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ABSTRACT  
Reducing pollution from diffuse sources, such as stormwater runoff, is now the major emphasis of regulatory agencies in 
many urban areas. Monitoring and modeling of such large-scale problems is inherently difficult, and many approaches 
require land use information to estimate emissions. Acquiring land use information can be time consuming and expensive 
using conventional ground surveys. Remotely sensed land use is a possible alternative, and remote sensing is receiving 
increasing attention from environmental engineers for its utility to more economically and accurately monitor large-scale 
processes. Land use from digital images has been classified by using statistical methods and artificial intelligence 
applications. For our research, Bayesian networks were evaluated as an intelligent classification tool. The Landsat TM 
image covering parts of Los Angeles was used. We identified the input parameters of the image that directly affect the 
classification label of pixels, which was spectral signature of band 5. Incorporating ancillary input data such as geospatial 
information significantly improved classification accuracy. Finally, we propose a new land use classification system 
suitable for stormwater modeling since the USGS land use and land cover classification systems may not be the best 
approach for environmental applications. 
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INTRODUCTION 
Remote sensing deals with information about the earth resource without actual contact (Jensen 1996). Recently, remote 
sensing has become more important for monitoring the environment of the Earth.  For example, land use classifications 
from remotely sensed images are used for modeling non-point source pollution in urban area. Non-point source pollution 
has many different sources based on land use activities. Therefore, urban land use information is essential to manage non-
point source pollution problems caused by stormwater runoff quality and quantity. Acquiring land use information is time 
consuming and expensive using conventional ground surveys but becomes inexpensive and repetitive using remote sensing 
data. 
For application of remote sensing data, digital image classification has been examined by using statistical methods (e.g. 
maximum likelihood) and artificial intelligence applications (e.g. expert systems and neural networks, Foody et al., 1992; 
Paola et al., 1995). Among these methods, the use of artificial intelligence (AI) techniques have been increasingly popular 
and reported to be successful (Stefanov et al., 2001; Paola et al., 1995). Bayesian networks are one of the AI learning 
methods and have yet received little attention in remote sensing image classification since it is a relatively young AI 
methodology. Recently Bayesian networks have been recognized as excellent classification tools in many areas such as  
medicine, vision, natural language processing and decision-making (Russel, 1995; Lucas et al., 1999).  
 
Bayesian networks were proposed by Pearl by combining Bayes’ theorem and graph theory (Pearl, 1988) so that the 
networks have both rich statistical expression and clear graphical representation that shows relationships among variables. 
A Bayesian network is graphically represented as a directed acyclic graph (DAG) that consists of a set of nodes in which 
the dependent variables are connected by arcs (Neapolitan, 1990; Duda et al., 2001). The structure of the network 
explicit ly shows the dependency relationships among variables. This helps us to easily understand the cause and effect 
relationship in the given domain even under uncertainty. Given a network structure and data, it is possible to compute a 
posterior probabilistic estimate of a target variable. For example, the simplest Bayesian networks, sometimes called naïve 
Bayesian classifiers, are used to predict the value of one variable, called the class node, from a set of measured variables.  
In a typical Bayesian network, we are given a class node, C and several measured variables, Li. Hence, for example, if 
there are three measured variables and we assume that L1, L2 and L3 are conditionally independent and probability 
distributions sum to 1, we can write Bayes’ theorem in the following form: 
 

)C(P)C|3L(P)C|2L(P)C|1L(P)3L,2L,1L|C(P α=     (1) 

where á is set to normalize the probabilities to 1. Since we can easily estimate the quantities P(L1|C), P(L2|C) and P(L3|C) 
from known data values, we can use this equation to calculate a posterior probability distribution over C for any values of 
L1, L2 and L3. 
 
An important feature of a Bayesian network is its assumption of conditional independence. A node is conditionally 
independent of its sibling nodes given its parent nodes. In other words, each parent node protects its child nodes from the 
effect of the non-descendant nodes in the network (Neapolitan, 1990). This makes Bayesian networks more 
computationally tractable because it is not necessary to use a large joint probability table listing the probabilities of all 
combinations of variables. Also conditional independence reduces the complexity of learning (Lucas et al. 1999). 
However, this also represents a limitation of naïve Bayesian classifiers since in practice, it is unlikely that a set of variables 
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will be totally independent given a single class node. Nevertheless, many researchers have found that naïve Bayesian 
classifiers perform as well as or better than other more complicated networks (Friedman et al., 1997; Webb and Pazzani, 
1998). Another desirable feature of a Bayesian network is its flexibility when updating. We can include additional 
information at any time and this does not affect or contradict the existing network.  
 
One of the commonly used Bayesian networks are Maximum Weight Spanning Trees (MWST), which use Chow and 
Liu’s approach to build an optimal dependence tree from data (Chow and Liu, 1968). In order to construct a MWST, first, 
it is necessary to compute the joint probabilities of the variables and their mutual information. Mutual information 
provides a way of measuring dependency. It is zero for completely independent variables but it increases as the variables 
become more strongly dependent. 
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Once the mutual information has been calculated for every pair of variables, a tree is constructed by choosing arcs. An arc 
is added in order of the magnitude of the mutual information of the corresponding variable pair while avoiding loops. The 
process ends when there are no unconnected nodes. The resulting network is a tree without causal directions. The class 
node is chosen using expert knowledge, and arrows are directed away from it to create a final directed structure. It requires 
a good representative set of data involving all variables in the model and sometimes an expert knowledge.  
 
As described above, Bayesian networks can be constructed automatically from data with the relationships among variables 
(Pearl, 1999). The output of the networks can be viewed as both the range of values and the probability assigned to each 
value of the variables. This provides a straightforward way to draw inference and select the best result. In Bayesian 
networks, we can obtain structure and conditional distribution either in a subjective or objective way, or both ways. In the 
subjective way, causal direction and conditional probability are elicited from experts. In the objective way they are 
obtained from data. Besides, Bayesian networks are flexible in that we can treat any subset of the variables as inputs; one 
or more of the other variables can be used as outputs. Like other AI techniques, Bayesian networks are also capable of 
managing missing information. Most of all, Bayesian networks are able to provide not only a classification tool but also a 
higher level of explanation. For example, identification of the inputs that are most influential in reaching the conclusion is 
revealed. However, Bayesian networks have been restricted to problems having variables with discrete values (Mitchell 
1997). Although they can handle continuous values with normal distributions, the algorithm for dealing with continuous 
values has not been extensively developed (Russell, 1995).  
For our research, we proposed Bayesian networks as an alternative AI classification tool. This study investigated the 
performance of Bayesian network application to the remotely sensed image classification of urban land use. We identified 
input parameters of the image that directly affect the classification label of pixels. Furthermore we compared naïve 
Bayesian classifiers and MWSTs to find the optimal structure of the network in the given domain .  We hope to achieve a 
better understanding of classification in remote sensing and to propose an improved approach in stormwater monitoring. 
 
METHODS 
The area of interest in this research was Marina del Rey and its vicinity, which is located in Santa Monica Bay watershed. 
Santa Monica Bay is regarded as an important natural resource, and restoring water quality and natural habitat is high 
priority. We used preprocessed Landsat Thematic Mapper (TM) images (1990, USGS scene no. 5237717480), which have 
been extensively used for urban land use analysis. We used all seven TM spectral bands that had been resampled to 25 by 
25 m. Although this relatively low resolution allows at most level II classification, it is consistent with our categories of 
classification. The categories we used were modified classification level II in urban area based on Anderson’s U.S. 
Geological Survey (USGS) classification system (Anderson et al., 1976). Land use categories were residential, 
commercial, light industrial, transportation, and open area. As ancillary input data, the coordinate values of the centroid of 
each pixel were calculated geospatially with GIS based on NAD1983 UTM (zone 11N) projection. Table 1 shows 
statistical information of input data for classification. Each pixel of each band is associated with digital number (DN) from 
0 to 255 and each coordinate value has unit of meters. 

Table 1 Input data statistics 
Input Minimum Maximum Mode Median Mean Standard deviation 
band1 5 255 101 107 112.91 32.57 
band2 0 255 44 49 51.63 19.13 
band3 0 255 65 65 68.26 29.11 
band4 0 255 64 65 66.13 22.95 
band5 0 255 80 94 97.87 39.39 
band6 134 193 164 163 163.20 6.31 
band7 0 255 430 53 56.05 26.06 
X 365,234 369,534 368,259 367,734 367,674 1,127.93 
Y 3,756,968 3,762,618 3,761,993 3,759,818 3,759,822 1,666.61 
 
Land use data was obtained from Southern California Association of Governments (SCAG, 1993). This data was used for 
computation of prior probability for Bayesian networks and accuracy assessment. The land use data had been resampled to 
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25 by 25 m to match the resolution of TM image. The data contained 26,614 homogeneous land use pixels, and the subset 
used for training is shown in Table 2. Within this area of interest, the ratios of residential and open are higher than other 
class labels.  
 

Table 2  Summary of land use information of training data 
Land use class USGS land use class Number of pixels  Ratio 
residential residential (11) 1,553 39 % 
commercial commercial (12) 455 11 % 
light industrial industrial (13) 178 4 % 
transportation transportation (14) 426 11 % 
open agriculture (2), water (5) 1388 35 % 
Total  4,000 100% 
 
We generated two different data sets that used only spectral bands:  DN values of band 1 to 7, and spectral bands with 
geospatial ancillary data (X-centroid and Y-centroid). The training data set for the networks were collected randomly from 
all classes in order to avoid undersampling the small classes (Jensen 1996). As mentioned above, all selected samples were 
homogeneous to properly represent each class. The total number of training data pixels was 4,000, which corresponds to 
15% of total data. Since Bayesian networks mainly deal with discrete data, all data values were quantized. For example, all 
spectral band data were quantized to 10 values based on equal interval. The class node had 5 values corresponding to each 
land use category of interest. 
 
With the given data, we conducted urban land use classification using naïve Bayesian classifiers and MWST. Firstly, in 
order to construct a naïve Bayesian classifier, we set land use category as a class node and all input data as child nodes of 
the class node. In this case, the networks were constructed with the spectral data only, and with spectral data and 
geospatial ancillary data respectively. In order to construct a MWST, we calculated mutual information to discover 
relationships between variables and chose the land use categories as the class node. 
 
RESULTS AND DISCUSSIONS 
The resulting structures of naïve Bayesian classifiers and MWSTs are given in Figure 1. The structures with solid lines 
represent the network with spectral data only, and the structures with dotted lines represent the network including 
geospatial ancillary data. In naïve Bayesian networks, every child node contributes to the value of the class node. 
Conversely, the structures of MWSTs show that the class node is determined mainly by bands 5 and 6 when considering 
only spectral data. Moreover, X- and Y-centroids are important when incorporating geospatial ancillary data. The class 
node values mainly depend on the Y-centroid.  This indicates for this case that the geospatial information is more 
important than the spectral bands. Among spectral bands, band 5 has more effect on the class node than other spectral 
bands. This agrees with previous experts’ belief that band 5 is important for land use classification. The visible bands show 
strong dependency, which agrees with the high correlation reported by other researchers. Infrared bands (5 and 7) are also 
strongly dependent, which are often found to be highly correlated. This result demonstrates that MWSTs reveal the 
dependency between variables in a reasonable way. However, band 6 dependencies with other nodes are quite low, and are 
at most 1/3 of the smallest value, in terms of mutual information.  
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(a) Naïve Bayesian classifiers (b) Maximum weight spanning trees 

Figure 1  The structure of Bayesian networks for land use classification 
 

Table 3 shows the accuracy of classification as a confusion matrix. Residential, transportation and open are fairly well 
predicted whereas commercial and light industrial are not. For example, in the case of MWST with both spectral and 
geospatial input data, the user’s accuracies of residential, transportation and open are 86%, 81% and 80%, respectively, 
and other user’s accuracies are all below 30%. The producer’s accuracies of residential, transportation and open are 71 %, 
78% and 75% respectively but other class pixels are rather incorrectly assigned. This is due to the size of data set for the 
latter categories, which is rather small to properly train the network. Moreover, the range of the latter categories are quite 
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overlapped to that of the former categories, so it is difficult to distinguish each class from the spectral signature. Table 4 
shows the overall accuracy for each case. 
 

Table 3 Confusion matrix of MWST with band1 to 7, X- and Y-centroids  
 original 
 residential commercial industrial transportation open total 

user’s 
accuracy 

residential 130 4 1 0 16 151 86%  
commercial 28 7 5 0 16 56 13%  
industrial 8 0 3 0 3 14 21%  
transportation 1 0 0 25 5 31 81%  
open 15 2 5 7 119 148 80%  
total 182 13 14 32 159 400  
producer’s 
accuracy 71%  54%  21%  78%  75%    

 
Table 4 Overall accuracy of land use classification 

Network Input Accuracy 
band1 to band7 51 %  Naïve Bayesian 
band1 to band7, X and Y 67 %  
band1 to band7 52 %  

MWST 
band1 to band7, X and Y 71 %  

 
As shown in Table 4, the accuracy of MWST with input including geospatial data shows the best prediction for each pixel. 
Although the difference in accuracy between naïve Bayesian classifiers and MWSTs is small, the difference arises from 
MWSTs’ data contribution to the class node. Moreover, we can observe that the accuracy is considerably improved by 
incorporating geospatial data, which demonstrates that the spatial information is very important to determine the class 
value. However, the overall accuracy is still less than 85%, which is the recommended accuracy by Anderson at USGS 
(Anderson et al., 1976). This might be due to errors in the SCAG data set or the difference in timing (SCAG and TM data 
were collected three years apart). 
 
Other inaccuracies may be introduced because the ranges of each class are overlapped. For example, Figure 2 illustrates 
the distribution of pixels in two-dimensional spectral space with bands 4 and 5. In this figure, the range of each class is 
defined by its mean DN value and standard deviation. As shown in the figure, none of the classes is separated from other 
classes. The range of residential, in particular, resides within almost all other classes except transportation. For this reason, 
the overall accuracy when using spectral data is lower.  

Figure 2  Distribution of DN in two-dimensional spectral space with band 4 and 5 
 
The resulting thematic maps using MWSTs overlaid with TM image band 5 are shown in Figure 3. Compared with SCAG 
land use data, most thematic maps capture residential, transportation and open classes well. Also the maps clearly show 
that incorporating geospatial ancillary data improves the classification performance. This implies that incorporating other 
spatial ancillary data might improve the accuracy of classification. For example, digital elevation model (DEM) and 
contexture data can be incorporated for this purpose. We strongly believe that this can help the networks in learning more 
about the relationships between variables and accordingly generate more accurate thematic maps. 
 
CONCLUSIONS 
Our results indicate that Bayesian networks can perform urban land use classification well. Although the overall accuracy 
still needs improving, Bayesian networks are a useful, alternative tool for the classification of remotely sensed images. If 
we obtain higher resolution images such as the Landsat ETM+ with panchromatic band or SPOT images and proper ground 
truth, Bayesian networks can be used as a classification system that further divides residential into single and multiple 
family residential. It may also be possible to isolate public land use, which is currently imbedded in commercial land use.   

  

Band 5

Band 4 

�� residential 

�� commercial 

�� light industrial 

�� transportation 

�� open 
0

50

100

150

200

250

0 50 100 150 200 250

  
 

  



Diffuse Pollution Conference, Dublin 2003                                                                                             10A GIS 

 10-17 

   
(a) SCAG land use data (b) with spectral data only (c) with spectral and geospatial data 

u residential  u commercial  u  light industrial  u transportation  u open 

Figure 3  Land use classification thematic maps by using MWSTs 
Moreover, the ancillary data was useful for improving classification. In future research we will examine the effect of 
incorporating ancillary data such as DEM since Bayesian network structure can be easily updated by incorporating 
additional data without contradicting the existing network. Contexture will also be adopted to improve classification 
accuracy after the initial classification. Bayesian networks could be used to rank classes of mixed pixels by providing their 
individual probability of belonging to different classes. Also, the performance of Bayesian networks will be compared 
with existing supervised networks, including neural networks and maximum likelihood methods, to determine if they are a 
comparable or superior classification tool.  An important advantage of the Bayesian networks is their ability to describe the 
relationship between variables, which is not provided by other supervised classification. Finally, we will explore different 
classification systems for environmental engineering purposes. The current classification systems have been extensively 
used but may not be best for stormwater modeling.  Ultimately, we hope to propose a new classification system suitable 
for environmental engineering area and conduct urban land use classification in particular for stormwater monitoring.  
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