UCD GEARY INSTITUTE
DISCUSSION PAPER
SERIES

Smoking Intensity, Compensatory

Behavior and Tobacco Tax Policy

Ian Irvine
Concordia University, Montreal, Canada

irvinei@alcor.concordia.ca

6™ August 2008

The views expressed here do not necessarily reflect those of the Geary Institute.
All errors and omissions remain those of the author

Geary WP/18/2008



April 2008

Smoking Intensity, Compensatory Behavior and Tobacco Tax Policy*

Abstract

Smokers not only choose the number of cigarettes to smoke in any given period on the basis of price, they
also choose the intensity with which to smoke - that is, how much nicotine to inhale. The possibility that
quantity-reducing tax policies may be mitigated, or even completely offset, by higher intensity has been
raised recently by Adda and Cornaglia (2006). The objective of this paper is to examine this possibility
in the context of a utility-maximizing model of smoking that is based on known toxicological patterns.
After calibrating this model to reflect observed behaviors, it is concluded that continuing smokers offset
about one third of the quantity-reducing impact of higher taxes. Compensatory behavior thus reduces tax
effectiveness, but does not render it neutral. While toxicology has long recognized that nicotine inventory
management is a key ingredient in smoking behaviour, this paper is the first to incorporate such knowledge
into a utility-price based maximizing model.

JEL Classification: H21, 112
Key words: Tobacco, nicotine, cotinine, intensity

Ian Irvine
Concordia University, Montreal. email: irvinei@alcor.concordia.ca

*I am grateful to Charles DeBartolome, and Ron Stern for considerable input on this paper. The Geary Institute,
University College Dublin, and the University of Colorado, Boulder, kindly provided research facilities while much
of the work was being done.



Smoking Intensity, Compensatory Behavior and Tobacco Tax Policy

Abstract

Smokers not only choose the number of cigarettes to smoke in any given period on the basis of
price, they also choose the intensity with which to smoke - that is, how much nicotine to inhale.
The possibility that quantity-reducing tax policies may be mitigated, or even completely offset,
by higher intensity has been raised recently by Adda and Cornaglia (2006). The objective of this
paper is to examine this possibility in the context of a utility-maximizing model of smoking that is
based on known toxicological patterns. After calibrating this model to reflect observed behaviors,
it is concluded that continuing smokers offset about one third of the quantity-reducing impact of
higher taxes. Compensatory behavior thus reduces tax effectiveness, but does not render it neutral.
While toxicology has long recognized that nicotine inventory management is a key ingredient in
smoking behaviour, this paper is the first to incorporate such knowledge into a utility-price based

maximizing model.

1 Introduction

All studies of the demand for cigarettes confirm that higher cigarette prices lead to a decrease
in the quantity demanded. There is a degree of consensus that the aggregate price elasticity of
demand is around one half, though estimates vary. Consequently governments in virtually all
developed economies have used higher taxes as a means of discouraging smoking. And indeed
smoking rates have fallen, sometimes dramatically, in recent decades.

However, a very recent piece of research (this Review, Adda & Cornaglia, 2006) suggests that
smokers may be quietly “undoing” much of the impact, or health benefit, of the reduced number
of cigarettes purchased and smoked. Using data for the US (primarily for the period 1988-1994)

they find that smokers inhale their reduced number of cigarettes more intensively and offset most



of the impact of higher taxes in the process. This finding is disturbing, because it suggests that a
type of ‘policy neutrality’ may be at work.

The present paper argues that the economics of this problem can be developed substantially
by drawing on a large existing body of literature in toxicology, and that the resultant economic
model can be used to analyze a number of important policy issues - specifically the degree of
intensity compensation that might be anticipated from a reduced number of cigarettes smoked,
in turn caused by an increase in taxes. This is the principal objective of the paper. A behavioral
approach to this issue is valuable both because the number of econometric studies is small, and
because it is useful to import knowledge from other disciplines if this helps to conceptualize
problems and better formulate policy. In addition the paper offers some cautions on how to
interpret the econometric results of Adda and Cornaglia.

The next section of the paper explains the toxicological background; the third section builds the
utility model, based on an inventory management approach, calibrates it and solves for optimal
responses. The fourth section presents findings on the likely degree of intensity compensation.
Section five offers some observations on Adda and Cornaglia’s results, and section six concludes.
To preview the findings: compensatory behaviour indeed appears to be important, but it is not

sufficiently strong to generate a tax ‘policy neutrality’ outcome.

2 Background and some relevant literature

Researchers in toxicology and biology, and a few in economics, have for some time recognized
the role played by the intensity choice in smoking. This is partly as a result of a long-running
disagreemnet on the use of the descriptors ‘light’ and ‘mild’ on cigarette packages. Opponents of
the use of these descriptors (mainly government regulators and health researchers) have argued,
rightly, that smokers inhale not much less nicotine and toxins from an average ‘light /mild’ cigarette

as from a ‘regular’ cigarette. The essential difference between a regular strength cigarette and



a light one is in the porosity of the sleeve. The light variety has more perforations than the
regular type and consequently allows more air to flow through the sleeve than down the tube. As
a consequence, when the cigarettes are smoked by mechanical devices, the nicotine and tar values
registered differ substantially between light/mild and regular. See, for example, Jarvis, Boreham
et al 2001, Kozlowski et al, 1998, or US DHHS 2000.

However, human behavior offsets much of the impact of the more porous sleeve: individuals in
tests are observed to cup their fingers around the sleeve/filter and so block the perforations, and
to inhale for a longer period — perhaps two seconds rather than one and one half seconds. There
is no longer any doubt about these practices, and it is really just a question of to what degree an
individual will offset the potential reduction in toxic intake in the lighter cigarette (e.g. Hammond
et al, 2006, or Harris, 2004).

Figure 1 below is taken from Jarvis, Boreham et al. On the vertical axis is the cotinine content
of saliva samples taken from smokers, and on the horizontal axis is a measure of the printed
nicotine strength of the corresponding cigarettes smoked. Cotinine is a metabolite of nicotine
with a long half life. Nicotine has a relativerly short half life, and therefore nicotine samples are
not very informative indicator of the amount of nicotine ingested during a given time period. (This
relationship is developed fully in the model section below.) There are two notable aspects of this
graphic. One is that the gradient increases very slowly — indicating that stronger cigarettes do
not necessarily result in substantially more nicotine or cotinine in the body. Second, is the great
variation among smokers in the amount of cotinine found in their system.

While smoking cigarettes more intensively yields more of a nicotine boost from a given cigarette,
it has been recognized for some time by economists that smokers may also choose to switch to
brands that have greater nicotine potential (this assumes that intensity compensation is less than
one hundred percent) in the face of tax increases that are uniform across brand strengths. The
earliest econometric work to have an impact was done by Evans and Farrelly, 1998; Farrelly and

coauthors developed the ideas further in 2004, while Harris had proposed in 1980 that cigarette



taxes should reflect the tar and nicotine content of cigarettes.

Understanding the intensity decision is crucial. Why does a smoker in some instances smoke
a cigarette very intensively, and in other circumstances at a low level of intensity? The answer
provided by the physical sciences indicates that, while more nicotine in the body gives smokers
a higher level of satisfaction, nicotine is also accompanied by many nasty toxins that not only
cause cancer but also short-term discomfort. Carbon monoxide is one such toxin, and high rates
of inhalation result in a concentration of carbon monoxide which, in turn, leads to dizziness and
nausea. Accordingly, the intensity decision involves a trade off between getting more nicotine into
the system on the one hand as a result of smoking more intensively, and reducing carbon monoxide
by smoking less intensively, on the other. This implies that if cigarettes have a low price, smokers
should smoke a lot of them at low levels of intensity; but at higher prices they can less afford this
low-yield behavior and therefore should inhale a smaller number more intensively.

Before developing a utility-maximizing that incorporates this trade-off, it is instructive to view
what Adda and Cornaglia discovered when examining the relationship between cigarettes smoked
and cotinine. Figure 2 below is also their figure 2, and supports the pattern in figure 1: when
the number of cigarettes increases from a low range of about 7 to a higher range of around 22,
cotinine increases by a much lower proportion. Again their data suggest a wide range of individual
patterns, but strongly support the tendency to smoke greater numbers of cigarettes at a lower

level of intensity.

3 A model of Individual Behavior

Descriptions of the impact and behavior of nicotine in the body are widespread (for example,
Benowitz et al, 2002, 2004, 2005). Nicotine induces addiction by impacting specific regions in the
brain. Thereafter, nicotine intake that is processed by the lungs, fed into the blood stream and

transported to the brain, produces a sense of pleasure. But nicotine has a relatively short life, and



so to satisfy the brain nicotine must be ingested on a regular basis. Technically, nicotine has a
half life of about one hour, which is to say that half of the nicotine that is inhaled from a cigarette
is metabolized (transformed) into another product, cotinine, in that time period. Cotinine is
subsequently excreted from the body, at a slow rate. Thus the ability of a given quantity of
ingested nicotine to satisfy the pleasure-seeking area of the brain is limited time wise.

It follows that the amount of nicotine inhaled, and exactly when it is inhaled, affects the
pleasure obtained throughout a day. There is thus a dynamic associated with smoking, that is
distinct from the type of dynamic developed in Becker and Murphy, 1988, who examine the impact
on smoking of the possibility of becoming addicted, or the dynamic of Gruber and Koszegi, 2004,

who develop a ratonale for tax policies to counter time-inconsistent planning.

3.1 The setup

To formalize this idea, suppose IV units of nicotine are ingested at time ¢;. Then in the subsequent
time interval there is an amount Ne—%(*=%1) of nicotine in the system at any time instant ¢ , where
¢ is the known decay rate; that is, the decay rate yielding a half life of one hour. A smoker gets
positive utility from this nicotine and let this be of the power form U, = N® where a < 1. It

follows that, in the interval {t1,¢2}, utility is the integral

ta
/ Nfrem@ot=t) gy (1)

t1
If an individual smokes c cigarettes per day, and inhales /N units of nicotine from each, starting
at instant ¢; and ending at 7', then utility is given by the sum of utility in each of the ¢ subperiods
tit1
U= > (/ N;je—“(t—ti)dt) , (2)
i=1..T—1 Wk
where IV, is the amount of nicotine in the system at the start of each interval. The ¢ intervals are
bounded by the ¢ 4+ 1 points or instants t;..t7.

The choice of intensity N is determined both by the amount of plesure it yields throughout



the day through nicotine, and by the ‘up-front’ disutility it generates on account of the associated
nausea that, in turn, is determined by the degree of inhalation /intensity. Accordingly, defining the

disutility associated with this latter impact by Uy = N?, net utility from daily smoking becomes:

tit1
U = Up — Ud = Z ( t Nt(/:e—()tls(t—ti)dt> _ CN¢7 (3)
i=1..T—1 i

In intuitive terms, the above states that if, for example, a smoker were to smoke one cigarette
each hour, the resulting stock of nicotine in the body yields utility at each subsequent instant
throughout the day, but that there is some disutility in the initial phase of each hour on account
of the nauseous impact of the carbon monoxide associated with inhalation. It is this negative
utility potential of high-intensity smoking that limits the intake of nicotine to a level below its

maximuin.

3.2 Optimization and solution algorithm

For a given set of relative prices between cigarettes and other goods, the consumer must choose
the optimal number of cigarettes, the optimal spacing during the day of such cigarettes, and
the optimal intensity with which to smoke them. The solution strategy is sequential: optimize
on the timing of each cigarette, conditional upon a given number of cigarettes purchased; then
the optimal intensity can be chosen; finally, relative prices determine the quantity of cigarettes
purchased.

Formally, in terms of equation (2), the smoker first chooses the set {t1,ts..t7_1}, conditional
upon the number of cigarettes smoked. The choice of this timing vector can be separated from

the choice of intensity, since the maximand can be written as:

tit1
i=0..T—1 “Wti

Thus, total positive utility is the product of the level of nicotine intake raised to the power of «,



and the utility that accrues during the day to smoking each cigarette at unit intensity N = 1.
The unit normalization on N can be thought of as one milligram of nicotine per cigarette, a close
approximation to median smoker behaviour. This program can be integrated with respect to t,
and then a set of choices for the ¢ time period boundaries ¢; may be obtained from the gradient

vector 9U,,/0t; = 0. Integrating yields

efats(ti+17ti) _ 1

— ¢
— cN?. (5)

U=N*
i=0..T—1

Differentiating this with respect to each ¢; yields conditions that are complex in the extreme.
To see this, suppose an individual smokes 30 cigarettes per day. The choice of when to smoke
the second or third cigarette will have consequences on the utility obtained from every subsequent
cigarette - because nicotine decay is incomplete from interval to interval. Postponing the time of
the next cigarette means that more nicotine is carried to all subsequent time intervals. Conse-
quently, the choice of, say ts, influences the utility obtained in all 30 time intervals. Accordingly,
to reduce the dimensionality of the problem to manageable proportions, the search algorithm is
based on an approximate set of first order conditions in making the timing choices.

Since the decay rate of nicotine is moderate, a very good numerical approximation to the full
underlying first order conditions can be obtained by limiting attention to the impact of the choice
of any ¢; on a small number of intervals. In particular, focussing on the utility obtained in the
intervals on either side of any ¢;, and two further future periods, means that an approximate first

order condition can be obtained by differentiating

e_aé(ti_tifl) _ 1 e—(x&(ti+1—ti) _ 1 e_(¥6(ti+2_ti+1) _ 1 e_aé(ti+3_ti+2) _ 1

N —af +Ng“ —ad +N’g*2 —ad

(6)

ti—1 —ad

with respect to t;, using the relations
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This yields, after some rearranging of terms:

YA o sttt
ot; Ntiﬂe Pl
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_ (6—05(ti+2—ti+1) _ 1) NO—L Ne=0(tipi—ti) _ (e—a5(ti+3—ti+2) _ 1) No—1Ne=0(tiva—ts) (8)

t7;+1 ti+2

The solution algorithm starts by allocating the cigarettes evenly over the whole day, thus
determining a starting set of ¢; values. The vector 0Z/0t; is then computed at each such value of
t;, and the t; that corresponds to the largest gradient is adjusted. If that gradient is negative its
t; value is reduced, if positive, the value is increased. Each time a value of ¢; is modified the new
value of U, is calculated, a new gradient vector is calculated and some ¢; is again adjusted. The
routine stops when dU,, < 0.001. Since the numerical value of utility typically falls in the range
{50,150}, this criterion means that the value of the objective function is changing by less than
one in one hundred thousand at the final iteration.

The smoking day is specified to lie between 7:30 am and 10:00 pm. This is broken into 145 units
of 6 minutes each, on the grounds that it takes about 6 minutes to smoke a cigarette (a smoker
typically inhales ten to twelve times, with 30-35 second breaks between puffs - see Hammond et
al). The solution algorithm yields integer values for the t; vector in the range {1..145}.

While a sufficient condition for this mechanism to attain a maximum is that the function
be negative semi definite in the time choices, we cannot demonstrate that it has this property
because of the complexity of the associated Hessian described above. The function will also attain
a maximum if it has a unique optimum and positive first derivatives everywhere in the t; space.

While the order of the problem prevents establishing this in the general case, I have explored



exact solutions to the maximand where there are a small number of intervals. In such cases the
numerical solutions obtained from the solution algorithm match the analytical solutions, and the
3D images of the function indicate that it has a unique maximum.

It is straightforward to show by contradiction that the first cigarette of the day should be at
the first feasible moment, regardless of the number of cigarettes smoked. To illustrate, suppose
just one cigarette is smoked in the day in time period 2 and that utility accrues in the interval
{2..145}. Since some small amount of nicotine remains in the body after period 145, it is clear
that by shifting the smoking choice from 5 to t;will increase utility. The same argument applies
to any number of cigarettes smoked. This observation has implications for the Fagerstrom test of

addiction (Fagerstrom, 1978).

3.3 Optimizing on intensity

An optimal value of intensity N* is obtained from equation (4) above:

OU/ON = aN“ 'V —¢gNF1=0
T 1/(B-a)
N* = o) (= .

v () ®)

For intensity to be increasing in the number of cigarettes (and so match the stylized obser-
vations), a sufficient pair of conditions is that ¢ > « and that the second term in equation (10)
dominate (because %/ > 0). Conditional upon this set of functions, the observed intensity ‘facts’
yield tight limits on the parameters. Values in the neighbourhood of {a = 0.3,¢ = 2.5} yield
intensity outcomes that fall in the observed range of 0.8 mg to 1.4 mg of nicotine per cigarette.
Such values also ensure that the model predicts nicotine/cotinine levels that increase much less
than in proportion to the number of cigarettes smoked. That the ¢ should be so much larger
than the § value is readily intuited: disutility from nausea is specified to last for six minutes,

whereas the utility from nicotine lasts several hours (though declining exponentially). The smoker



is therefore trading off two impacts that have very different durations.

3.4 Prices quantities and demand functions

To this point the choices of optimal timing and intensity are conditioned on a given quantity
consumed. The link between a chosen quantity and a given price can be established easily by

invoking a quasi-linear utility structure:

W =1U(c) + by, (10)

where c¢ is the number of cigarettes, and y is other goods. Normalizing the price of y at one and

defining p as the price of cigarettes the optimality condition is

) (11)

Any change in price, tax-induced or otherwise, requires a new quantity of cigarettes such that
marginal utility divided by price is restored to the initial value 8. A demand function is obtained
as follows: Numerically, the value of utility is obtainable for any quantity of cigarettes purchased
(maximizing simultaneously on timing and intensity), and a marginal utility schedule drops out
of this.! Elasticity values follow immediately.

The utility function used here always results in some positive number of cigarettes being
smoked, because the marginal utility of smoking tends to infinity as the amount of nicotine in the
body becomes small. The use of continuing smokers renders the model output comparable to the
results of Adda and Cornaglia. At the same time, it must be recognized that in the econometric
literature, the impact of prices is normally examined through some variant of a two-step model
of the type developed by Cragg, 1971, involving a participation decision followed by a conditional

quantity decision (see also Jones, 2000).

1 In fact I regress the utility values obtained in the optimization on a polynomial in ¢ in order to get smoothness
in U and differentiability for the marginal utilities.
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4 Results on Intensity Compensation

Some outputs for this model are provided in figures 3, 4, and 5 for a median smoker - one who
smokes 18 cigarettes per day. Figures 3 is an optimal nicotine path, figure 4 the resultant positive
utility path and figure 5 the implied cotinine path. Period 75 corrersponds to 7:30 am; period
220 is sleep and end of utility; period 240 is midnight. Consider first figure 3. The pattern is of
the expected inventory-management type: the smoker optimizes by boosting his stock of nicotine
early in the day, maintains it a relatively smooth level, and smokes little at the end of the day.
A low rate of smoking late in the day ensures that he does not ‘waste’ the nicotine by having
too large a quantity in his blood stream at the time of sleep. Experimentation with the number
of cigarettes indicates that individuals who smoke few cigarettes spread them evenly, but that
heavy smokers build up their nicotine stock strongly at the start of the day? . Figure 4 plots the
resultant utility corresponding to figure 3.

Figure 5 is the cotinine time path. Since cotinine has a half life of approximately 20 hours,
the decay rate is much less than for nicotine. It thus has a 24-hour cycle (in contrast to nicotine,
where the nicotine from the preceding day has metabolized before the start of the ‘smoking day’),
and the end-of-day value must equal the start-of-day value in a steady state. Defining the decay

rate of cotinine by « then the cotine path is defined by

Coty = Coty_1e” " + ON;_4 (12)

The cotinine scale is normalized to reflect a unit transformation of nicotine into cotinine (6 = 1).
The value of computing the cotinine path lies primarily in being able to assess if different smoking
patterns throughout the day yield broadly similar cotinine samples for individuals who smoke
differently. For example, if some individuals are subject to work-place regulations, while others

are not, if they smoke the same number of cigarettes, will their cotinine samples reflect this?

2 For example, an individual smoking 5 cigarettes has a timing pattern on the 145-unit range of
{1,28,58,88,117}, while an individual smoking 30 cigarettes has a pattern of {1,2,3,9,15,21,26...136, 141}.
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Experiments, not reported here, indicate that cotinine samples are a good indicator of total
nicotine ingested, even with different intake patterns - on account of the long half life of cotinine.

The principal results of this paper are contained in figures 6 and 7 and table 1. Figure 6 plots
the relationship between intensity and the number of cigarettes, conditional on the parameteriza-
tion adopted for the utility functions and on the half life of nicotine. The graphic indicates that
individuals facing high prices, and choosing to smoke few cigarettes should inhale at a rate of
1.35 on a scale normalized at 1 for a median smoker. In contrast, at low a low price and a higher
quantity, smokers may inhale as little as 0.85 units of nicotine per cigarette. Figure 7 indicates
that cotinine concentrations increase at a much slower rate than the number of cigarettes. This
pattern is consistent with figure 2 above. In sum, the model appears to predict well, in the sense
that it replicates established patterns.

To compute the degree of compensatory behavior in response to different prices, the implicit
demand function described above is tabulated in columns 1 and 2 of table 1. The quantities are
derived from the marginal utility conditions, and the demand curve is anchored by assuming a
price of 40 cents per cigarette for a median smoker (¢ = 18). At each quantity the model computes
an optimal intensity, and this is contained in column 3. Total nicotine intake is the product of
quantity and intensity and given in column 4. To the degree that the median smoker actually
inhales 1 milligram of nicotine per cigarette, then these numbers can be interpreted as milligrams
of nicotine in total. If compenation were ‘full’ or ‘complete’ the final column should have entries
that are all more or less equal - at least for some considerable range of the values. With zero
intensity compensation, the numbers in the final column should be strictly proportionate to the
number smoked in column 2. In contrast to these extremes, the calibrated model produces a
substantial degree of intensity compensation, though by no means full. For example, if the price
increases from 33.2 cents to 43.4 cents (an increase of 27% based on an ‘arc’ calculation), quantity
demanded falls from 22 to 16 cigarettes (a decline of 32%, calculated similarly). However nicotine

intake decreases by just 21%. At this point on the demand curve therefore, the model suggests

12



that intensity compensation offsets about one third of the quantity impact. Calculations at the
less elastic segments of the demand curve (where a higher quantity is purchased) suggest that
more of the quantity reduction is offset by intensity compensation.

To conclude: intensity compensation is significant, and therefore important; but it also indi-
cates that tax policy is not neutral: higher prices reduce quantity purchased, and this in turn

reduces nicotine intake.

5 Caveats on Adda and Cornaglia

5.1 Estimates are ‘Local’

The initial set of estimates reported by AC in their table 2 indicate exceedingly high response
elasticities on the part of smokers in both the number of cigarettes they purchase and in their
intensity responses. For example the initial intensity elasticity, with respect to a 1% increase in tax
lie in the range {0.34,0.55}. To illustrate the implications, consider their first estimate of 0.47%.
Since a 1% increase in tax corresponds to a 0.15% increase in price (AC footnote 8), the intensity
price elasticity is therefore in excess of three (0.47/0.15 = 3.1). If this estimate is applicable to the
present time, then it would imply that intensity of smoking should have increased by about 200%
in the last decade. In table 2 below are presented data on prices and quantities for cigarettes in
the US between 1997 and 2006. Prices increased by exactly two thirds. If the intensity elasticity
is in the region of three, it follows that smokers should be inhaling three times as much nicotine
as in 1997. This is simply not within the bounds of possibility.

By the same token the price elasticities of quantity purchased in table 2 are well in excess
of unity. For example the first price elasticity, while not statistically significant, is —1.33 (=
—0.20/0.15). And these elasticities capture only the impact of price changes on the quantity of
cigarettes purchased by continuing smokers. In contrast, there is a widespread concensus in the
econometric literature that elasticities capturing both the incidence/participation decision and the

conditional quantity decision are about half of this value (Chaloupka and Warner, 2000) - implying
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that AC’s conditional quantity elasticity is a multiple of the concensus estimates. Moreover, the
only significant elasticities in this table have values of —0.49 and —0.73. If the latter were correct
it would imply a conditional quantity elasticity of —4.9 (= —0.73/0.15). This is at least ten
times the magnitude of the accepted estimates.

In fact it is easy to see that the AC results imply that price reductions would the most effective

way to reduce nicotine intake: Using the identity that total nicotine ingested is

Total nicotine = population x smoker share of population x cigarettes per smoker x intensity,
(13)

and taking logs and totally differentiating with respect to price yields the result that

%ATotal cotinine/%Ap = %Aprevalence/%Ap + %Acigs/smoker /% Ap + %Aintensity /%o Ap.

(14)
Assuming that the first term is negative (AC do not estimate it), despite the accepted wisdon
that the first two terms should add to about -0.5, the price elasticities in the preceding paragraph

suggest that

%ATotal nicotine/%Ap ~ small neg — 1.33 + 3.1 = 1.77 4+ small neg = pos. (15)

If a reduction in total nicotine is required, clearly the price should fall, reflecting an underlying
positively sloped demand curve for nicotine. It would be prudent to revisit these estimates before
basing actual policy on them.

It should be borne in mind that prices in the period of their first set of estimates were in the
region of $1.50 per pack, whereas in 2008 Tobaccofreekids reported an average price in the range of
$4.50. Gospodinov and Irvine (2008) have cautioned against using estimates based on prices that

are a fraction of current prices in the formation of public policy. And indeed, the AC estimates
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in table 3, based on 1999-2000 data, are much smaller than those reported in table 2.

A further consideration in formulating policy here is that, in recent years, the US is unique
in the way taxes should be interpreted: since the Master Settlement Agreement in November
1998 between the states and the tobacco companies, cigarette prices have increased dramatically
in order to generate sufficient revenues to pay the amounts agreed under the Settlement. The

subsequent higher prices de facto incorporate higher taxes under another name.

5.2 The Disutility of Intensity

The second area of disagreement with AC concerns their utility function. They specify U =
U (nicotine, intensity, othergoods), in their equation (1): nicotine produces positive utility, inten-
sity negative utility. If nicotine is the product of the number of cigarettes ¢ times intensity i,
then n = c.i. AC then rewrite U as U = ((c.i), 4, ¢). While the nicotine production function
is constrained to have constant marginal products and increasing returns to scale, there is evi-
dence that this is a reasonable local assumption (for example, Chaiton et al, 2005, or Hammond,
Fong et al 2005). However, their intensity term is now playing two roles: it is both the intensity
associated with each cigarette, and is also the variable that generates daily disutility, governed
by the same function U. Given that the disutility is primarily attributable to the dizzyness and
nausea associated with carbon monoxide intake, the amount of such disutility during the day is
obviously a function of the number of cigarettes i.e. a function of c.i rather than simply ¢. But
once correctly specified, the utility function is not so useful because both the pleasure-yielding
nicotine and disutility-yielding intensity each enter in the same fashion. In contrast, if the pro-
duction function were specified in, for example, Cobb-Douglas form with known exponents then
meaningful comparative results are obtainable. AC’s comparative static results therefore need
redevelopment.

In the model developed in this paper the tradeoff between additional nicotine produced by

higher intensity and the disutility associated with that same intensity is resolved by recognizing
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the different time dimensions associated with each impact: the marginal utility of the addional
nicotine produced lasts for several hours, while the marginal disutility effect is experienced only
while the cigarette is being smoked. Nonetheless our underlying production structure is similar

to AC: total nicotine is the product of the number of cigarettes and intensity.

6 Conclusions

Tobacco-smoking is reckoned to be one of the major causes of premature death in both the de-
veloped and less-developed world. It is a principal cause of premature death in perhaps 300,000
Americans each year. Understanding the impact of policies that limit tobacco use and the in-
halation of cancer-causing toxins is therefore vital. The likelihood that smokers will increase their
smoking intensity in response to tax-induced price increases, or tobacco bans in public places,
should be accounted for in the decision to adopt deterrent policies. The overiding objective of this
paper has been to draw upon the established toxicological literature with a view to understanding
behaviour from an economic or incentive-driven standpoint. Developing and calibrating a theo-
retical model provides an alternative vehicle to econometric estimation. At the present time there
is a shortage of both theory-based models and econometric modelling based on recent data.

The principal result of this paper is that while intensity is indeed likely to rise as a rational
response to tax-induced price increases on the part of smokers who continue to smoke, such
compensation just partially offsets the impact of price on the reduction in quantity. Our estimate
of the compensatory intensity offset on a median smoker is that s/he will reduce nicotine intake by
about two thirds of the percentage quantity reduction: that is, increased intensity may offset one
third of the price impact on quantity. Furthermore, there is a substantial literature detailing the
impact of prices on prevalence, and a significant component of the impact of taxes falls here (e.g.
Chaloupka and Warner, 2000). In sum, while intensity compensation constitutes an important
reaction on the part of smokers, it is not sufficient to offset the greater part of the prevalence and

conditional quantity reductions brought on by tax increases. In view of the efforts in recent years
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of tobacco manufacturers to increase the ‘palatability’ of inhaled smoke (Hoffman and Hoffman,
1997), that is to faciltate greater intensity, tobacco policy might productively orient itself in this
direction. As part of this conclusion, the results of Adda and Cornaglia should be interpreted
with care: their extraordinarily high intensity elasticity estimates may have the implication that
cigarettes should be subsidized rather than taxed.

The conclusion that tax policy is far from being neutral should not be interpreted to mean
that indefinite price increases will reduce consumption, despite the fact that there is considerable
evidence that the health costs per pack are a multiple of the current price (e.g. Gruber and
Koszegi, 2004, or Viscusi and Hersch, 2007). In most of Europe and Canada cigarette prices are
almost twice the US price, as of 2008. Such high prices are an invitation to illegal supply: for
example, legal shipments have declined by about one third in Canada between 2005 and 2007,
while consumer surveys show little change in actual use. If governments wish to reduce tobacco
consumption further in the US it will be necessary to rely on a broad range of measures in addition
to price increases.

Finally, since time plays a key role in the theoretical model developed here, the approach should
should furnish a productive vehicle for analyzing the impact of tobacco control measures which
have a time dimension - in particular, restrictions against smoking in public or work places. There
is every reason to believe that such measures also increase the intensity with which cigarettes

consumed outside of the restricted periods are smoked.
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Table 1. Prices and nicotine compensation

Price/stick in cents | Daily quantity | Intensity (mg/stick) | Total nicotine intake
0.161 32 0.875 28.00
0.195 30 0.893 26.78
0.229 28 0.912 25.54
0.264 26 0.936 24.33
0.298 24 0.959 23.01
0.332 22 0.986 21.70
0.366 20 1.016 20.31
0.400 18 1.052 18.93
0.434 16 1.092 17.47
0.468 14 1.139 15.94
0.502 12 1.1960 14.36
0.536 10 1.267 12.67
0.571 8 1.36 10.88
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Table 2. Real price and quantity of cigarettes sold, US, 1997-2006.
Cigarettes (billion) Cigarette real price index
1997 480 100.0
1998 465 108.1
1999 435 138.5
2000 430 149.0
2001 425 156.3
2002 415 167.5
2003 400 166.1
2004 388 164.4
2005 376 167.2
2006 371 167.5

Source: Quantity: US Department of Agriculture (www.ers.usda.gov/briefing/tobacco), “The chang-

ing tobacco user’s dollar”. Prices from BLS, series CUUROOOOSEGAO01 and CUUROOOOSAO.
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Fig. 1. Scatterplot relating cigarette nicotine yields and saliva cotinine concentrations in 2031 smokers
participating in the 1998 Health Survey of England. Cotinine = 173.5 + 138.7 (nicotine vield); r = .19; #*
= .034.

Figure 1: Source: Jarvis, Boreham et al, 2001.
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Figure 2: Source: Adda and Cornaglia, 2006
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