Piecing Together the Big Picture on Water and Climate

A new database brings together water isotope data from many sources, providing an integrated resource for studying changes in Earth’s hydroclimate over the past 2,000 years.

A wide range of natural archives, including glaciers, cave formations, trees, lake and marine sediments, and corals, contain physical and chemical records of Earth’s hydroclimate history. Within these archives, scientists can measure the isotopic ratios of oxygen and hydrogen to deduce changes over time in the isotopic composition of environmental waters, such as precipitation, seawater, and groundwater.

Measuring changes in the relative abundances of heavy oxygen and hydrogen isotopes recorded in natural archives provides a way to reconstruct local, regional, and even global climate signals.Measuring changes in the relative abundances of heavy oxygen and hydrogen isotopes (δ18O and δD, respectively) recorded in these natural archives provides a way to reconstruct local, regional, and even global climate signals. Measuring these changes also provides invaluable comparison targets for global climate models. However, the data produced by individual studies are scattered over numerous locations and formats.

A new project is changing this by providing a comprehensive synthesis of δ18O and δD records in a format suitable for regional-scale climate reconstructions or for data-model comparisons. Called the Past Global Changes (PAGES) Iso2k Project (PAGES Iso2k), the project brings together records that will advance the community’s understanding of how hydroclimate varied over the past 2,000 years, also referred to as the Common Era. Scientists plan to use the Iso2k database to uncover how external climate forcings, anthropogenic forcings, and internal variability contributed to variations in the global water cycle.

For more information please see the full project update here.