second stage of our hybrid CV
system consisted of five subsystems, coded in the Cognition
Network Language, within the eCognition Developer software
environment (Trimble Geospatial).

1) Convergence-of-Evidence Criterion for Automated Back-
ground Terrain Extraction From the DSM and the RGB Image:
An automated (well-conditioned) eCognition multiresolution
image segmentation algorithm [89] was run to extract planar ob-
jects in the DSM image featuring within-object nearly constant
DSM values. Merging adjacent 2-D objects whose height differ-
ences was below 1 m resulted in, among others, one very large
planar object, corresponding to the dominating background ter-
rain across the surface area. Next, color names of background
surface types, such as asphalt, bare soil, or water, were visually
selected, combined by a logical OR operator and overlapped
with the DSM-derived background mask. Finally, a foreground
binary mask was generated as the inverse of the background bi-
nary mask. Foreground planar objects were candidates for 3-D
ISO container detection.

2) Candidate 3-D Object Selection Based on Converging 2-D
and 3-D Data-Derived Information: Masked by the foreground
binary mask detected at step 1, the RGBIAM’s planar objects
(texels) detected in the RGB image domain were considered
as input geospatial information primitives. In the orthophoto
domain, the top view of a 3-D ISO container looked like a
single foreground image object provided with its RGBIAM’s
color name. To assign an object-specific height value z to each
foreground planar object, the tilting effect observed in the or-
thorectified RGB image (discussed in Section IV-B) had to be
accounted for. To this end, the height value was estimated as
the 90% quantile of the LiDAR point cloud’s z elevation val-
ues whose (x, y) coordinates fell on the target planar object.
Foreground image objects with an estimated height higher than
a physical model-based maximum height of 26 m, correspond-
ing to ten stacked ISO containers (considered as the possible
maximum stacking height [90]), were removed from the set of
3-D container-candidate objects, such as image objects related
to cranes in the scene domain. Finally, a spatial decision rule
exploiting interobject spatial relationships was applied to mask
out small-size nonelevated 3-D objects, whose planar projec-
tion was below the minimum ISO container area and that were
isolated, i.e., surrounded by background areas exclusively. The
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result was a binary mask of container-candidate planar areas,
where containers could be stacked up to ten layers.

3) Driven-by-Knowledge Refined Segmentation of the RGB
Image: Masked by the binary candidate-container image ar-
eas detected in step 2, the edge-preserving smoothed RGB im-
age (see Fig. 13) was input into a well-posed multiresolution
eCognition segmentation algorithm [89], whose free-parameter
“planar shape compactness” was selected in accordance with
prior physical knowledge of the ISO container’s length and
width [65]. Unlike the first RGBIAM’s image partition, based
on a nonadaptive-to-data spectral knowledge base and applied
image-wide, this second adaptive-to-data image segmentation
algorithm was provided with physical constrains and run on a
masked image subset (container area only), to make it less prone
to inherent segmentation errors and faster to compute. This stage
accounted for the LiDAR data-derived DSM image indirectly
through the input binary mask, rather than directly by stacking
it with the input RGB image, to avoid the aforementioned tilting
effect.

4) Three-Dimensional ISO Container Recognition and Clas-
sification: Classes of ISO containers in the scene domain were
described in user-speak by the following shape and size proper-
ties [65]:

1) ISO class 1 of 20’ container: rectangular area of 15 m2 ,
rectangular shape, height 2.6 m.

2) ISO class 2 of 40’ container: rectangular area of 30 m2 ,
rectangular shape, height 2.6 m.

These size values were projected onto the image domain in
technospeak, based on a sensor-specific transformation function
[67]. The planar projection of a 3-D rectangular object belong-
ing to the ISO container classes 1 and 2 was found to match an
eCognition’s image object-specific rectangular fit index of 0.75
in range [0, 1]. Input image objects, detected at the previous step
3, were selected based on their fuzzy rectangular shape member-
ship value. Surviving image objects whose height was divided
by the standard height of an ISO container, equal to 2.6 m, pro-
vided an estimate of the number of stacked ISO containers per
image object. Finally, vector container objects were assigned to
ISO container classes 1 or 2 based on their length/width relation.
In addition, for visualization and 3-D reconstruction purposes,
an eCognition function was run per container object to simplify
and orthogonalize vector object boundaries in agreement with
the main direction identified as the angle featuring the largest
sum of object edges per container object. Classified and 3-D
container objects were exported as polygon vectors in a stan-
dard GIS-ready file format (e.g., *.shp).

5) Semantic Labeling of the 3-D LiDAR Point Cloud:
Geospatial locations of the container objects classified in step 4
were spatially intersected with the 3-D LiDAR point cloud,
to provide semantic labels to the LiDAR’s z values whose
(x, y) spatial coordinates fell on the planar projection of a 3-D
container.

F. Three-Dimensional Reconstruction of ISO Containers

The synthesis of tangible 3-D container objects took place in a
GIS commercial software product (ArcScene, ESRI). The RGB

Fig. 14. Subset of the 3-D reconstructed container terminal. Each container
is a tangible 3-D object featuring positional, colorimetric, geometric, and iden-
tification attributes. Stacked containers were visualized in the same color of the
container on top, according to the per-object mean RGB value extracted from
the RGB orthophoto.

Fig. 15. Above: original LiDAR point cloud, colored from blue to red accord-
ing to increasing point elevation values. Below: detected and classified LiDAR
container point, where green = 20 container class 1, blue = 40 container class
2 [scene extent: (275 × 325 m)].

orthophoto was draped over the DSM. Vector 3-D container ob-
jects were extruded according to their relative height. Stacked
containers were extruded several times, based on the estimated
number of stacked containers. Stacked containers were visual-
ized in the same RGB color value estimated for the container
on top (see Fig. 14).

G. Results and Discussion

The implemented hybrid CV system ran automatically, be-
cause prior knowledge initialized inductive 2-D and 3-D data
analysis without user interaction, and near real-time, because
of its linear complexity with the data size. In a standard lap-
top computer, computation time was 1 min for the RGBIAM
preclassification and less than 5 min for the second-stage OBIA
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TABLE II
ACCURACY ASSESSMENT OF THE EXTRACTED CONTAINER TYPES

Automatic Visual Producer’s User’s
Container Assessment Assessment Accuracy Accuracy
type (2-D) (2-D) Matches (%) (%)

40’ 425 426 415 97.42 97.65
20’ 265 226 217 96.02 81.89
Aggregated 690 652 632 96.93 91.59

Fig. 16. Overlay of the 3-D container reconstruction with the original LiDAR
point cloud, colored from blue over orange to red according to increasing point
elevation values. It qualitatively shows the estimated height per container stack
looked accurate.

classification. It detected 1659 containers distributed in 690 con-
tainer stacks, including 118 single containers, 201 stacks of 2,
361 stacks of 3, 2 stacks of 4, and 8 stacks of 6 containers (see
Figs. 14 and 15). In comparison with a reference “container
truth,” acquired by an independent photointerpreter from the
RGB image, detected ISO containers revealed a high overall
accuracy (see Table II), together with producer’s and user’s ac-
curacies superior to 96%, although the user’s accuracy for the
20’ container class, affected by 39 false-positive occurrences,
scored 81%. Further investigation revealed that the majority of
these false positives were due to either true containers (e.g.,
few 40’ container objects were recognized as pairs of 20’ con-
tainer objects due to spectral disturbances) or real-world objects
similar to ISO containers in shape and size (e.g., trucks). A
qualitative comparison of the 3-D container reconstruction with
the original LiDAR point cloud revealed a qualitatively “high”
accuracy of height estimation per container stack (see Fig. 16).

In line with theoretical expectations about hybrid inference,
these experimental results reveal that the implemented hybrid
CV system can be considered in operating mode by scoring
“high” in a set of minimally redundant and maximally infor-
mative Q2Is. Estimated Q2I values encompassed [68] accuracy
(“high”; see Table II and Fig. 16), efficiency (“high,” linear

time), degree of automation (“high,” no user interaction), time-
liness from data acquisition to product generation including
training data collection, to be kept low (“low,” no training-from-
data, physical models were intuitive to tune, etc.), and scalabil-
ity to different CV problems (“high,” the CV system pipeline
is data- and application-independent up to the CV system’s
target-specific classification second stage). The conclusion is
that hybrid feedback CV system design and implementation
strategies can contribute to tackle the increasing demand for
off-the-shelf software products capable of filling the semantic
information gap from 2-D and 3-D big sensory data to high-level
geospatial information products, where 2-D data are typically
uncalibrated, such as images acquired by consumer-level color
cameras mounted on mobile devices, including unmanned air-
craft systems.

V. DISCUSSION OF THE 3-D CONTEST: THE WINNERS

The complex novel approaches proposed by the two winning
teams included image modeling and processing tools for fusing
2-D and 3-D information and overcoming the different geo-
metrical scanning modes and the limitations of each individual
dataset.

1) The winning team considered the problem of road ex-
traction (see Section III). As discussed above, automatic
extraction of roads in complex urban scenes using RS
sources is an open and challenging research topic, less
active in comparison to the detection of buildings or trees.
The innovative processing solution proposed by the win-
ning team was found remarkable for two reasons: 1) it
takes into account the characteristics of the modern urban
landscape that includes many different road materials and
types but also road obstacles such as speed bumps and
road curbs; and 2) it applies and combines methods on
different levels of processing including the laser’s point
clouds, grids, and regions. This approach supports the im-
portance of LiDAR as a highly accurate RS source for
road and object detection in urban areas. The integration
of optical data is mainly used to exclude vegetal features
such as grassy areas as well as to reduce the ambiguity in
areas near the buildings.

2) The runner-up team addressed the detection of containers
in the harbor of Zeebruges (see Section IV). The proposed
processing scheme is complex and was conducted from
three different levels of processing: enhancement, classi-
fication, and 3-D reconstruction. Main innovations are in
the first and second steps. Image harmonization is a nec-
essary condition for the implementation of a hybrid CV
system, in which physical and statistical data models are
combined to take advantage of each other and overcome
their shortcomings. The hybrid system runs automatically
without user interaction, does not involve learning of
model parameters from empirically labeled data, and
relies on a priori knowledge to account for contextual
and topological visual information. This processing chain
highlights the efficiency of object-based methods applied
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for fused optical and LiDAR data for the detection of
small objects in the urban-harbor environment.

VI. CONCLUSION ON THE DATA FUSION CONTEST 2015

In this two-part paper, we presented and discussed the out-
comes of the IEEE GRSS Data Fusion Contest 2015. In com-
pliance with the two-track structure of the contest, we discussed
the results in two parts: the 2-D contest in Part A [1] and the
results of the 3-D contest in Part B (this paper). The winners
of both tracks showed innovative ways of dealing with the very
timely sources of data proposed: extremely high resolution RGB
data and high density LiDAR point clouds.

In the 2-D contest, the emerging technology of convolutional
neural networks, which is becoming a very prominent standard
in computer vision, has emerged as a powerful and effective way
of extracting knowledge from these complex data. The under-
standing of the information learned by the network is highlighted
by the winning team, which provided an in-depth analysis of the
properties of the deep network filters. The effectiveness in clas-
sifying land cover types was highlighted by the runner-up team,
which provided a comprehensive and thorough benchmark and
disclosed their evaluation ground truth to the community.3

In the 3-D contest, the need of working with the point cloud
directly emerged as a clear need, since the precision of the
DSM used for calculation proved to be fundamental for the
detection tasks addressed by the participating teams. Solutions
to computational problems were also deeply considered by the
winning team, since high-density LiDAR point cloud calls for
new standards of storage and access to data. The runner-up
team showed a different kind of reasoning for data fusion, not
based solely on learning from examples, but combining it, in a
hybrid system, with physical knowledge of the 3-D scene and
psychophysical evidence about human vision. They showed that
fully automatic recognition was possible, even with uncalibrated
data as the RGB image provided, in combination with a dense
3-D LiDAR dataset.

Summing up, the organizers were extremely pleased by the
quality of the solutions proposed and by the variety of fu-
sion problems addressed and processing approaches adopted
by the participants to the Contest. They ranged from cutting-
edge machine learning methodologies to case-specific process-
ing pipelines and to prior knowledge-based systems, with the
goal of capturing the information conveyed by extremely high
resolution 2-D and 3-D remote sensing data. The organizers
do hope that the concepts emerging from the 2015 Data Fu-
sion Contest will inspire new research studies at the interface of
computer vision and remote sensing and foster new joint uses
of laser and optical data.
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