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ABSTRACT   
The sodium dominance index was developed to quantify weathering rates and critical loads in Scotland, where 
atmospheric aerosols of maritime origin dominate over biogeochemical weathering in providing base cation inputs to 
catchment soils and drainage waters.  Thus high sodium dominance in river or lake water indicates low weathering rate.  
We have further evaluated this concept using intensive temporal and spatial sampling strategies in two substantial  
catchments, the Dee in north east Scotland and the Etherow in central England, with particular reference to detection of 
groundwater inputs, and to possible problems from road salting in the calibration.  In the Dee network, the spatial 
distribution of sodium dominance reflects the distribution of soil parent material geology, but land use also influences the 
equations.  It is postulated that road density, via winter road salting, influences the sodium dominance calibration in 
lowland agricultural areas.  Although road salting can also be problematic in some upland areas, the index still can provide 
clear indication of the likely severity of acid flush events in remote upland streams.  In the Etherow catchment, sodium 
dominance varies markedly, sometimes over relatively small distances, reflecting soil type distribution, the occurrence of 
ground-water inputs to streams, and the influence of water in tributaries above the sampling point. 
 
Key words  Sodium dominance index; integrated catchment management; weathering rate; heterogeneity. 
 
INTRODUCTION 
It was suggested in 1999 that, in GB uplands, the extent to which the soluble base cations in rivers are dominated by 
sodium of oceanic aerosol origins provides an integrated measure of soil mineral weathering rates in a catchment above the 
sampling point (White et al., 1999).  The idea originated from a study of waters draining peaty catchments in north and 
north-west Scotland.  For streams in this area it was shown that the ratio of Na to ΣNa + Ca + Mg (concentrations 
expressed on a moles of charge basis) was virtually identical for both precipitation and consequential drainage waters, 
because both equilibrated with the peat (Cresser et al., 1997, Dawod and Cresser, 1997). 
 
Recently we have calibrated the sodium dominance index quantitatively for north-eastern Scotland against annual 
weathering-derived alkalinity and base cation fluxes leaving catchments, using data from 59 Scottish rivers   (Stutter et al., 
2002).  The calibration was appreciably better for annual alkalinity flux (R2=0.831) than for the annual base cation flux 
(R2=0.633, n=37), due to the role of non-marine sulphate and dissolved organic matter in base cation transport (Stutter et 
al., 2002).  The capability of the Na dominance index to predict alkalinity fluxes prompted White et al. (2000) to 
investigate its applicability for prediction of critical loads of rivers in upland catchments under diverse flow regimes.  
Using data from 30 independent catchments in Scotland, they developed multiple-linear regression-based equations which 
predicted critical load values under base flow and high flow conditions, and for annual mean data from bi-weekly 
sampling, from natural logs of sodium dominance index values and of catchment maximum altitude.  The equations were 
validated using data from a further 20 catchments, yielding R2 values between predicted and observed values of 0.87, 0.74 
and 0.89 for mean, base flow and high flow data, respectively (White et al., 2000). 
 
The success of the calibration for predicting annual alkalinity flux suggests that the sodium dominance index could, once 
calibrated, provide a simple and inexpensive approach to quantifying the spatial distribution of weathering rates within a 
catchment.  It therefore further suggests that it is potentially a powerful tool for use in integrated catchment management 
programmes for deciding upon optimal land use and soil management strategies for surface water protection. 
 
Before applying the proposed calibration equations for weathering rate to other regions of the UK or Europe, it was 
deemed necessary to consider potential sources of error in applying the weathering index.  In particular it was thought 
necessary to consider: (1) to what extent road salting in winter might limit the applicability of the technique; (2) why 
upland and agricultural (generally predominantly lowland) catchments yielded different calibration equations, and why the 
difference between equations for upland and agricultural catchments was far more pronounced for annual fluxes of base 
cations than for annual fluxes of alkalinity (Stutter et al., 2002); and (3) how readily ground water inputs could be 
detected.  These issues will be explored by: (1) Studies of localized salting problems at selected sites on the North York 
Moors, where small salt piles are deposited beside the road for use as required in winter, often at bends, steep hills and 
bridges; (2) re-examination of data from the river Dee catchment in north-eastern Scotland; and (3) evaluation of data for 
the River Etherow catchment, between Barnsley and Manchester in northern England. 
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SITES AND METHODS 
Data (unpublished) used in the evaluation of localised salting problems and for preliminary assessment of detection of 
groundwater input was colleted by Dorothy Dahl for Bonfield Gill and the River Riccal, in N. Yorkshire.  Bonfield Gill 
passes over several different types of parent rock from the Middle Oolite geological series.  It was anticipated, therefore, 
that there would be differences in the value of the index as the surface water percolates through material with different 
weathering rates. The river is influenced downstream by groundwater springs, which emanate at the base of calcareous 
rock above impervious strata.  These were expected to add to the spatial variation in the Na dominance value compared to 
that of water draining directly off unimproved peat moorland.  Some afforestation occurs beside the river in the mid 
altitudinal zone.  Bonfield Gill disappears in a series of swallow holes in dry weather, and re -emerges further down the dry 
water course as the River Riccal. 
 
As road salting was considered to be a possible complicating influence, rivers were sampled above and below road 
bridges, to detect what difference salting made.  The site locations are lis ted in Table 1 .  Bonfield Gill has its source above 
Botany Bay, and sinks just below the Pockley site.  Downstream of this sink, the mapped river bed was dry at time of 
sampling, though there was evidence that, under higher flow conditions, it carries water. The River Riccal has its source at 
Riccal Bridge.  Where roads crossed the rivers, river water samples were taken at places ca. 20 m upstream and 
downstream of the bridges, to detect any influence of road salting. 
 
The data for the Dee catchment in Scotland were obtained by sampling at 59 points, mainly at lower reaches of headwater 
streams, but with 6 points on the main river system, bi-weekly over one year.  Characteristics of the catchments and 
analytical methodology have been discussed elsewhere (Langan et al., 1997, Smart et al., 1998).  Weathering rates were 
calculated by the catchment input/output balance approach (Reid et al., 1981, Hornung et al., 1985, Hyman et al., 1998). 
 
The River Etherow catchment lies in the altitude range 300 m to 633 m OS.  The catchment comprises Calluna  and 
Vaccinium moorland with patches of grassland (Agrostis and Molinia) and some areas of deciduous woodland.  Juncus is 
abundant on wetter areas.  The lower slopes contain improved and rough grazing, mainly used for sheep.  The upper areas 
are mainly grouse moor.  The underlying parent material is millstone grit interspersed with bands of marine deposited 
mudstone.  Mean annual rainfall is 1480 mm. 
 

Figure 1  Sampling points used in the Etherow catchment. (¢) , main stem monthly sampling points, (¯), main tributary 
sampling points, and (Ï) extra tributaries sampling points. 

 
Stream-water was sampled monthly over 18 months along the main stem of the Etherow, and its main tributaries just 
upstream confluence points, as shown in Fig. 1.  During late May and early June of 2001, a high intensity sampling was 
also carried out at the Etherow catchment.  Over 300 samples were taken at 100-m intervals along all the main tributaries 
(Fig. 1).  The weather over this period was very dry, in accordance with the forecast at the time.  This was deemed to be 
important, as the alkalinity flux predictions made for Scotland used data for the three lowest base-flows, which correspond 
to prolonged dry periods.  All samples were analysed for pH, alkalinity, NH4-N, NO3-N, organic-N and the major cations 
and anions. 
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Table 1  The location of the water sampling sites on Bonfield Gill and the River Riccal.  The grid references, 
elevations above sea level, geology, soil types and vegetation in the immediate vicinity of the sites are 

provided.  Sites 1 to 4 are on Bonfield Gill, while 5 and 6 are on the River Riccal. 
 
Site 
No. 

Site 
Name 

O.S. Grid 
Ref. 

Ht. (m) above  
sea level 

Geology Soil Type  Vegetation 

1 Botany 
Bay 

SE 603955 300 Sandstone Cambic stagno-
humic gley 

Heather moor, with 
grass next to river 

2 Bonfield  
Gill 

SE 608942 240 Sandstone and shale Cambic stagno-
humic gley 

Heather moor, with a 
few trees along river 

3 Cinderhill SE 612913 215 Sandstone, shale, 
and Ellerbeck Bed 

ironstone 

Podzol with 
iron-pan 

Heather moor and 
enclosed improved 

grassland 
4 Pockley SE 628859 70 Limestone Brown earth Forestry on steep 

valley sides 
5 Riccal 

Bridge 
SE 633842 55 Alluvium overlying 

Kimmeridge Clay 
Brown earth Forestry with some 

arable 
6 Lower 

Riccal 
SE 673806 30 Alluvium Brown earth Arable, with trees 

along river 
 

RESULTS 
Figures 2 and 3 show how pH and Na dominance varied on progressing downstream from Botany Bay on Bonfield Gill to 
the lower River Riccal, on 14/02/2000 and 28/02/2000, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2  Relationships between mean river water pH and the relative contributions of Na+ to ΣNa+ + Ca2+ + Mg2+ for the 
catchments of Bonfield Gill (ν) and the River Riccal (�) for samples taken on 14.02.2000.  Nos. 1-6 refer to sites listed in 
Table 1, and a and b to sampling points upstream and down stream of a bridge crossing the river, respectively.  Salt piles 
were seen either side of Riccal Bridge (site 5). 
 
 
If data for the sites immediately downstream from bridges are excluded, the R2 values for the regression equation between 
pH and Na dominance were 0.873 and 0.875 on the two sampling dates respectively. 
 
Figure 4 shows the difference between regression equations linking log Na dominance at baseflow in sub-catchments of 
the River Dee dra inage basin in Scotland to annual fluxes of alkalinity in the river systems sampled.  It is very noticeable 
that the agricultural catchments generally give higher Na dominance that would be expected from the observed alkalinity 
flux. 
 
Spatial distributions of Na dominance and pH values for two of the tributaries (T1 and T5a in Fig. 1) monitored in the 
intensive sampling programme at the Etherow catchment, and Na dominance values for additional minor tributaries 
confluent with T1 and T5a, are shown in Fig. 5.  For T1, which drains very mixed soil types, Na dominance is highly 
variable, much more so than water pH.  For T5a, which predominantly drains peat throughout most of its length, Na 
dominance is consistently high, and pH consistently low, except low down in the catchment where Na dominance falls 
slightly and pH starts to rise. 
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Figure 3  Relationship between mean river water pH and Na dominance on 28.02.00 (n=3). The sites sampled in addition 
to those sampled on 14.02.00 were 2ai, a short distance upstream from site 2, 5bi, a little further down the R. Riccal from 
5b at Riccal Bridge, and 6f, a field drain, between Site 6a and the road bridge at Lower Riccal.  Symbols are as in Fig. 2. 
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Figure 4  Relationships between log Na dominance and annual flux of alkalinity for independent upland (no agricultural 
improvement) and agricultural sub-catchments of the River Dee drainage basin, based upon data reported by Stutter, 
Smart and Cresser (2002). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5  Spatial distributions of pH (̈ ) and Na dominance (♦) along the length of two of the major tributaries to the 
River Etherow shown in Fig. 1.  Also shown are Na dominance values for minor tributaries flowing in to T1 and T5a ( )). 
 
To test how long road salt effect might last, time series plots were drawn comparing molar Na+ and Cl- concentrations for 
sampling points in Dee and Etherow catchments known to be at high risk and low risk of road salt contamination.  The 
results are shown in Fig. 6. 
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DISCUSSION 
Provided the data for sites obviously being impacted by road salts are ignored, the results presented in Figs. 2 and 3 show a 
very consistent relationship between acidity and sodium dominance, which is also similar to that presented in earlier work 
(White et al., 1998).  The points in the North York moors study lie on the same graph as was obtained for northeastern 
Scotland under high discharge conditions, and the sampling in Bonfield Gill and the River Riccal was also conducted 
under very wet conditions. On both sampling dates, the impact of the localised road salt contamination is immediately 
obvious in Figs. 2 and 3.  However, this was due at least in part to small piles of road salt dumped at Ricall bridge for use 
as and when required. The question remains, however, about whether lower but significant levels of contamination arise a 
consequence of salt spreading along roads, which often run parallel to rivers for long distances.  Smart et al. (2000) have 
developed a model for prediction of spatial distribution of chloride concentration in Deeside rivers.  They found that 
chloride concentration could not be explained simply in terms of atmospheric deposition of maritime-derived salts, and 
was significantly correlated with agricultural land use cover in individual sub-catchments studied.  However chloride from 
fertilizer use could not nearly account for the extra chloride apparently associated with agriculture.  They postulated that 
the extra chloride was a result of road salting, and the apparent link with agriculture for Deeside was an artefact of the 
greater road density in the lowland, agricultural areas.  This postulate could well explain the results shown in Fig. 4, where 
Na dominance is higher than would be expected in agricultural, lowland areas. 

Figure 6 Effects of Road Salting 
 
Unlike the sampling of Bonfield Gill and the Riccal, the Etherow intensive sampling was completed under low baseflow 
conditions.  The results in Fig. 5 fit well with the extrapolated base flow pH vs. Na dominance plots for Scotland in earlier 
work (White et al., 1998).  Tributary 5a drains peat almost throughout its entire length, so has a low pH (3.55 - <3.8) and a 
very high to high Na dominance, except at the lowest sampling points, 17 and 18, where the mineral soil starts to have a 
slight influence.  The soils surrounding tributary 1 are much more variable, ranging from peats and peaty podzols to 
cambisols on mid to lower slopes.  As a consequence, the Na dominance is much more spatially variable in this tributary, 
and visual observation of the raw data clearly showed that the change is driven almost entirely by spatial variation in 
calcium concentration, the concentrations of sodium and magnesium being much more constant spatially.  The high Na 
dominance values, for example at the top of the catchment (sampling points 1, 5-8 and 13) were associated with water 
draining peat.  Although the variation in Na dominance appeared to be closely related to visually observable soil type 
distribution, water inputs from tributaries, and their origins are also important. Data for some of these is included in Fig. 5. 
 
Bearing in mind the different concentration scales used in Fig. 6, it is clear that the effects of road salting on river water 
quality at contaminated sites persis t throughout the year, and are not just apparent in the winter months.  It is also obvious 
that at contaminated sites, the road salt totally dominates the Na+ and Cl- concentrations found, so the molar ratio stays 
close to unity.  At uncontaminated sites the ratio of Na+ to Cl- is more variable throughout the year, reflecting variation in 
dominant sources of supply and sinks of the two ions. 
 
In a previous study, White et al. (1999) were able to show that the Na dominance index could be applied consistently 
throughout northern Scotland.  The results presented in this paper suggest that it may be equally effectively applied, under 
both high and low flow conditions, as far south as Yorkshire, provided care is taken to avoid stretches of rivers that are 
significantly impacted by road salting effects.  If our interpretation of the reason for the divergent equations linking Na 
dominance and annual alkalinity flux is correct, i.e. if the divergence is due to higher road density in lowland areas, then 
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the application of the index in catchment management should be confined to upland areas in which road impacts are 
minimal.  In such areas, the index value may be used to assess risk of acid episodes in rivers.  It may also be used to 
identify catchment areas where weathering rates are low, and where, as a consequence, afforestation, especially with 
conifers, is likely to result in substantial acidification of stream waters, or liming is likely to be beneficial to water quality. 
 
CONCLUSIONS 
Application of the sodium dominance index for assessment of integrated upstream weathering rates in catchment soils, for 
informing management decisions appertaining to acidification risk due to forestation, or for identification of zones of 
catchments that should be limed to protect water quality is shown to be possible over a very wide regional (national) scale.  
However, it is also shown that road-salting effects may be substantial and long lasting, and the risk of error may not 
always be immediately obvious just from casual visual observation of sites.  Care is therefore needed when applying the 
index in catchment management. 
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