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Abstract
Consumers�choice set of products within stores can be limited. Acker-

berg and Rysman (2005) address this problem by modeling unobserved
consumer preferences over products and retail stores, leading to aug-
mented demand speci�cations. Having Carbonated Soft Drink product
level data, where we observe products�store coverage, we are able to esti-
mate their logit, nested logit and random coe¢ cient logit speci�cations of
demand in a structural model of equilibrium. Allowing for store coverage
turns out to have a very signi�cant impact on the estimated structural
parameters and on the predictive power of the model. Taking these esti-
mated structural parameters we perform a counterfactual whereby stores
carry all products in the market. We �nd systematic increases in price
elasticities and welfare in our new equilibrium. Competition in markets is
more curtailed than normally assumed in structural models of industries.
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1 Introduction

The ability to estimate demand systems for di¤erentiated products has become

a core part of New Empirical Industrial Organization.1 Theoretical innovations

allow us to estimate demand for di¤erentiated products at the product rather

than at the consumer level. This is done by embedding a certain structure into

consumer utility, such as the presence of unobserved heterogeneity in consumer

taste for products around mean utilities using standard logit errors. Utilizing

data on prices, market shares and product characteristics (observable and un-

observable to the econometrician), logit and nested logit discrete-choice models

can be evaluated using the methodology of Berry (1994). In addition, if data on

individual characteristics (observable and unobservable to the econometrician)

is accounted for, random coe¢ cients, as in Berry, Levinsohn, and Pakes (1995)

and Nevo (2001), can be estimated.

However, as noted by Ackerberg and Rysman (2005), one should worry about

the properties of the commonly used standard logit errors, since these can ad-

versely a¤ect substitution patterns and welfare outcomes. Logit errors assume

the dimension of unobservable characteristic space to expand proportionally to

the number of products. This may not be realistic for a consumer in a store,

since stores do not tend to carry all available products in the market. This

is con�rmed by Pakes (2003), who shows that computer retailers typically dis-

play only a subset of the total number of computer models available. Thus,

one important source of unobserved consumer taste heterogeneity is induced

by product availability inside stores.2 Yet, most empirical estimations of de-

mand systems for di¤erentiated products do not allow heterogenous availability

of products to enter consumer utility.

Another property of standard logit errors is that all products are equidistant

from each other in unobserved characteristic space, when in reality consumer

distance to products, due to store coverage, is expected to be idiosyncratic.3

We address both of these issues in this paper.

Following Ackerberg and Rysman (2005) we adjust logit errors to re�ect

1See Ackeberg et al. (2007), and Perlo¤ et al. (2007) for a good literature review.
2Ackerberg and Rysman (2005) list many examples where one can see cross-sectional vari-

ation in the number of available products in the data [Berry and Waldfogel (1999), Crawford
(2000), Arcidiacono (2005), and Rysman (2004)], or time series variation [Berry, Levinsohn,
and Pakes (1995), Bresnahan, Stern, and Trajtenberg (1997), Petrin (2002), and Crawford
and Shum (2005)]. Nevo (2001), and Town and Liu (2003) deal with both.

3This would not be true in familiar theoretical location games such as the linear city
of Hotelling (1929) and D�Aspremont et al. (1979), or the circular city of Salop (1979).
Heterogeneity in consumer tastes (transportation costs) can be modelled empirically, see Davis
(2006).
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possible product congestion in stores, i.e. products competing for limited avail-

able shelf space, by allowing di¤erent indirect utility speci�cations to represent

idiosyncratic unobserved consumer preferences over both retail stores and prod-

ucts.4 We use scanner data on 157 products in retail Carbonated Soft Drinks

(CSD) over 28 bimonthly periods where retail store coverage is observed at the

product level, to estimate their derived logit, nested logit and random coe¢ -

cients logit speci�cations in a structural model of equilibrium.

As Ackerberg and Rysman�s (2005) Monte Carlo study shows, not allowing

for congestion in stores can lead to biases in estimates of price elasticities, as well

as inaccurate welfare e¤ects. Our analysis based on observable retail product

coverage, will provide us with the true structural parameters and will lead to

more realistic outcomes in terms of price elasticities and welfare than assuming

standard logit errors. Allowing for store coverage at the product level is shown

to have the predicted signi�cant impact on our jointly estimated demand and

cost systems.

To understand the bias created by standard logit errors, and to further

link our results to Ackerberg and Rysman (2005), we impose full-coverage (no

congestion) in our structural model of equilibrium and evaluate its e¤ect on price

elasticities and welfare. This counterfactual exercise highlights the potential

distortions that could arise from assuming standard logit errors when congestion

inside stores is actually a feature of consumer choice. All else equal, markets

are found to be more competitive by design when one uses standard logit errors

as the building block to allow for aggregation over unobserved heterogeneity in

consumer taste at the product level.

The remainder of the paper is organized as follows. Section 2 summarizes our

data and discusses the Ackerberg and Rysman (2005) proxies for store coverage.

Section 3 describes our three demand speci�cations and a supply side model.

It also outlines our counterfactual and derives consumer welfare for the three

speci�cations. Section 4 outlines our estimations and presents our empirical

results. We make our conclusions in section 5.
4Another approach, advocated by Berry and Pakes (2007), Bajari and Benkard (2005), and

Song (2007), would be to eliminate idiosyncratic logit errors from the model. The Ackerberg
and Rysman (2005) approach is to keep logit errors in the model but allow them to be more
�exible. The �exible logit error imposes no additional computational burden but does require
more product level data such as store coverage. As we will see, using a proxy based on the
number of products may not be of much bene�t.
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2 Data

AC Nielsen collated a panel database of all CSD products distributed throughout

12; 000 Irish retail stores. The database provides 28 bimonthly periods spanning

October 1992 to March 1997 for 157 products (brands), identi�ed for 13 �rms

and 40 product characteristics within the particular business of retail CSD. The

data record the retail activities of both Irish and foreign owned products/�rms

selling throughout stores in the Irish retail sector.

The retail market for Carbonated Soft Drinks in Ireland is broadly similar in

structure to that of the US. In 1997, the top two �rms collectively account for 73

per cent of the Irish market and 75 per cent of the US retail market. Inequality

in retail sales, as measured by the Gini coe¢ cient, was 0:72 in Ireland and 0:68

in the US. Like the US the Irish market is heavily branded. There are di¤erences

between Ireland and the US that are typical of European CSD markets. These

di¤erences are highlighted in case studies of several countries in Sutton (1991).

We have product level information on:

� Product characteristics such as, �avors (Cola, Orange, Lemonade and
Mixed Fruit), packaging types (Cans, Standard Bottle, 1:5 Liter, 2 Liter

and Multi-Pack of Cans) and sweeteners (Diet and Regular).5

Allowing for �avor segments (Cola, Orange, Lemonade and Mixed Fruit)

is standard in the analysis of CSD, (Sutton, 1991). To understand why

packaging format is recognized as a crucial feature of this market, we

graph the seasonal cycles of CSD sales by packaging type in Figure 1. The

industry has introduced di¤erent packaging to satisfy di¤erent consumer

needs (Walsh and Whelan, 1999). For example, cans peak in the summer

months of June and July, when the weather is warmer. In contrast, 2

Liter bottle sales peak over the winter months of December and January,

the festive season. Packaging by time dummies will be an important way

to control for the impact of weather variations on the sales of segments

de�ned by packaging. In the cost function, packaging by time dummies

will control for plastic (2-Liter), glass (standard) and aluminium (cans)

input costs that can change over-time.

� Price in Irish pounds per liter (weighted average of individual product
5The number of product characteristics was very stable throughout the period of this study.

We take the emergence of such segments as an outcome of history. If in CSD consumers were
fully mobile across segments and advertising was very e¤ective, the market would evolve to be
dominated by one segment. Taste structures and advertising outlays, amongst other factors,
have driven the current day segmentation of the market by product attribute, see Sutton
(1998).
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prices across all stores selling the product, weighted by product sales share

within stores).6

� Quantity sold (in thousands of liters).

� Sales value (in thousands of Irish pounds).

Details on the number of products, number of �rms, prices, unit sales, and

revenue shares by product segments are outlined in Table 1. We note that

unit sales and revenue shares can be very di¤erent when one compares

Cans to 2-Liters, for example.

� Inventory stocks (forward and back room) represent time to stock-out
(expressed in months) of product sales for the bimonthly period. Table 2

details inventory levels by segments and time, averaged over products. A

demand side interpretation would be that inventories re�ect unanticipated

slumps in demand. A supply side view is that inventories are a way of

managing delivery costs.7 We see clearly that segments depending more

on large numbers of impulse buys/small stores (indicated by the cans and

standard packaging format), use inventories more. Here, delivery costs are

clearly higher and can be reduced with the use of inventories. The use of

inventories is pretty stable over time and stock outs are not a feature of

the data.

� Store coverage based on counts of stores that the product is in, weighted by
store size in terms of overall CSD turnover. Table 2 also documents store

coverage averaged over products within segments over time, and clearly

shows that it varies over both time and segment.8

Ackerberg and Rysman (2005), AR henceforth, do model unobserved con-

sumer preferences over products by retail stores. Due to data unavailability,

they resort to proxies of coverage. In creating the proxies the authors assume

6The average exchange rate over the period 1992-1997 is approximately 1.6 US dollar to
one Irish pound.

7We refer to Deaton and Laroque (1992, 1996) for a theoretical aside on inventory models.
8The structure of the market has large companies placing products across most segments

with varying coverage of stores inside segments depending on the product. Small companies
can specialize in segments with a store type focus. The two large companies tend to face
competition from di¤erent small independents within each segment. In each segment market
size to sunk cost and the nature of price and non-price competition seem to limit the number
of �rms that can operate [see Mariuzzo, Walsh and Whelan (2003)]. The number of �rms
that operate in each segment is quite small. Yet, due to certain local taste characteristics,
particularly in Orange and Mixed Fruit, small companies can �ll a quality window and survive
alongside large companies.
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products equally cover a certain number of the total outlets so that, within a

period, the store coverage for a representative product j can be written as,

RARj = RARJ =
R

J
; j = 1; 2; � � � ; J;

where R indicates the total number of stores and J the total number of products

marketed. They propose the following proxies for store coverage, written as a

function of the total number of marketed products:

i) RARJ = [�1=J + (1� �1)]

ii) RARJ = J�2 ;

In speci�cation (i) a value of �1 approaching zero is indicative of what they

call a �standard logit model�, i.e. the introduction of new products in the

market is mirrored directly in new stores. This is as if the product dimension

and the store dimension are able to track each other. On the other hand, a value

of �1 approaching one has an opposite e¤ect that they name �pure congestion�.

That is, new products have to compete for outlets with the existing products,

thus providing a complete �crowding out�e¤ect. In speci�cation (ii) we have

�pure congestion�if the parameter �2 approaches minus one, and the �standard

logit model�if �2 goes to zero.

Contrary to AR we have information on store coverage at the product level

in each time period. Coverage is measured as the proportion of stores each

product is in, weighted by each store size in terms of CSD sales. This is denoted

by rjt, where 0 < rjt � 1. A value of one in rjt indicates that the product

is sold in all stores in period t. We now compare our actual measure of store

coverage with the AR proxies.

We use our data to estimate AR store coverage proxies as in (i) and (ii).

Our dependent variable, rjt, has variability across products and time, whereas

the explanatory variable (number of products) changes only over time, Jt. We

suggest the following speci�cation

rjt = f(Jt;�) exp(�jt); (1)

where �jt is the composite error, which we decompose into a time function h(t),

product random e¤ects �j , and a pure idiosyncratic error ujt,

�jt � h(t) + �j + ujt;

with � and u assumed to follow independent distributions.
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Now, given that the main explanatory variables suggested in AR vary only

over time, we average (1) with respect to the product dimension and take the

natural log, to give the following relation,

ln r:t = ln f(Jt;�) + h(t) + �: + u:t: (2)

The function f(Jt;�) may be, either [�1=Jt + (1� �1)] under AR speci�-

cation (i), or J�2t under AR speci�cation (ii). The results of the nonlinear

estimations of equation (2) under the functional forms (i) and (ii) are docu-

mented in Table 3. Both estimates of � (b�1 = 1 and b�2 = �0:9) indicate
product �congestion�. The predicted value of the AR proxy is depicted in the

bottom panel of Figure 2. It delineates a down-trend, suggesting that product

congestion has increased over time due to an increase in the number of prod-

ucts marketed (see the middle panel of Figure 2). Now we turn to the actual

variability of our coverage variable (top part of Figure 2). The lower value of

the boxes in Figure 2 is associated with the 25th percentile of the distribution,

the upper value to the 75th percentile, and the line in the box captures the

median value. Clearly the distribution of product coverage has increased in its

variability over time, and this e¤ect has been accompanied by a slight decrease

in the median product coverage. We will use the estimated AR proxy and our

product level, time varying, store coverage data in our empirical work. Given

that the AR proxy varies only over time, we cannot expect it to capture any

change in the within period product-level store coverage heterogeneity. This is

something we want to remember when interpreting the role of the AR proxy in

the estimations that will follow.

3 The Structural Model

In every period t a population of Nt individuals decides which of the available

Jt + 1 products to buy (where the +1 denotes an outside composite good). We

stick to the existing discrete choice literature and assume individual preferences

are represented in an indirect random utility function. In the next section we

present alternative speci�cations of the demand side.

3.1 Demand Speci�cations

3.1.1 Logit Model

We de�ne market size in terms of an average individual consumption of a can

(220 ml) of soft carbonates per day. Consumer i�s indirect utility, i = 1; 2; :::; Nt,
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for product j, j = 0; 1; :::; Jt, in retail store r; r = 1; 2; :::; Rt, in period t, t =

1; 2; :::; T , can be expressed linearly as

uijrt = � (yit � pjt) + x�jt� + �jt + �ijt + �r"ijrt; (3)

where xjt is a column vector of k�observable product characteristics (inclusive
of a constant), yit is the income of individual i in period t, pjt denotes the price of

the product in the period, and �jt gathers any possible remaining unobservable

(to the econometrician) product-period-level e¤ects. As suggested by AR, the

composite error term can be decomposed into a consumer i�s period-product-

speci�c taste, �ijt, and consumer i�s period-product-retail store -speci�c taste;

"ijrt. The parameter �r is a measure of the relative variance of the two random

error variates.9

We de�ne

�jt � x�jt� � �pjt + �jt

to be the mean utility over individuals and products.10 As typical in the discrete

choice literature, consumers can opt for an outside composite good whose utility

can be represented by,

ui0rt = �yit + �0t + �i0t + �r"i0rt: (4)

Now, assuming that "ijrt follows an iid type-I extreme value distribution and

that �ijt is distributed such that, �ijt + �r"ijrt is an iid type-I extreme value

(see Cardell, 1997), we can derive the following adjusted (for store coverage)

logistic product level formula for market share as

sjt =
R�rjt exp (�jt)PJt
l=0R

�r
lt exp (�lt)

; (5)

9The subscript r in the � parameter has to be understood as a simple label, rather than
a parameter that is store-speci�c (which here would indicate heteroskedasticity in the error
component). The same interpretation will be on, for the �g and �p parameters that we will
introduce below.
10 It is useful to contrast the indirect utility in (3), with a more classical logit version

uijrt = �yit + �jt + "irt:

The latter is basically a standard logit, with the only di¤erence being that the idiosyncratic
error, ", is iid over stores rather than over products. Here, if one assumes stores to sell
all products, the classical logit and standard logit would back out the same market share
function, as con�rmed in Figure 3. Needless to say, the classical logit is rather unrealistic, as
it assumes stores to carry all products, while in reality they carry only an incomplete number.
In addition to that, one can expect a certain degree of correlation for the same product sold
across di¤erent stores. Hence, the indirect utility in (3) o¤ers a more realistic representation.
The underlying tree and derived market share function (demand function) are depicted in
Figure 4.
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where Rjt is the total number of retail stores carrying product j in period t,

and the term �yit cancels out due to the way we have speci�ed the utility.11

The derivation of the term R�rjt is discussed in Appendix (6.A).

Next, if we divide the numerator and denominator of (5) by a function of the

total number of stores in the economy in period t, i.e., R�rt , we can re-express

the market share as,

sjt =
r�rjt exp (�jt)PJt
l=0 r

�r
lt exp (�lt)

�
exp

�
�rjt
�PJt

l=0 exp (�
r
lt)
; (6)

where rjt = Rjt=Rt; and the new de�nition of the mean utility �
r
jt, now accounts

for the observable store coverage e¤ect and relates to �jt in the following way

�rjt � �jt + �r ln rjt:

Here, as is common, we set the mean utility of the outside composite good to

zero, �0t = 0. Moreover, we assume such a good to be carried in all stores in

all periods, so that r0t = r0 = 1. If we take the natural log of each product�s

market share in (6) normalized with respect to the outside composite good we

obtain the following reduced form equation which we estimate as our demand

system for products,

ln sjt � ln s0t = x�jt� + �r ln rjt � �pjt + �jt:

So far we have been indirectly thinking of stores carrying only one product,

while in reality stores carry portfolios of products, which have to compete for

shelf space. The extension from single-product store to multi-product store is

rather immediate. We leave to the reader to visualize how Figure (4) can be

extended to this latter case. Once stores carry di¤erent products, rjt becomes

our e¤ective measure of store coverage: the proportion of stores each product

is in, weighted by stores market shares (measured in terms of sales). The next

section extends this logit model to a nested logit framework.

3.1.2 Nested Logit Model

We follow AR and rewrite the indirect utility function as,

uijrt = �yit + �jt + �
1
igt + �g

�
�2ijt + �r"ijrt

�
; (7)

and the corresponding function for the outside good as,

ui0rt = �yit + �
1
i0t + �g

�
�2i0t + �r"i0rt

�
;

11This speci�cation justi�es the fact that we do not have individual income data.
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where, again, we normalize �0t to zero and r0t = r0 to one, and �nd that �yit
cancels out when we subtract ui0rt from uijrt.

Unlike equation (3), we now allow the random part of the utility to depend,

each period t, on individuals taste for segment g, g = 1; 2; :::; Gt, individuals

taste for products, and individuals product-store taste. Along with the random

component we allow for a deterministic part which consists of an individual

income, and the (product) mean utility �jt, previously de�ned. Assuming "ijrt
follows an iid type-I extreme value distribution, �2ijt to have an iid distribution

such that �2ijt + �r"ijrt is type-I extreme value, and �
1
igt to have an iid distrib-

ution similar to �1igt + �g
�
�2ijt + �r"ijrt

�
; we can back out nested logit market

shares. De�ning sj=g to be the within group market share and sg to be the

segment market share, we derive the following expressions,

sj=g;t =
exp

�
�rjt
�g

�
Dgt

; sgt =
D
�g
gtP

gD
�g
gt

; (8)

where �rjt is the mean utility de�ned in the previous section to account for the

store coverage e¤ect. The term Dgt captures the sum,

Dgt �
X
l2Jgt

exp

�
�rlt
�g

�
; (j; l 2 Jgt) ;

with Jgt we denote the set of products marketed in segment g in period t.12

As is usual we express the nested logit speci�cation as the product of two

logits,

sjt = sj=g;tsgt: (9)

Using the Berry (1994) inversion, equation (9) can be rewritten as

ln sjt � ln s0t = �rjt + (1� �g) ln sj=g;t; (10)

In the next section we generalize the model further and allow retail store

coverage to be embedded in a random coe¢ cient nested logit model.

3.1.3 Random Coe¢ cient Nested Logit Model

We now enrich the previous analysis by allowing random coe¢ cients on the price

(and income) parameters so that the indirect utility function can be cast as

uijrt = �i (yit � pjt) + x�jt� + �jt + �1igt + �g
�
�2ijt + �r"ijrt

�
; (11)

12This approach is a little restricted in the sense that one might prefer to model goods in
one segment to crowd out (in terms of retail space) goods in the same segment more than
goods in di¤erent segments.
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with the utility for the outside good (with �0t = 0 and r0t = r0 = 1) as,

ui0rt = �iyit + �
1
igt + �g

�
�2i0t + �r"i0rt

�
;

where we have assumed the inside and outside market individual marginal util-

ities of income to be the same, so that in the process of aggregation the �iyit
term cancels out.

The random coe¢ cient term can be written as

�i = �+ �p�
p
i ;

where �pi is assumed to follow a standardized lognormal distribution.

As in Nevo (2000a) we write the products choice in terms of individual

characteristics,

Ajt
h
��t

i
=
��
�pi ; �

1
igt + �g

�
�2ijt + �r"ijrt

��
juijrt � uilrt;8l = 0; 1; :::; Jt; t = 1; 2; :::; T

	
where,

�t = [�1; �2; :::; �Jt ]
�:

Product market shares are obtained by integrating over the joint distributions

of individual characteristics and stores,

sjt � E(sijrt) =
Z
Ajt

dP
�
vp; �1 + �g

�
�2 + �r"

��
:

Next, conditioning the composite error
�
�1 + �g

�
�2 + �r"

��
distribution on the

joint distribution of vp; we can simplify the above relation to,

sjt � E(sijrt) =
Z
Ajt

dP
�
�1 + �g

�
�2 + �r"

�
jvp
�
dP (vp):

Under the assumption that the composite error follows a type I extreme value

distribution we can write individual probabilities of buying product j in period

t as,

sijt = si;j=g;tsigt; (12)

where,

si;j=g;t =
exp

�
�rjt��ppjt�

p
i

�g

�
Digt

; sigt =
D
�g
igtPGt

s=0D
�g
ist

; (13)

with,

Digt �
X
l2Jgt

exp

�
�rjt � �pplt�

p
i

�g

�
; (j; l 2 Jgt) : (14)
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We use ns simulations to compute each product market share in period t:

sjt =
1

ns

nsX
i=1

sijt: (15)

3.2 Supply side

We have detailed three alternative demand side models. For the cost (�sup-

ply�) side, we postulate constant product-period-speci�c marginal costs, cjt,

and deal with multi-product price setting �rms. We assume the existence of a

Nash Bertrand equilibrium, so that each period t, each �rm f; f = 1; � � � ; Ft;
maximizes the pro�t

max
pjt

X
l2Jft

(plt � clt)slt (p1t; p2t; :::; pJt)Nt; (j; l 2 Jft; f = 1; � � � ; Ft) ;

where Jft is the set of products marketed by �rm f in period t. Given the total
number of �rms available, we derive for each period a system of Jt �rst order

conditions:

sjt +
X
l2Jft

(plt � clt)
@slt
@pjt

= 0: (16)

Next, if we de�ne,

�t �
�
� @slt
@pjt

; if products (j; l 2 Jft; f = 1; � � � ;Ft)
0; otherwise

;

we can rewrite (16) in compact form as,

�t � �
�
@

@pt
s�t

�
:Ot; (17)

where Ot is period t�s �rms�ownership matrix, and a dot indicates an element

by element operation.13

The resulting pricing equations are

pt = ct +�
�1
t st| {z }
mt

: (18)

which can be re-expressed at the product-period level as,

pjt = cjt +mjt; (19)

13The ownership matrix Ot, is nothing more than a Jt � Jt matrix of ones and zeros. The
ones indicate products owned by the same �rms.
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where mjt is the markup of product j in period t. Thus, the �rst order

condition in (16) can be read as price equals marginal cost plus a mark-up, and

given the primitives of the demand system one can use the pricing equation to

back out marginal costs for each product.

As standard in the literature, we keep our model simple by postulating the

existence of a linear relation between constant marginal costs and observable

and unobservable (to the econometrician) product characteristics,

cjt = w
�
jt
 + !jt: (20)

Having de�ned the demand and cost functions, we now outline the consumer

welfare in the models.

3.3 Consumer Welfare

Consumer welfare is de�ned as the monetary utility individuals receive by choos-

ing one particular product. The marginal utility of income is constant and equal

to:
@u

@y
= �;

in speci�cations [(3),( 7)], and is individual speci�c:

@u

@y
= �i;

in speci�cation (11).

Its inverse is used to convert consumers welfare in monetary terms. Small

and Rosen (1981) have shown that in the case of iid extreme value idiosyncratic

errors, and utilities linear in income, the expected consumer welfare has a closed

form that, under our speci�cations, is written as follows:

1. Logit: Adjusting Train�s (2003) formula to our notation we express con-
sumer welfare as the monetary value of the maximum utility,

CWirt =
1

�
max
j2Jt

uijrt:

However, due to the random composite error in the utility we are only

able to formulate the expected consumer welfare,

E (CWirt) =
1

�
E

�
max
j2Jt

�
�jt + �ijt + �r"ijrt

��
;
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which, given the iid extreme value varies over consumers and stores, re-

duces to:

CWt =
1

�
ln

0@1 + JtX
j=1

exp
�
�rjt
�1A+K1t; (21)

where K1t is an unknown constant.

2. Nested logit: This computation is an immediate extension of the logit
derivation discussed in equation (21) above:

CWt =
1

�
ln

8<:1 +
GtX
g=1

24X
l2g
exp

�
�rlt
�g

�35�g9=;+K2t;

where the term in curly brackets corresponds to the natural log of the

denominator of sgt formulated in equation (8).

3. Random coe¢ cients nested logit: Here, we readapt a formula from
Nevo (2000b) and write,

Wt =
1

ns

nsX
i=1

1

�i

8<:
GtX
g=1

24X
l2g
exp

�
�rlt � �pplt�

p
i

�g

�35�g9=;+K3t;

where �i is the random coe¢ cient introduced in equation (11).

Note that in none of the above speci�cations we are able to compute the level

of expected consumer surplus: only changes in expected consumers surpluses

can be identi�ed. Consequently, in our welfare computations we will choose a

speci�cation as reference category, and compute the changes in welfare generated

by deviations from that default scenario.

3.4 Counterfactual

We have seen that our data on store coverage by products suggest the existence

of �congestion�e¤ects. A natural counterfactual would impose standard logit

errors with a �standard logit model�. We do this by assuming all products have

full coverage (rjt = r0 = 1, and
XJt

l=0
rlt = Jt + 1 , 8t). In essence, stores are

asked to create (free of charge and without a¤ecting inventories) extra space in

their shelves to allow for the presence of all CSD products.

We keep as primitives the parameters of demand and marginal cost functions

that we have estimated observing our true measure rjt of store coverage, and

under the assumption of full retail coverage, we compute the new equilibrium

price in the market. In order to calculate the new equilibrium we use fsolve
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in Matlab and unravel, for every period, a system of Jt nonlinear equations

in pt (the pricing equations with the demand equations substituted in). The

procedure for each of the three demand speci�cations is reported in appendix

6.B.14 Having solved for the new equilibrium, we recompute the price elasticities

at the new prices and market shares. We also calculate the change in welfare

that results from moving from one equilibrium to another.15

4 Econometrics and Results

We need to estimate the demand and �supply�equations derived in the previous

section. An important issue in empirical IO is how to deal with the endogeneity

in pricing. Prices are endogenous due to their correlation with demand unob-

servables (through unobserved quality) and supply unobservables (through the

markup function). The empirical IO literature has well documented price en-

dogeneity due to the fact that part of a given product�s quality is observed by

consumers and producers, but not by the econometrician. In the simple logit

speci�cation this translates into an upward bias of the Least Squares estimation

of the price parameter (due to an underlying positive correlation between price

and quality).16 By-products of this bias include: inelastic estimates of demand

elasticities of substitution, overestimation of markups and, in extreme cases,

negative marginal costs. The literature has however suggested useful instru-

ments to overcome this issue [Hausman and Taylor (1981), Berry (1994), BLP,

Fershman et al. (1999), Nevo (2000a, 2000b, 2001), amongst others].

In our paper, on top of this simultaneity issue, we also consider the role

of an important unobservable variable in consumer taste. Product coverage of

stores is a typical (relevant) omitted variable in the product-level estimation

literature.17 As an omitted variable, depending on the underlying correlation,

it could worsen, improve, or leave unaltered the endogeneity e¤ect. In appendix

6.C we delineate a theoretical aside on how simultaneity and omitted variable ef-

fects can interact. Regardless, observing store coverage may not be the panacea

14The same appendix also provides some useful algebra on the three demand speci�cations
and their counterfactual.
15We rely here on the assumption of uniqueness of equilibria, but we are aware that the

nonlinearity of the Jt system of equations is a fertile soil for multiple equilibria. If this is the
case, we hope the equilibrium we pick up is the only reasonable one in economic terms.
16Note that we expect the price parameter to be negative, and thus the upward bias in our

case would translate into a lower absolute value of the associated parameter.
17 It is fair to add that this latter bias could be eliminated if one could �nd �ideal instru-

ments� that simultaneously: i) mitigate (or annul) the simultaneity bias induced by unob-
served product quality and ii) yield results that are uncorrelated with store coverage (see
appendix 6.C for details).
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to the problem, as store coverage could be correlated with unobserved product

quality, and therefore be itself an endogenous variable (something that we will

test in our econometrics). The above discussion can be extended to the nested

logit speci�cation, although in this case, the sign of the price parameter bias

is less intuitive. The way in which the within segment market share relates to

both unobserved quality and to price will be important.

We address the problem of endogeneity using a set of instruments, and in

keeping with BLP, we postulate the following conditional moments independen-

cies,

E(�jtjz1t) = E(!jtjz2t) = 0 (22)

E[(�jt; !jt)
�(�jt; !jt)jzt] = 
 (zjt) ;

where zt � fz1t; z2tg. The second condition in (22) allows for heteroskedasticity
in demand and supply unobservables�conditional variances.

We separate the parameters in a linear set �1, and a non-linear set �2, with

� � f�1;�2g. We combine linear and nonlinear GMM estimators, as in BLP and

Nevo (2000a). As part of our estimation procedure, we compute an estimator

of the asymptotic variance-covariance of the linear and non-linear parameters.

This requires us to calculate the gradient of the GMM functions with respect to

the parameters and, whenever possible, we make use of analytical solutions. We

succeed in providing analytical solutions for the gradient of each demand side

speci�cation, and employ numerical derivations for the more complex �supply�

side. The analytical gradient of the nonlinear parameters entering the demand

side random coe¢ cient nested logit requires a rather tedious derivation, which

we outline in Appendix 6.D.

4.1 Instruments

A heated debate among those that use the GMM estimator is the choice of

instruments. Newey (1990) shows the e¢ cient set of instruments for nonlin-

ear models to be equal to the conditional expectation of the derivative of the

conditional moments with respect to the parameters vector. Unfortunately this

conditional expectation is very di¢ cult, if not impossible, to compute utilizing

our nonlinear estimation. Consequently, we resort to selecting our instruments

based upon their power and validity in conjunction with their underlying eco-

nomic signi�cance. Appendix 6.E fully details our choice of the instruments,

which relies on a four step procedure. In step one we investigate the power of
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the instruments by regressing our endogenous variables over alternative sets of

instruments. In step two, we select the signi�cant instruments and compute a

demand side GMM to verify the validity of the chosen instruments. Step three

avails of the estimated demand primitives from step two and deduces estimated

marginal costs; accessing the power of supply side variables. The last step,

checks for the validity of the instruments for those endogenous variables that

directly, or via functional forms, enter the GMM pricing equation. The idea is

to explore the power and validity of the instruments separately for demand and

supply, which will help in our choice of instruments for the joint estimates of

demand and supply.

Below we list and de�ne the instruments that performed best in the correc-

tion of the price endogeneity and, where applicable, the store coverage endo-

geneity. These include BLP type instruments, such as the number of products

and the sum of the product characteristics that proxy for the intensity of com-

petition or product di¤erentiation in our structural model of equilibrium. We

divide these two types of instruments into summations over products belonging

to the same �rm and summations over products of other �rms, for each period,

as follows:

z1: the sum of other products belonging to the �rm;

z2: the sum of months to stock out of other products of the �rm;

z3: the sum of log store coverage of other products of the �rm (when store

coverage is observable and exogenous);

z4: the sum of products of other �rms;

z5: the sum of months to stock out of products of other �rms;

z6: the sum of log store coverage of products of other �rms (when store

coverage is observable and exogenous).

In addition we use Hausman and Taylor (1981) type instruments, aimed at

capturing common underlying cost shifters:

z7: initial condition of average price of products outside the segment the

�rm belongs to;

z8: initial condition of average log store coverage of products outside the

segment the �rm belongs to (when store coverage is observable and endogenous).

4.2 Results

In each of our speci�cations we explore the following scenarios in which: i) store

coverage is not observable; ii) store coverage, sc, is proxied by the AR variable

(predicted from the nonlinear estimates set out in Table 3); iii) store coverage,
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is observable.18

The Least Squares estimates of our demand systems are reported in Table

4. If we look at the R2 for our logit model we see that when store coverage is

either omitted, or proxied for by AR, only 36% of the variability of demand is

explained. On the other hand, once we account for store coverage with actual

data, a good 83% of the variability is captured. The nested logit speci�cation

has the advantage of reducing the discrepancy among the three scenarios, by

moving from an R2 of almost 88%, in case of omitted or proxied store coverage,

to an R2 over 91% in case of store coverage being observable. The table also pro-

vides evidence that the AR proxy helps little in correcting for the bias that the

omitted coverage produces in the price and log of within segment market share

coe¢ cients. Our observable store coverage variable is much more informative,

being both product- and period-speci�c. For example, if we compare Columns

1 and 3 for the logit case, we observe the estimated price coe¢ cient to be (in

absolute value) lower, when we account for store coverage. This direction of the

estimated price e¤ect suggests that the simultaneity bias is ampli�ed when one

allows for store coverage. However, such a tendency in the price parameter is

not shared by the nested logit speci�cations. As we can see from a comparison

of columns 4 and 6, the price parameter here rises (in absolute value). This

change in direction is caused by the correlation that the log of within market

shares and log of store coverage have with prices (as one can note from Table

5).

A common feature of the various scenarios and speci�cations of Table 4 is

the high number of estimated negative marginal costs, which we have discussed

as being driven primarily by a simultaneity bias. We tackle the simultaneity

bias by jointly estimating the demand and �supply� equations by GMM. As

already anticipated in the previous section, the selection of instruments relies

upon a trade-o¤ between power and validity. We present descriptive statistics

of the instruments and their correlations, along with some relevant variables, in

Tables 5 and 6. We report our �nal choice of instruments in a footnote of Table

7.

If we compare the Least Squares estimates for the logit and nested logit

speci�cations of Table 4, with the equivalent joint GMM estimates of Table 7,

we note that both the (��) price parameter, and the �g within segment market
share, are heavily downward biased in the OLS estimations. On the other hand,

the store coverage parameter �r is only downward biased in the nested logit

18Due to its poor performance, we do not include the AR variable in the random coe¢ cient
nested logit speci�cation.
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speci�cation that has observable store coverage.

The demand side of Table 7 separately reports the linear and nonlinear

estimated parameters.19 The store coverage parameter �r, is not estimated well

in the logit speci�cations, as the estimate exceeds the unitary theoretical upper

bound of its support. Only under the richer nested logit speci�cation do we get

reasonable values for �r. We then observe that using the actual store coverage in

the nested logit and random coe¢ cient nested logit speci�cations brings about

the estimate of �r to a value around 0:7, as it corrects for the bias.

We now turn our attention to the nonlinear parameters. The negative of the

mean price e¤ect estimated coe¢ cient (��) is signi�cant and varies between 3
and 3:8 among the di¤erent speci�cations. We do not �nd the standard devi-

ation parameter of the random coe¢ cient nested logit speci�cation �p, to be

signi�cantly di¤erent from zero, particularly when store coverage is observable.

This is due to a lack of individual observable characteristics in our data, and

subsequently to a poor set of available instruments. Another nonlinear parame-

ter is the one attached to the within segment market share �g. Only the nested

logit speci�cation based on the AR proxy poorly estimates �g. The other spec-

i�cations and scenarios furnish a signi�cant estimated parameter in the range

of 0:55 and 0:65.

The results on the supply side do not provide evidence of a signi�cant role

of inventory and store coverage in the marginal cost function for the logit or

nested logit speci�cations, but are signi�cant and of the right sign in the ran-

dom coe¢ cient models. Declining inventories increase cost, and store coverage

reduces cost. Still, �rm, packaging and seasonal dummies do capture most of

the marginal cost variability.

Table 7 also displays useful statistics that can help us select the best spec-

i�cation. The pseudo R2 of the demand side R2D, emphasizes the strong role

that the observability of store coverage has in explaining the pure product-level

variability. As for the supply side, the pseudo R2S is always above 70 percent.

The J�statistic is informative on the validity of the instruments. Figures of the
p-value below 0:05 indicate that some of the moment conditions are not sup-

ported by the data at the 5 percent level. An important statistic is the number

of negative marginal costs. We elaborate on this outcome for counterfactuals

when we use a selected demand model.

Based on the above discussion on the estimated parameters and various

statistics, we feel con�dent that the best estimation results come from the nested

logit with observed store coverage. This one shows all but one marginal cost to

19Nonlinear parameters are those that enter the markup function.
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be nonnegative; a good overidenti�cation test on the instruments to accept the

null hypothesis of valid moment restrictions; and the average estimated part of

the product-level variability for demand and supply to be around 80 percent. In

addition, the estimated parameters all seem reasonable from an economic point

of view.

Table 8 presents the estimates of the average price elasticity of substitution,

price and marginal cost, over the last period T .20 Our calculation of the esti-

mates of own and cross price elasticities at the product level, are based on the

formulae developed in appendix 6B. We aggregate (market share weighted) over

primitives of products by de�ned groupings in terms of store coverage (low and

high; full in the counterfactual). We have 90 products with a coverage below

50 per cent, and 64 products with a coverage above 50 per cent coverage of the

market. Within the groupings, the cross price elasticities that are presented

are a weighted sum of cross price e¤ects for each product. The computed price

per liter is also a weighted sum, as is the estimated marginal cost per product.

We do our analysis using estimates based on parameters from the Logit and

Nested Logit demand systems to demonstrate our results. We wish to compare

our demand and supply outcomes in the case when we use the actual data on

store coverage, to outcomes produced from our counterfactual that imposes full

store coverage of all products in the market. This gives us an idea of what the

outcomes would look like if consumers did not su¤er disutility from products

being unavailable in stores, which is the assumption embedded in standard logit

errors. We express, in millions of Irish pounds, the change in pro�t and con-

sumer welfare that result from moving to full coverage. This is the result of the

di¤erence between outcomes in the counterfactual and those in the preferred

scenario where store coverage observable.

In Table 8 we �rst analyze the logit model. The results of the counterfactual

indicate that products starting from low coverage do have a jump in the intensity

of competition in the market coming from cross price e¤ects. In addition, own

prices and costs do go up. In products starting from a position of high coverage,

while the cross-price e¤ects go up, the own price and costs go down. Overall,

pro�ts in the market increase as does consumer welfare. This is because of the

increased competition coming from the smaller products expanding coverage

steals market share in both the inside and outside markets. Once again, in

the nested logit model we compare our results using actual store coverage data

to that simulated when full store coverage by each product is imposed on the

20For brevity, we show only the last period, although we have computed elasticities, price
equilibrium, and marginal costs for all periods.
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model. The results are similar to the logit model. In products starting from a

low coverage we see a jump in the intensity of cross price competition in the

market with own prices and costs rising. In products starting from a position

of high coverage we also see a jump in the intensity of cross price competition

but own price and costs do go down. Overall pro�ts in the market increase as

does consumer welfare. This welfare gain is weaker than the logit model, as the

segmentation of the market protects products from increased competition from

those outside their segment or from the outside good.

In Table 9 we take the own and cross price e¤ects of all products in every

period within ten intervals of store coverage and test whether the estimated

price e¤ects in the estimated logit and nested logit models with full coverage

are di¤erent to the counterfactual that imposes full coverage in each of these ten

intervals. We present the results of the Kolmogorov-Smirnov test for equality

of distributions. We �nd that while own price e¤ects are not so di¤erent, the

distribution of cross price e¤ects are radically di¤erent. The own price e¤ect is

an outcome of two forces. For low coverage products the counterfactual reduces

disutility for the product greatly, leading to an expansion in market share and

downward pricing. High coverage products bene�t less from the counterfactual.

They lose market share and charge lower prices to protect pro�ts. Overall, own

price e¤ects do not change too much but their components do.

Tables 10 repeats the analysis of Table 8; but this time we focus on demand

and cost outcomes within the bigger segments of the market. In particular,

Cola, Orange, Lemonade and Mixed Fruit �avour segments in Standard and

2-Liter packaging. The general result is that using standard logit errors would

lead to overestimates of the demand (welfare and price elasticities) and cost

outcomes. Ignoring product congestion inside stores by using standard logit

errors can signi�cantly bias estimates of price elasticities and costs upwards.

Markets would be estimated to be far more competitive than they really are.

Any counterfactual that is based on these primitives is also likely to generate

inaccurate results. In summary, our results support the Monte Carlo results of

AR.

5 Conclusions

Consumers can face a congestion in their choice set of products within stores.

Following Ackerberg and Rysman (2005) we allow logit errors to represent idio-

syncratic unobserved consumer preferences over retail stores and products. Hav-

ing product level data on store coverage we estimate their logit, nested logit
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and random coe¢ cients logit models of product demand jointly with cost in a

structural model of equilibrium for products in retail Carbonated Soft Drinks.

Allowing for store coverage has a very signi�cant impact on the estimated para-

meters and the predictive power of our structural model. In our counterfactual

we impose full-coverage (no congestion) on our data and evaluate demand price

elasticities and welfare. We see that the own and cross price elasticities gener-

ally get larger in the new equilibrium. Building structural models of industries

with standard logit errors overlooks a key aspect of product di¤erentiation, i.e.

consumers having di¤erent choice sets inside stores. Products inside markets

tend to be more protected from competition than allowed by the modeler. As

we show this leads to inaccurate oversized estimates of demand price elastici-

ties and consumer welfare inside industries. Any subsequent counterfactual on

the likely e¤ect of mergers or price coordination could lead to very misleading

conclusions.
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Table 1: Segments quantity and price levels, averaged Oct.’92 –May ‘97

Products Firms Price Per
Liter

Unit Sales
Ltr (000)

Unit Sales
Shares

Revenue
£IR(000)

Revenue
Shares

Cola Can 6 5 1.43 1,486 4.22 2,116 8.02
Cola Standard 11 5 1.26 1,333 3.78 1,692 6.41
Cola  1.5 liter 3 3 0.75 893 2.53 672 2.55
Cola  2 liter 5 4 0.50 3,867 10.97 1,945 7.37
Cola Can Multipacks 5 2 0.96 678 1.92 648 2.46
Orange Can 6 4 1.38 653 1.85 887 3.36
Orange Standard 10 6 1.27 741 2.10 931 3.53
Orange  1.5 liter 5 4 0.68 781 2.22 535 2.03
Orange  2 liter 5 4 0.46 3,000 8.51 1,382 5.24
Orange  Can Multipacks 3 3 0.97 174 0.49 170 0.64
Lemonade Can 4 2 1.41 498 1.41 699 2.65
Lemonade Standard 5 2 1.16 487 1.38 569 2.16
Lemonade 1.5 liter 3 2 0.71 1,323 3.75 939 3.56
Lemonade  2 liter 4 2 0.47 4,140 11.75 1,941 7.35
Lemonade Can Multipacks 2 1 0.97 128 0.36 124 0.47
Mixed Fruit Can 7 5 1.39 752 2.13 1,045 3.96
Mixed Fruit Standard 19 10 1.37 2,217 6.29 3,128 11.85
Mixed Fruit 1.5 liter 7 6 0.74 633 1.80 465 1.76
Mixed Fruit  2 liter 8 6 0.41 6,612 18.76 2,635 9.99
Mixed Fruit Can Multipacks 1 1 0.83 8 0.02 6 0.02
Diet Cola Can 4 3 1.39 392 1.11 542 2.05
Diet Cola Standard 3 3 1.30 328 0.93 424 1.61
Diet Cola  1.5 liter 4 2 0.75 293 0.83 221 0.84
Diet Cola  2 liter 4 3 0.55 1,005 2.85 537 2.03
Diet Cola Can Multipacks 3 2 0.96 222 0.63 213 0.81
Diet Orange Can 2 1 1.27 83 0.23 106 0.40
Diet Orange Standard 1 1 1.19 16 0.05 19 0.07
Diet Orange  1.5 liter 1 1 0.71 76 0.21 54 0.20
Diet Orange  2 liter 3 2 0.56 254 0.72 141 0.53
Diet Lemonade Can 2 2 1.44 186 0.53 268 1.01
Diet Lemonade Standard 1 1 1.29 75 0.21 96 0.36
Diet Lemonade 1.5 liter 1 1 0.73 572 1.62 415 1.57
Diet Lemonade  2 liter 2 1 0.59 1,198 3.40 699 2.65
Diet Lemonade Can Multipacks 1 1 0.96 74 0.21 71 0.27
Diet Mixed Fruit Can 2 2 1.27 14 0.04 18 0.07
Diet Mixed Fruit Standard 2 2 1.17 14 0.04 17 0.06
Diet Mixed Fruit  1.5 liter 1 1 0.83 1 0.00 1 0.00
Diet Mixed Fruit  2 liter 1 1 0.55 40 0.11 22 0.08
Total 157 107 35,249 100 26,388 100

26



Table 2: Segments  store  coverage  and  inventory  levels,  May ‘93  (initial),  May ‘95
(middle) and May ’97 (end)

Coverage
Initial

Coverage
Middle

Coverage
End

Inventories
Initial

Inventories
Middle

Inventories
End

Cola Can 0.95 0.93 0.94 0.53 0.53 0.67
Cola Standard 0.69 0.86 0.89 0.60 0.47 0.53
Cola  1.5 liter 0.84 0.84 0.81 0.70 0.53 0.63
Cola  2 liter 0.68 0.74 0.79 0.47 0.40 0.43
Cola Can Multipacks 0.43 0.49 0.50 0.53 0.37 0.37
Orange Can 0.80 0.80 0.75 0.83 0.70 0.90
Orange Standard 0.81 0.72 0.71 0.83 0.53 0.67
Orange  1.5 liter 0.64 0.65 0.61 0.73 0.57 0.77
Orange  2 liter 0.70 0.61 0.62 0.43 0.43 0.53
Orange  Can Multipacks 0.37 0.39 0.43 0.63 0.63 0.47
Lemonade Can 0.91 0.95 0.84 0.87 0.60 0.90
Lemonade Standard 0.81 0.74 0.82 0.87 0.60 0.60
Lemonade 1.5 liter 0.83 0.87 0.87 0.57 0.37 0.50
Lemonade  2 liter 0.76 0.75 0.80 0.50 0.40 0.37
Lemonade Can Multipacks 0.38 0.35 0.40 0.63 0.33 0.53
Mixed Fruit Can 0.87 0.83 0.77 0.80 0.60 0.93
Mixed Fruit Standard 0.92 0.80 0.76 0.80 0.57 0.73
Mixed Fruit 1.5 liter 0.54 0.47 0.41 0.97 0.60 0.87
Mixed Fruit  2 liter 0.68 0.65 0.64 0.60 0.33 0.50
Mixed Fruit Can Multipacks 0.84 0.80 0.04 0.70 0.63 0.10
Diet Cola Can 0.78 0.82 0.88 0.80 0.67 0.77
Diet Cola Standard 0.55 0.76 0.89 0.50 0.77 0.63
Diet Cola  1.5 liter 0.40 0.60 0.75 0.47 0.43 0.70
Diet Cola  2 liter 0.69 0.41 0.68 1.00 0.33 0.43
Diet Cola Can Multipacks 0.51 0.69 0.41 0.93 0.70 0.27
Diet Orange Can 0.45 0.46 0.70 0.53 0.77 0.90
Diet Orange Standard 0.84 0.48 0.52 0.80 0.40 0.73
Diet Orange  1.5 liter 0.84 0.91 0.35 0.67 0.53 1.13
Diet Orange  2 liter 0.60 0.54 0.51 0.43 0.43 0.50
Diet Lemonade Can 0.35 0.85 0.90 0.70 0.50 0.80
Diet Lemonade Standard 0.49 0.73 0.75 0.87 0.33 0.23
Diet Lemonade 1.5 liter 0.01 0.32 0.84 0.10 0.27 0.53
Diet Lemonade  2 liter 0.36 0.22 0.77 0.67 1.30 0.33
Diet Lemonade Can Multipacks 0.95 0.33 0.35 0.53 0.23 0.43
Diet Mixed Fruit Can 0.69 0.93 0.17 0.60 0.53 1.23
Diet Mixed Fruit Standard 0.84 0.86 0.37 0.70 0.47 0.67
Diet Mixed Fruit  1.5 liter 0.68 0.84 0.38 0.47 0.53 0.40
Diet Mixed Fruit  2 liter 0.43 0.74 0.94 0.53 0.40 0.67
Average 0.66 0.68 0.65 0.66 0.52 0.61
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Table 3: Nonlinear Least Squares estimations of retail store coverage
Parameters Speci�cation (i) Speci�cation (ii)

t 0.020*** (0.007) 0.015*** (0.009)
t2

100
-0.044*** (0.017) -0.035*** (0.019)

Cons 3.954*** (0.108) 3.498*** (0.794)
�1 1.000*** (0.001)
�2 -0.900*** (0.179)

STATISTICS
R2 0.92 0.92
N 28 28

TESTS
�1 = 1 -0.000 (0.001)
�2 = �1 0.100 (0.179)

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1.

Table 4: OLS demand estimation. Dependent variable ln(s/s0)
Parameters OLS OLS AR OLS SC NOLS NOLS AR NOLS SC

Logit Nested Logit

�1 [cons] -5.619*** -4.236*** -5.473*** -2.876*** -2.639*** -3.759***
(0.503) (0.645) (0.258) (0.221) (0.284) (0.186)

�2 [inv] -21.156*** -21.192*** -5.866*** -4.224*** -4.240*** -3.071***
(1.015) (1.013) (0.543) (0.466) (0.466) (0.390)

�� [p] 0.925*** 0.923*** 0.746*** 0.029 0.029 0.257***
(0.159) (0.158) (0.081) (0.070) (0.070) (0.059)

�r [lry] 1.869*** 1.091*** 0.323 0.501***
(0.548) (0.011) (0.241) (0.013)

(1� �g) [ls=g ] 0.912*** 0.911*** 0.596***
(0.008) (0.008) (0.010)

STATISTICS
N. 3644 3644 3644 3644 3644 3644
N. mc<0 2733 2741 3317 3644 3644 3525
R2 0.360 0.363 0.832 0.877 0.877 0.914
Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1, y AR proxy in the AR scenarios.
Not reported �rm, segment, and (package x time) �xed e¤ects.

28



Table 5: Instruments and main variables correlation matrix

s p lsg stkout lrj z1 z2 z3 z4 z5 z6 z7 z8
s 1.00
p ­0.31 1.00
lsg 0.39 ­0.13 1.00
inv ­0.18 0.10 ­0.29 1.00
lrj 0.32 ­0.08 0.78 ­0.30 1.00
z1 0.05 0.01 0.24 ­0.07 0.12 1.00
z2 0.05 0.01 0.24 ­0.06 0.14 0.94 1.00
z3 ­0.07 ­0.02 ­0.15 0.08 ­0.04 ­0.90 ­0.81 1.00
z4 ­0.05 0.03 ­0.33 0.04 ­0.25 ­0.65 ­0.66 0.32 1.00
z5 ­0.05 0.04 ­0.29 0.04 ­0.23 ­0.54 ­0.55 0.23 0.90 1.00
z6 0.04 ­0.04 0.28 ­0.02 0.24 0.32 0.35 0.01 ­0.91 ­0.85 1.00
z7 0.03 ­0.04 0.03 0.02 0.07 0.16 0.16 ­0.10 ­0.20 ­0.18 0.16 1.00
z8 ­0.01 0.25 0.12 ­0.04 0.06 ­0.06 ­0.07 0.01 0.11 0.10 ­0.10 ­0.62 1.00

Table 6: Descriptive statistics main variables and instruments

Variable Mean Std. Dev. Min Max
s 0.00 0.01 5.98E­06 0.08
p 0.99 0.43 0.29 4.54

lsg ­2.54 2.04 ­8.94 0
inv 0.03 0.03 0.00 0.68
lrj ­1.33 1.57 ­6.91 0
z1 32.65 17.97 0 57
z2 27.01 14.84 0 55.78
z3 ­40.11 26.14 ­94.79 0
z4 99.94 26.33 50 153
z5 86.93 23.86 40.37 147.28
z6 ­142.92 65.32 ­279.09 ­39.81
z7 0.21 0.38 0 1.28
z8 ­0.21 0.47 ­2.86 0
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Table 7: GMM simultaneous estimation of demand and supply
D EM AND (D ) P a ram e te r s L L A R L SC N L N L AR N L SC RC RC SC

L in e a r �1 [ c o n s ] - 4 .2 9 0 * * * - 3 .3 6 6 * * - 2 .6 5 2 * * * - 4 .2 4 8 * * * - 3 .4 8 1 * * * - 2 .8 5 3 * * * - 3 .2 3 1 * * * - 2 .2 1 9 * * *
( 1 .1 7 6 ) ( 1 .4 7 2 ) ( 1 .0 1 4 ) ( 1 .5 3 5 ) ( 1 .6 4 4 ) ( 0 .5 2 8 ) ( 0 .4 7 2 ) ( 0 .3 2 2 )

�2 [ in v ] - 0 .7 1 3 * * * - 0 .7 1 4 * * * - 0 .2 1 0 * * * - 0 .5 0 3 * * * - 0 .6 4 1 * * * - 0 .1 5 0 * * * - 0 .4 1 9 * * * - 0 .1 3 0 * * *
( 0 .0 7 0 ) ( 0 .0 7 0 ) ( 0 .0 6 0 ) ( 0 .1 2 5 ) ( 0 .1 0 5 ) ( 0 .0 5 7 ) ( 0 .2 1 2 ) ( 0 .0 4 7 )

�r [lry ] 1 .1 7 9 * * * 1 .0 8 5 * * * 0 .3 2 5 * * * 0 .7 7 2 * * * 0 .6 3 7 * * *
( 0 .3 1 6 ) ( 0 .0 2 0 ) ( 0 .1 0 2 ) ( 0 .1 2 8 ) ( 0 .0 8 4 )

N o n l in e a r �� [ p ] 3 .3 0 3 * * * 3 .2 6 3 * * * 3 .0 9 2 * * * 2 .8 7 9 * * 3 .4 9 9 * * 3 .0 1 3 * * * 3 .8 3 8 * * * 3 .7 6 3 * * *
( 1 .2 7 9 ) ( 1 .3 4 1 ) ( 1 .1 1 2 ) ( 1 .4 8 6 ) ( 1 .5 6 3 ) ( 0 .5 6 4 ) ( 0 .9 3 6 ) ( 0 .8 3 8 )

(1 � �g) [ls=g ] 0 .3 5 3 * * 0 .1 1 1 0 .3 2 0 * * * 0 .4 7 9 * * * 0 .4 5 7 * * *

( 0 .1 7 1 ) ( 0 .1 4 0 ) ( 0 .1 2 9 ) ( 0 .2 0 4 ) ( 0 .0 6 0 )

�p [ p�p
i
] 0 .7 1 0 0 .4 1 7

( 0 .9 4 2 ) ( 1 .2 3 5 )

SU PP LY (S )
L in e a r 
1 [ c o n s ] 0 .5 8 4 * * * 1 .8 0 8 0 .5 5 7 * * * 0 .6 4 3 * * * 1 .5 3 0 * * * 0 .5 6 0 * * * 0 .7 1 8 * * * 0 .6 6 7 * * *

( 0 .1 4 1 ) ( 1 .9 1 4 ) ( 0 .1 4 0 ) ( 0 .1 9 3 ) ( 0 .1 7 9 ) ( 0 .0 7 1 ) ( 0 .1 1 9 ) ( 0 .1 3 0 )


2 [ in v ] - 0 .0 0 4 - 0 .0 0 4 - 0 .0 0 5 0 .0 0 2 - 0 .0 0 2 0 .0 0 1 0 .0 1 9 * 0 .0 0 2
( 0 .0 0 8 ) ( 0 .0 0 8 ) ( 0 .0 1 0 ) ( 0 .0 0 9 ) ( 0 .0 0 2 ) ( 0 .0 0 2 ) ( 0 .0 0 8 ) ( 0 .0 1 0 )


3 [lry ] 1 .4 6 6 - 0 .0 0 3 0 .5 5 8 * * * 0 .0 0 0 - 0 .0 3 2 *
( 2 .2 7 5 ) ( 0 .0 0 7 ) ( 0 .0 3 9 ) ( 0 .0 0 2 ) ( 0 .0 2 0 )

STAT IST IC S
P seu d o R2D 0 .3 3 2 0 .3 1 4 0 .7 9 8 0 .6 5 7 0 .4 1 2 0 .8 5 5 0 .2 5 0 0 .6 6 1

P seu d o R2S 0 .8 2 3 0 .8 2 4 0 .8 2 4 0 .7 2 9 0 .8 0 9 0 .7 6 3 0 .7 7 0 0 .7 8 4

J -s ta t 7 .2 5 8 1 .8 1 9 1 0 .4 1 8 1 4 .5 4 1 6 .1 6 5 4 .3 1 3 2 9 .0 4 5 1 3 .9 5 5

p -va l J -s ta t 0 .0 6 5 0 .6 1 1 0 .0 3 4 0 .0 0 6 0 .1 9 1 0 .4 3 7 0 .0 0 0 0 .0 1 6

N . 3 6 4 4 3 6 4 4 3 6 4 4 3 6 4 4 3 6 4 4 3 6 4 4 3 6 4 4 3 6 4 4

N . m c< 0 6 4 8 2 1 3 3 3 0 1 8 5 8 4

N . m c< 0 c ft 1 5 8 0 8 8

S t a n d a rd e r r o r s in p a r e n t h e s e s ; * * * p<0 .0 1 , * * p<0 .0 5 , * p<0 .1 . R o b u s t s t a n d a rd e r r o r s in p a r e n t h e s e s . N o t r e p o r t e d �rm , s e gm e n t ,
a n d ( p a cka g e x t im e ) �x e d e¤ e c t s . y A R p rox y fo r t h e A R s c e n a r io s . T h e s t a n d a rd e r r o r s a r e r o b u s t a n d a c c o u n t fo r p o t e n t ia l
c o r r e la t io n b e tw e e n d em a n d a n d s u p p ly u n o b s e r va b le s a t t h e p r o d u c t l e v e l . W e h av e n o t c om p u t e d t h e p a r t o f t h e a s ym p t o t i c va r ia n c e -
c ova r ia n c e , in d u c e d b y s im u la t io n e r r o r s , t h u s a s s um in g , a s in N e vo ( 2 0 0 0 a , 2 0 0 1 ) , t h i s t o b e a sm a l l a n d n o t in �u e n t ia l c om p o n e n t
In s t rum ent s :
[L : D = z2 ,z7 ; " S "= z1 ] , [L A R : D = z2 ,z7 ; " S "= z1 ] , [L S C : D = z3 ,z7 ; " S "= z4 ,z5 ] .
[N L : D = z1 ,z2 ,z7 ; " S "= z7 ] , [N L A R : D = z1 ,z2 ,z7 ; " S "= z5 ] , [N L S C : D = z1 ,z3 ,z7 ; " S "= z4 ,z5 ] .
[R C N L : D = z1 ,z2 ,z7 ; " S "= z4 ,z5 ] , [R C N L SC : D = z1 ,z3 ,z7 ; " S "= z4 ,z5 ] .
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Table 8: Estimates of price elasticities of substitution and marginal cost

Weighted Averages
using Market Shares
of Products, by Low
and High Store
Coverage

Store
coverage

#
Products

Own­
Price

Elasticity

Sum
Cross­
Price

Elasticity

Price
per liter

Estimated
Marginal

Cost per liter

Logit Model

SC Logit Low 90 ­2.54 1.41 .82 .42
Counterfactual Full 90 ­2.71 1.81 .89 .49

SC Logit High 64 ­2.19 1.37 .72 .31
Counterfactual Full 64 ­2.09 1.81 .69 .27

No Congestion­Full Change in Total Profit = 3.5 Change in Consumer Welfare= 10.4
Nested Logit

SC Nested Logit Low 90 ­3.38 2.37 .82 .50
Counterfactual Full 90 ­3.56 2.55 .90 .58

SC Nested Logit High 64 ­2.61 1.80 .72 .37
Counterfactual Full 64 ­2.52 2.18 .66 .32

No Congestion­Full Change in Total Profit =  1.71 Change in Consumer Welfare = 7.7

Table 9: Kolmogorov-Smirnov equality of distributions test (reference distri-

bution observed store coverage)

Proportion
Store Coverage [0 , .1) [.1 , .2) [.2 , .3) [.3 , .4) [.4 , .5) [.5 , .6) [.6 , .7) [.7 , .8) [.8 , .9) [.9 , 1]

N 662 192 211 370 502 445 333 311 318 300

Logit
L Cft (OP) 1.00 1.00 1.00 0.86 0.75 0.50 0.62 0.64 0.85 0.40
L Cft (CP) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Nested Logit
NL Cft (OP) 0.02 1.00 1.00 0.97 0.75 0.93 0.87 0.50 0.18 0.00
NL Cft (CP) 0.00 0.26 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Reject if p<.05 (Bold values). OP=Own Price Elasticities; CP=Cross Price Elasticities
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Table 10: Estimates of price elasticities of substitution and marginal cost by

segment

Packaging (Weighted
Averages Using Market
Shares of Brands, by
Low and High Store
Coverage)

Store
Coverage

#
Brands

Own­
Price

Elasticity

Sum
Cross­
Price

Elasticity

Price
per liter

Estimated
Marginal

Cost per liter

Standard Cola
SC Nested Logit .02 7 ­6.41 3.02 1.45 1.18
Counterfactual Full 7 ­4.59 3.14 0.86 0.48
SC Nested Logit .90 4 ­4.31 1.98 1.23 0.85
Counterfactual  Full 4 ­5.11 2.71 1.21 0.85
2 Liter Cola
SC Nested Logit .05 1 ­1.88 2.06 0.42 0.20
Counterfactual Full 1 ­1.87 2.29 0.43 0.20
SC Nested Logit .79 4 ­1.65 1.56 0.49 0.11
Counterfactual Full 4 ­1.67 1.93 0.47 0.11
Standard Orange
SC Nested Logit .12 6 ­5.38 3.03 1.22 0.96
Counterfactual Full 6 ­4.48 3.51 1.19 0.90
SC Nested Logit .74 4 ­4.80 2.61 1.19 0.91
Counterfactual Full 4 ­5.03 3.18 1.17 0.91
2 Liter Orange
SC Nested Logit .13 1 ­2.36 2.02 0.54 0.20
Counterfactual Full 1 ­2.30 2.21 0.55 0.20
SC Nested Logit .64 4 ­1.89 1.89 0.47 0.19
Counterfactual Full 4 ­1.92 2.18 0.49 0.19
Standard Lemonade
SC Nested Logit .08 2 ­5.61 2.98 1.38 0.88
Counterfactual Full 2 ­5.81 3.02 1.39 0.99
SC Nested Logit .84 3 ­4.37 2.24 1.17 0.81
Counterfactual Full 3 ­4.62 2.93 1.15 0.81
2 Liter Lemonade
SC Nested Logit .04 1 ­2.23 2.01 0.50 0.10
Counterfactual Full 1 ­2.15 2.29 0.50 0.10
SC Nested Logit .80 3 ­1.69 1.58 0.49 0.12
Counterfactual Full 3 ­1.71 1.94 0.47 0.12
Standard Mixed Fruit
SC Nested Logit .28 10 ­3.80 3.11 0.88 0.63
Counterfactual Full 10 ­4.73 3.13 1.13 0.88
SC Nested Logit .87 9 ­6.07 2.93 1.45 1.19
Counterfactual Full 9 ­6.10 3.26 1.40 1.15
2 Liter Mixed Fruit
SC Nested Logit .31 2 ­1.91 1.81 0.43 0.16
Counterfactual Full 2 ­1.81 2.18 0.41 0.15
SC Nested Logit .65 6 ­1.52 1.45 0.38 0.11
Counterfactual Full 6 ­1.55 2.06 0.38 0.11
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Figure 1: Bimonthly unit sales over the 28 bimonthly periods (JJ 93 is sales

in June/July in 1993)
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Figure 2: Actual store coverage (top panel), number of products (center

panel), and estimated store coverage (bottom panel)
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6 Appendix

6.A Derivation of equation (5)

For notational convenience in this section we omit subscripts i and t and con-

centrate on the role of products, j, and stores, r.

Cardell (1997) shows us that if "j is an iid extreme value random variable

with cdf F ("j) = e�e
�"j
; and if � is another random variable with � � C (�r)

and 0 < �r < 1, then the sum of the two random variables, which we denote

with "1j �
�
�j + �r"j

�
, has itself an extreme value distribution with cdf:

F
�
"1j
�
= e

�

0@e� "1j
�r

1A�r

: (23)

Given the iid assumption, the cdf in (23) can easily be extended to the

following J-dimensional joint distribution:

F
�
"11; � � � ; "1J

�
= e

�

0@PJ
j=1 e

�
"1j
�r

1A�r

:

We wish to show the derivation of the logit demand in (5). We begin the

derivation by integrating over the distribution of stores carrying product j. We

follow Akiva and Lerhman (1985) and, for each product j, we compute the

expected value of the maximum utility over the stores carrying that product.21

We �nd,

E
�
max

�
uj1; � � � ; ujRj

��
: (24)

This expectation requires us to recover the probability:

Pr
�
ujr � uj1; � � � ; ujr � ujRj

�
;

which, consistently with the notation above, can be rewritten as:

Pr
�
"1j1 � "1jr; � � � ; "1jRj

� "1jr
�
:

Cardell (1997) shows its joint cdf can be formulated as:

F
�
"1j1; � � � ; "1jRj

�
= e

�
�PRj

s=1 e
�"1jr=�r

��r
;

and bene�ting of the iid structure we retype it as:

F
�
"1jr
�
= e

�R�r
j

�
e
�"1jr=�r

��r
:

21The relation shops-products can be visualized in the choice tree of Figure 4.

38



Its pdf is:

f
�
"1jr
�
= R�rj e

�R�r
j

�
e
�"1jr=�r

��r �
e�"

1
jr=�r

��r
:

We now have all the components required to compute the expected value in

(24):

E
�
max

�
uj1; � � � ; ujRj

��
=

Z 1

�1
"1jrR

�r
j e

�R�r
j

�
e
�"1jr=�r

��r �
e�"

1
jr=�r

��r
d"1jr:

(25)

Using the change of variable #jr =
�
e�"

1
jr=�r

��r
and being aware that d#jr

d"1jr
=

�
�
e�"

1
jr=�r

��r
and that ln#jr = �"1jr, the integral in (25) simpli�es to,Z 0

1
e�R

�r
j #jrR�rj ln#jrd#jr = �

Z 1

0

e�R
�r
j #jrR�rj ln#jrd#jr = lnR

�r
j :

We want to now �nd the probability that product j is chosen. The logic is

similar to the method just presented above for the store dimension. So we can

formulate the joint cdf as,

Pr
�
"10 � �j + lnR�rj � �0 � lnR�r0 + "1j ; � � � ; "1J � �j + lnR�rj � �J � lnR�rJ + "1j

�
:

(26)

One can notice (26) accounts for the composite good, 0. Also, we have dropped

the subscript r from the error term, as to give the idea that we have already

integrated out the store dimension. We express product j�s market share as,

sj =

Z 1

�1

�
e�"

1
j=�r

��r JY
l=0

e
�

0@e� �j+lnR
�r
j

��l�lnR
�r
l

+"1j
�r

1A�r

d"1j

=

Z 1

�1

�
e�"

1
j=�r

��r
e
�
PJ

l=0

0@e� �j+lnR
�r
j

��l�lnR
�r
l

+"1j
�r

1A�r

d"1j (27)

=

Z 1

�1

�
e�"

1
j=�r

��r
e
�
�
e
�"1j=�r

��r PJ
l=0

0@e� �j+lnR
�r
j

��l�lnR
�r
l

�r

1A�r

d"1j :

If we de�ne,

�j � ln
"

JX
l=0

�
e�

�j+lnR
�r
j

��l�lnR
�r
l

�r

��r#
;

39



the relation in (27) simpli�es to:

sj =

Z 1

�1

�
e�"

1
j=�r

��r
e
�
�
e
�"1j=�r

��r
e

�
�j
�r

��r
d"1j

=

Z 1

�1

�
e�"

1
j=�r

��r
e
�
�
e
�("1j��j)=�r

��r
d"1j ;

and further, if we de�ne �j � "1j � �j , we are able to derive the market share
for product j as:

sj =

Z 1

�1

�
e�(�j+�j)=�r

��r
e�(e

��j=�r )
�r

d�j

= e��j
Z 1

�1

�
e��j=�r

��r
e�(e

��j=�r )
�r

d�j ;

which has solution

sj = e
��j : (28)

With some trivial algebraic manipulation one can show that equation (28)

is the same as our demand equation (5).

6.B Some Useful Algebra

6.B.1 Logit Speci�cation

We use the product market share derived in equation (5) and compute the

following partial derivatives,

@sjt
@pjt

= �

8><>:�
exp(�rjt)

h
1 +

PJt
l=1 exp (�

r
lt)
i

h
1 +

PJt
l=1 exp (�

r
lt)
i2 +

�
exp(�rjt)

�2h
1 + exp(

PJt
l=1 �

r
lt)
i2
9>=>; = ��sjt (1� sjt)

@sjt
@plt

= �
exp(�rjt) exp(�

r
jt)h

1 + exp(
PJt

l=1 �
r
lt)
i2 = �sltsjt; if l 6= j;

where �rjt � �jt + �r ln rjt, and � > 0:
The above derivatives can be written in matrix notation as,

@

@pt
s�t = ��

h
st (it � st)�

i
:It + �

�
sts

�
t

�
:
�
iti
�
t � It

�
where, a dot, �, indicates an operation element by element. The vector of market
share st is Jt� 1, pt is a Jt� 1 vector of prices, it is a Jt� 1 vector of ones, and
It is a Jt � Jt identity matrix.
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The logit price elasticities are formulated as,

@sjt
@pjt

pjt
sjt

= ��pjt (1� sjt)

@sjt
@plt

plt
sjt

= �pltslt if l 6= j;

and their matrix notation is,�
@

@pt
s�t

�
:
h
pt (1:=st)

�
i
=
�
��

�
pt
�
i�t � s�t

��	
:It + �

�
(pt:st) i

�
t

�
:
�
iti
�
t � It

�
:

Logit Counterfactual Our counterfactual requires that we recompute the

underlying price equilibrium in the market. We do not worry here about multiple

equilibria. The price equilibrium that we observe is the one we are interested in,

and the new equilibrium that we compute is going to be the one of its neighbor.

Our system of demand and pricing equations can be written in compact form

as,

snt =
�
exp(�t)i

�
t � It

��1
exp(�t) (29a)

pnt = ct +�
�1
t snt| {z }
mn

t

; (29b)

where the superscript n indicates the new values, and the mean utilities and

marginal costs without superscript r reference those under full store coverage.

The �rst Jt equations in (29a) represent our market shares (demand) equations

and the subsequent Jt equations (29b) the pricing equations. Notice that the

demand equations are inclusive of the direct changes provided by the counter-

factual (i.e. rjt = 1; 8j; t) and the indirect changes provided by the prices. All
of them enter via the products mean utility �t. We then substitute (29a) into

(29b) and obtain a Jt set of nonlinear pricing equations which is the system

of equations that has as a solution a new price equilibrium. We use fsolve in

Matlab to �nd the solution of this system. The algorithm updates prices (and

market shares) until there is convergence to the new equilibrium. Solutions are

found for each period t.

6.B.2 Nested Logit Speci�cation

We use the product market shares epitomized in equation (8), and derive the

following partial derivatives,

41



@sjt
@pjt

= �sjt

�
sjt +

1� �g
�g

sj=g;t �
1

�g

�
; (30)

@sjt
@plt

= �sjt

�
slt +

1� �g
�g

sl=g;t

�
; if l 2 g and l 6= j;

@sjt
@plt

= �sjtslt; if l =2 g and l 6= j;

which can be abridged in matrix notation as:�
@

@pt
s�t

�
= �

"
st

�
st +

1� �g
�g

s=g;t �
1

�g
it

�� #
:It + (31)

+�

��
st +

1� �g
�g

s=g;t

�
s�t

�
: (Mt � It) + �

��
sts

�
t

��
:
�
iti
�
t �Mt

�
:

Notice that Mt is a block diagonal matrix that has along the diagonal sub-

matrices of ones for products belonging to the same segment:22

Mt �

24 M1t 0 0
0 ::: 0
0 0 MGt

35 :
The resulting price elasticities are,

@sjt
@pjt

pjt
sjt

= �pjt

�
sjt +

1� �g
�g

sj=g;t �
1

�g

�
@sjt
@plt

plt
sjt

= �plt

�
slt +

1� �g
�g

sl=g;t

�
if l 2 g and l 6= j;

@sjt
@plt

plt
sjt

= �pltslt if l =2 g and l 6= j;

and their matrix notation is:

�
@

@pt
s�t

�
:
h
pt (1:=st)

�
i
= �

"
pt

�
st +

1� �g
�g

s=g;t �
1

�g
it

�� #
:It + (32)

+�

��
pt:

�
st +

1� �g
�g

s=g;t

��
i�
�
: (Mt � It) +

+�
�
(pt:st) i

�
�
:
�
iti
�
t �Mt

�
:

22The matrix Mt requires the products to be ordered by segments. Notice that matrices
Mgt along the diagonal have dim(Jgt) ; where dim(Jgt) is the number of products entering
segment g in period t.

42



Nested Logit Counterfactual Given that a nested logit can be expressed

as the product of two logits, sjt = sj=g;tsgt, the technique used to compute our

counterfactual is similar to that outlined in subsection (6.B.1) with the addition

that, this time, we also need to update the within segment market shares and

be aware of the nested logit structure.

6.B.3 Random Coe¢ cients Nested Logit Speci�cation

We average the product market shares in (13), and derive the following partial

derivatives,

@sjt
@pjt

=
1

ns

nsX
i=1

@sijt
@pjt

=
1

ns

nsX
i=1

�isijt

�
sijt +

1� �g
�g

si;j=g;t �
1

�g

�
; (33)

@sjt
@plt

=
1

ns

nsX
i=1

@sijt
@plt

= �isijt

�
silt +

1� �g
�g

si;l=g;t

�
; if l 2 g and l 6= j;

@sjt
@plt

=
1

ns

nsX
i=1

@sijt
@plt

= �isijtsilt; if l =2 g and l 6= j;

and its compact form is an immediate adaptation of (31), such as:�
@

@pt
s�t

�
=

1

ns

nsX
i=1

�i

("
sit

�
sit +

1� �g
�g

si=g;t �
1

�g
it

�� #
:It+

+

��
sit +

1� �g
�g

si=g;t

�
s�t

�
: (Mt � It) +

��
sits

�
it

��
:
�
iti
�
t �Mt

��
:

The formulas for the price elasticities follow trivially, and for that reason we

decided to skip their representation.

Random Coe¢ cients Nested Logit Counterfactual The way we com-

pute our counterfactual for the random coe¢ cient (logit) model is alike those

presented in the previous subsections (6.B.1 and 6.B.2), with the additional dif-

�culty that we now have to deal with simulated individual probabilities. Hence

the markup function relies on the partial derivatives displayed in equation (33).

The underlying logic is however unchanged: Fsolve in Matlab will deliver the

new equilibrium solution to us.

6.C Endogeneity: Simultaneity and Omitted Variable

The identi�cation of a Least Squares estimator in the case of stochastic explana-

tory variables typically avails of the conditional independence assumption, that
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is, the error term has to be mean zero once conditioned on a set of exogenous

variables. This was condition (22) in our paper.

We now write the following relation:

y = X� + ";

and put forward the following conditional independence assumption E ("jX) =
0; but assume that only a subset X1 of the variables in X � [X1; X2] is observed.
The remaining variables X2; are omitted. The unobservability of X2 generates

a violation of the conditional independence assumption E ("jX) = 0, and thus
Least Squares estimated parameters are biased. The issue is that the true model

is,

y = X1�1 +X2�2 + ";

but we estimate by Least Squares the model,

y = X1�1 + e";
where e" = X2�2 + ":
The Least Squares estimator of the model would lead to,

b�1 = �X�1X1��1 �X�1y� :
Now, if the true model is correctly speci�ed, condition E ("jX) = 0 implies

E ("jX1) = 0, so that,

E
�b�1jX� = �1 + E h�X�1X1��1 �X�1X2��2jXi| {z }

Omitted Variables Bias

:

In this case the bias is generated entirely by the omitted (unobserved) variables

X2. On the other side, if the model su¤ers of a combination of simultaneity and

omitted variables, the condition E ("jX1) = 0 is itself violated so that the total
bias would be,

E
�b�1jX� = �1 + E h�X�1X1��1 �X�1X2��2jXi| {z }

Omitted Variables Bias

+ E
h�
X�1X1

��1 �
X�1"

�
jX
i

| {z }
Simultaneity Bias

:

Of course summing two sources of bias can generate the following scenarios: A

larger (in absolute value) total bias, if both sources of biases co-move, i.e., have

the same sign, or a smaller (in absolute value) total bias, if the two sources of

bias move in di¤erent directions (have di¤erent signs).
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We now de�ne Z � [Z1; X2] and assume that Z1 is a set of instruments that
solves the simultaneity bias, so that E ("jZ1) = 0. This con�nes the bias to be
only produced by omitted variables, and to depend on the relation between the

set of instruments Z1 and the omitted variables X2:

E
�b�1jX� = �1 + E h�Z�1X1��1 �Z�1X2��2jZi| {z }

New Omitted Variables Bias

:

An important by-product of this instrumentation is that, should Z1 and X2 be

uncorrelated, the omitted variables bias would vanish. In other words, it would

be possible to search for ideal instruments that would correct simultaneously

both the simultaneity and omitted variables bias, alternatively one should either

�nd a good proxy of X2; or look for new data that have X2.

6.D Gradient of the Objective Function Associated to Non-
linear Parameters in the Random Coe¢ cient Nested
Logit Model

If we average the individual probabilities displayed in equation (12) we obtain

the market share of product j in period t,

sjt =
1

ns

nsX
i=1

D
�g
igtPG

s=0D
�g
ist

exp
�
�rjt��ppjt�

p
i

�g

�
Digt

;

whose components have been de�ned in equations (13) and (14). We follow

the appendix of Nevo (2000a) and derive the various components that enter the

demand side gradient:
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1a) The partial derivative of the market share with respect to own mean

utility,

@sjt
@�jt

=
1

ns

nsX
i=1

@sijt
@�jt

=
1

ns

nsX
i=1

�gD
�g�1
igt exp

�
�rjt��ppjt�

p
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�g

�
(�g)

�1PG
s=0D

�g
ist �D

�g
igt�gD

�g�1
igt exp

�
�rjt��ppjt�

p
i

�g

�
(�g)

�1�PG
s=0D

�g
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�2 si;j=g;t +

+
1
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nsX
i=1

sigt
exp

�
�rjt��ppjt�

p
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�g

�
(�g)

�1
Digt � exp
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�rjt��ppjt�

p
i

�g

�
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�
�rjt��ppjt�

p
i

�g

�
(�g)

�1
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=
1
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nsX
i=1
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�
�rjt��ppjt�
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�g

�
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�g
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PG
s=0D

�g
ist �D

�g
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�g
igt�PG

s=0D
�g
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+
1
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nsX
i=1
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�g
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�
�rjt��ppjt�

p
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�g

�
Digt � exp

�
�rjt��ppjt�

p
i

�g

�
exp

�
�rjt��ppjt�

p
i

�g

�
D2
igt

=
1

ns

nsX
i=1

si;j=g;tsigt (1� sigt) si;j=g;t +
1

ns

nsX
i=1

1

�g
sigtsi;j=g;t

�
1� si;j=g;t

�
=

1

ns

nsX
i=1

sijt (1� sigt) si;j=g;t +
1

ns

nsX
i=1

1

�g
sijt

�
1� si;j=g;t

�
=

1
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i=1

sijt

"
(1� sigt) si;j=g;t +

�
1� si;j=g;t

�
�g

#

=
1
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nsX
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sijt

"
(1� sigt) si;j=g;t +

�
1� si;j=g;t

�
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#

=
1

ns

nsX
i=1

sijt

�
�sijt � si;j=g;t

1� �g
�g

+
1

�g

�
:

We recognize that the above partial derivative is the own price partial derivative

displayed in equation (30), but without the additional term (@�jt=@pjt) = ��.
Hence we can �t the partial derivatives in (30) to our case as follows:

1b) The partial derivative of market share with respect to the mean utilities

of products in the same segment is:

@sjt
@�mt

=
1

ns

nsX
i=1

@sijt
@�mt

=
1

ns

nsX
i=1

sijt

�
�sijt � si;j=g;t

1� �g
�g

�
;

1c) The partial derivative of market share with respect to the mean utilities
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of products in other segments is:

@sjt
@�mt

=
1

ns

nsX
i=1

@sijt
@�mt

=
1

ns

nsX
i=1

sijt (�sijt) :

We now add the partial derivatives of market shares with respect to the

nonlinear parameters, as follows:

2) The partial derivative of market share with respect to �g is given by:
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3) Similarly, the partial derivatives of market share with respect to the two

price parameters have to be taken separately:
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ii) With respect to the mean parameter,
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Those above partial derivatives are the main components that one needs to

derive the demand side gradient analytically.

6.E Instruments Selection

Before devoting attention to our choice of instruments, we brie�y introduce

our four step procedure. In step one we regress our endogenous variables, over
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di¤erent sets of instruments, to see which instruments have more power. In

step two, we select the signi�cant instruments, compute a demand side GMM

and verify whether the instruments have some validity. Step three avails of

the estimated demand primitives from the previous step, deduces estimated

marginal costs, and assesses the power on supply. The �nal step checks for the

validity of the instruments for those endogenous variables that directly, or via

functional forms, enter the pricing equation GMM. The idea of this process is

to explore the power and validity of the instruments separately for demand and

supply, as it is likely to be bene�cial for the choice of instruments in the joint

estimate of demand and supply.

We now detail the process of choosing the instruments. We regress the en-

dogenous variables listed in the �rst row of Table 11, individually on each set of

instruments. Instrumentation includes the BLP (z1�z6) and the Hausman and
Taylor (z7 � z8) instruments. We begin by discussing the power of instruments
on endogenous demand side variables. Column two of Table 11 exhibits possi-

ble instruments for the price variable. The set of instruments displays decent

explanatory power. The F -statistic of 5:65 is signi�cant. Based on this informa-

tion we suggest z1, z2, z5, and z7 as potential instruments for the endogeneity

of prices. Next, because price is the only endogenous variable in the logit spec-

i�cation, we can immediately use those instruments to estimate a GMM logit

demand. The results are reported in Table 12. The �rst column shows a non

signi�cant value of the price parameter, and a high value for the Hansen J over-

estimation test (25:18). Seemingly our selected instruments are not too helpful

in identifying the price parameter. Furthermore, the estimation of the price

parameter is not too far o¤ the OLS biased alternative, and thus it generates

a similar impressive number of deduced negative marginal costs. With this in

mind, we conclude that we have inadequate instruments to estimate a single

demand side in a logit speci�cation when store coverage is unobserved. How-

ever, we warn that this conclusion only applies to the single equation demand

estimation.

We proceed to add the role of store coverage in the estimation of the logit

speci�cation. First we attempt to validate the use of the AR proxy. Looking

at column �ve of Table 11, we observe that the introduction of the proxy does

not change our choice of best instruments, but presents a slightly lower F -

test. The GMM demand estimation does provide evidence of a slighter minor

improvement in the overidenti�cation test, but overall the estimated coe¢ cients

and explanatory power are non satisfactory. We move on to use actual store

coverage. Since a priori one cannot exclude this variable from being endogenous,
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we need to separate the case where store coverage is endogenous from the one

that it is exogenous. We begin the process by assuming the variable to be

endogenous, and then test for its endogeneity. Additionally, we must investigate

potential instruments for store coverage, and the options are illustrated in the

�nal column of Table 11. Clearly z1, will be a crucial instrument to capture

the endogeneity of store coverage, as it is signi�cant for store coverage and not

for price (the other endogenous variable). Column three of the GMM demand

estimation in Table 12 depicts the estimates when store coverage is treated

as endogenous. The p-value of the Hansen C test at the bottom of the table

suggests that the variable should be treated as exogenous. Hence, we re-estimate

the GMM demand equation, this time assuming store coverage as exogenous

and write down the results in column four. From the table it emerges that the

demand parameter is identi�ed. The number of deduced negative marginal costs

is now declining, however we still have that the parameter associated to store

coverage is overestimated (exceeds its theoretical bound of one); probably due

to the omittance of a full nested logit structure.

We now turn to the nested logit speci�cation and start the previous pro-

cedure again with store coverage unobserved. This time we need to add the

within segment market share endogenous variable. Column three in Table 11

unveils z1, z2, z4, and z7 to be powerful in explaining this endogeneity. We

rely on z4 as good instrument to identify the within segment coe¢ cient, as it is

shown to be weakly signi�cant in explaining the within segment market share

regression, and not signi�cant in the price estimation. The estimation of the

GMM demand, for which results are detailed in Table 12, indicates signi�cant

overestimations of the price and within segment market share parameters. This

suggests a potential mispeci�cation, probably due to the unobservability of store

coverage.

We now convey our attention to the nested logit speci�cation under the AR

proxy scenario. From Table 11 we witness the strong power of z1, z2, and z7
in explaining the log of within segment market share, so combined with the

aforementioned chosen instruments for the price variable, we end up using z1,

z2, z4, z5, and z7 for the demand side estimation. Its results are documented

in Table 12. We see that the introduction of the AR proxy corrects for the

overestimation of the price (in absolute value) and for within segment market

share parameters, but the low p-value reported in the overidenti�cation test still

signals a certain weakness of the instrumentation.

Our �nal step is to add the observability of store coverage and verify how

that contributes to our demand nested logit estimation. We select the good

50



instruments from the regressions printed in the last column of Table 11 and

embed them in the GMM demand estimation. Next, we estimate demand as-

suming store coverage as endogenous. Then, we re-estimate it by imposing

store coverage as exogenous. Based on the value of a Hansen C test we decide

whether or not store coverage is endogenous in this second speci�cation. The

Hansen C test p-value expressed in column seven of Table 12 tells us that store

coverage should be considered exogenous. Summarizing the other main results

in the table: The GMM demand estimation that uses store coverage produces

better results than the one that avails of the AR proxy. However, the instru-

mentation still presents a low validity of the instruments (as indicated by the

Hansen J test); nevertheless comparing it with the previous speci�cation, we

see movements in the right direction.

As discussed at the beginning of this section we use the estimated demand

primitives to recover an estimate of the marginal costs. So, we can shift to

stages three and four of our procedure. In stage three we regress the following

endogenous variables: marginal cost for the logit speci�cation c, marginal cost

for the nested logit speci�cation nc, and the demand side variables market share

s, and within segment market share sj=g. This step of the procedure helps us in

choosing the powerful instruments that are to be rooted in the GMM �supply�

estimation.

We begin this �supply�side digression by analyzing the estimates of the logit

speci�cation with unobserved store coverage. Column two of Table 13 shows

that there is only one instrument good at explaining the market share s, and

that is z1. Based on this information we choose z1 as an instrument for the cost

equation, so that the cost side in this case is just identi�ed. Its IV estimation

is outlined in Table 14 and the results are not too encouraging. This is most

probably a follow-up of the bias in the price parameter of the GMM demand

estimation, as it enters the market power function, and has therefore a direct

impact in our derivation of marginal costs. Next, also for the cost side, we shed

light on the role of the AR proxy. The instrumentation is the same as we have

outlined for logit without store coverage (only one good instrument, which is

z1). As for the GMM �supply�estimation, column two of Table 14 shows the

estimates have not improved from those reported in column one (again, possibly

due to the bias in the demand GMM estimation). The results get better if we

observe store coverage. In this case our pick of instruments leans towards z3, z4,

and z6. The GMM �supply� estimation is now satisfactory. The instruments

pass the validity test and show interesting results. Covering more stores a¤ects

the marginal cost of production in a signi�cant way. In addition, the longer the
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period to stock out, the lower the marginal cost of production, therefore this is

a good proxy for transportation cost.

We continue our analysis of stage 3 and 4 using the nested logit. The regres-

sion of the within segment market share is presented in column four of Table

13. The signi�cant instruments are z1, z4, and z7 and they will all be part of

the GMM �supply�estimation.

Following the method previously set out, we start with the case where store

coverage is unobservable. The GMM estimate shows a good quality of instru-

ments, as indicated by the Hansen J test. The variable months to stock out is

not signi�cant here, but it carries the right sign. The next step is the familiar

attempt to utilize the AR proxy. In this scenario we pick only two powerful

instruments: z4, and z7. We are again just identi�ed. The parameters of the

GMM estimation are emboldening. They are of the right sign and signi�cant.

Again, �nally we account for the true store coverage. In this event the choice of

the instruments points to z3, z4, z6. The results of the GMM are encouraging,

both in the sign and signi�cance of the relevant parameters in terms of months

to stock out and store coverage.



T
ab
le
11
:
P
ow
er
of
th
e
de
m
an
d
si
de
in
st
ru
m
en
ts

V
A
R
IA
B
L
E
S

ln
(
s
=
s
0
)

p
ln
(
s
=
g
)

ln
(
s
=
s
0
)

p
ln
(
s
=
g
)

ln
(
s
=
s
0
)

p
ln
(
s
=
g
)

ln
r

ln
(
s
=
s
0
)

p
ln
(
s
=
g
)

ln
r

N
o
C
o
v
e
ra
g
e

A
R
P
ro
x
y

C
o
v
e
ra
g
e
E
n
d
o
g
e
n
o
u
s

C
o
v
e
ra
g
e
E
x
o
g
e
n
o
u
s

c
o
n
s

-5
.5
1
5
*
*
*

1
.1
3
6
*
*
*

-1
.8
2
0
*
*
*

-5
.9
0
9
*
*
*

1
.1
2
2
*
*
*

-3
.1
8
7
*
*
*

-6
.9
8
9
*
*
*

1
.1
5
0
*
*
*

-4
.3
4
4
*
*
*

1
.5
0
5
*
*
*

-4
.3
8
5
*
*
*

0
.6
8
5
*
*
*

-2
.2
0
1
*
*
*

6
.9
0
7
*
*
*

(0
.6
8
1
)

(0
.0
7
2
)

(0
.6
8
9
)

(0
.7
3
2
)

(0
.0
7
7
)

(0
.7
2
1
)

(0
.3
4
8
)

(0
.0
7
2
)

(0
.4
0
8
)

(0
.5
2
0
)

(0
.6
6
5
)

(0
.1
3
7
)

(0
.7
8
2
)

(0
.9
9
3
)

in
v

-2
1
.3
7
8
*
*
*

-0
.0
5
7

-1
8
.6
0
1
*
*
*

-2
1
.4
4
3
*
*
*

-0
.0
5
9

-1
8
.5
6
8
*
*
*

-5
.7
6
3
*
*
*

-0
.0
9
8

-4
.3
6
3
*
*
*

-1
3
.5
2
2
*
*
*

-5
.7
6
7
*
*
*

-0
.1
0
1

-4
.3
7
6
*
*
*

-1
3
.6
8
0
*
*
*

(1
.0
2
2
)

(0
.1
0
8
)

(1
.0
0
0
)

(1
.0
2
3
)

(0
.1
0
8
)

(1
.0
0
7
)

(0
.5
4
5
)

(0
.1
1
2
)

(0
.6
3
8
)

(0
.7
8
3
)

(0
.5
4
6
)

(0
.1
1
3
)

(0
.6
4
2
)

(0
.7
8
8
)

ln
ry

-6
.8
0
0

-0
.2
4
7

-2
.7
6
3

1
.0
8
7
*
*
*

-0
.0
0
6
*
*

0
.9
8
1
*
*
*

1
.0
9
2
*
*
*

-0
.0
0
2

0
.9
9
1
*
*
*

(4
.6
4
6
)

(0
.4
9
1
)

(4
.5
7
4
)

(0
.0
1
1
)

(0
.0
0
2
)

(0
.0
1
3
)

(0
.0
1
1
)

(0
.0
0
2
)

(0
.0
1
3
)

z
1

-0
.0
1
6

-0
.0
0
5
*
*
*

-0
.0
3
4
*
*
*

-0
.0
5
1
*

-0
.0
0
6
*
*

-0
.0
4
3

0
.0
3
3
*
*
*

-0
.0
0
5
*
*
*

0
.0
1
5
*

-0
.0
4
3
*
*
*

-0
.0
0
9

-0
.0
0
1

-0
.0
2
3
*

-0
.1
4
1
*
*
*

(0
.0
1
3
)

(0
.0
0
1
)

(0
.0
1
3
)

(0
.0
2
7
)

(0
.0
0
3
)

(0
.0
2
7
)

(0
.0
0
7
)

(0
.0
0
1
)

(0
.0
0
8
)

(0
.0
1
0
)

(0
.0
1
0
)

(0
.0
0
2
)

(0
.0
1
2
)

(0
.0
1
5
)

z
2

0
.0
0
3

0
.0
0
2
*
*

0
.0
1
8
*
*

0
.0
0
1

0
.0
0
2
*
*

0
.0
1
5
*

-0
.0
1
2
*
*
*

0
.0
0
2
*
*

0
.0
0
2

0
.0
1
3
*
*

-0
.0
1
4
*
*
*

0
.0
0
2
*
*
*

0
.0
0
1

0
.0
1
0

(0
.0
0
8
)

(0
.0
0
1
)

(0
.0
0
8
)

(0
.0
0
8
)

(0
.0
0
1
)

(0
.0
0
8
)

(0
.0
0
4
)

(0
.0
0
1
)

(0
.0
0
5
)

(0
.0
0
6
)

(0
.0
0
4
)

(0
.0
0
1
)

(0
.0
0
5
)

(0
.0
0
6
)

z
3

-0
.0
1
5
*
*
*

0
.0
0
1
*
*
*

-0
.0
1
4
*
*
*

-0
.0
3
6
*
*
*

(0
.0
0
3
)

(0
.0
0
1
)

(0
.0
0
3
)

(0
.0
0
4
)

z
4

0
.0
0
3

-0
.0
0
1

-0
.0
1
1
*

-0
.0
3
1

-0
.0
0
2

-0
.0
2
4

0
.0
1
6
*
*
*

-0
.0
0
1

0
.0
0
2

-0
.0
1
2
*
*
*

-0
.0
1
4
*

0
.0
0
4
*
*
*

-0
.0
2
2
*
*
*

-0
.0
7
3
*
*
*

(0
.0
0
6
)

(0
.0
0
1
)

(0
.0
0
6
)

(0
.0
2
4
)

(0
.0
0
3
)

(0
.0
2
3
)

(0
.0
0
3
)

(0
.0
0
1
)

(0
.0
0
3
)

(0
.0
0
4
)

(0
.0
0
7
)

(0
.0
0
1
)

(0
.0
0
9
)

(0
.0
1
1
)

z
5

-0
.0
1
4
*
*

0
.0
0
2
*
*
*

0
.0
0
4

-0
.0
1
6
*
*
*

0
.0
0
2
*
*
*

0
.0
0
1

-0
.0
1
2
*
*
*

0
.0
0
2
*
*
*

0
.0
0
4

-0
.0
0
1

-0
.0
1
5
*
*
*

0
.0
0
2
*
*
*

0
.0
0
2

-0
.0
0
7

(0
.0
0
5
)

(0
.0
0
1
)

(0
.0
0
5
)

(0
.0
0
6
)

(0
.0
0
1
)

(0
.0
0
6
)

(0
.0
0
3
)

(0
.0
0
1
)

(0
.0
0
3
)

(0
.0
0
4
)

(0
.0
0
3
)

(0
.0
0
1
)

(0
.0
0
3
)

(0
.0
0
4
)

z
6

-0
.0
0
9
*
*
*

0
.0
0
2
*
*
*

-0
.0
0
7
*
*
*

-0
.0
1
7
*
*
*

(0
.0
0
2
)

(0
.0
0
0
)

(0
.0
0
2
)

(0
.0
0
3
)

z
7

-0
.0
3
5

-0
.0
4
1
*
*
*

-0
.4
7
4
*
*
*

-0
.0
3
7

-0
.0
4
1
*
*
*

-0
.4
3
1
*
*
*

0
.2
3
5
*
*
*

-0
.0
1
1

-0
.1
2
3
*

0
.4
5
4
*
*
*

0
.0
1
2

-0
.0
4
1
*
*
*

-0
.3
8
8
*
*
*

-0
.0
5
0

(0
.0
8
8
)

(0
.0
0
9
)

(0
.0
8
7
)

(0
.0
8
8
)

(0
.0
0
9
)

(0
.0
8
7
)

(0
.0
5
4
)

(0
.0
1
1
)

(0
.0
6
3
)

(0
.0
8
0
)

(0
.0
4
5
)

(0
.0
0
9
)

(0
.0
5
3
)

(0
.0
6
8
)

z
8

0
.3
2
8
*
*
*

0
.0
4
5
*
*
*

0
.3
9
1
*
*
*

0
.7
3
8
*
*
*

(0
.0
4
4
)

(0
.0
0
9
)

(0
.0
5
2
)

(0
.0
6
5
)

S
T
A
T
IS
T
IC

S
N
.

3
6
4
4

3
6
4
4

3
6
4
4

3
6
4
4

3
6
4
4

3
6
4
4

3
6
4
4

3
6
4
4

3
6
4
4

3
6
4
4

3
6
4
4

3
6
4
4

3
6
4
4

3
6
4
4

R
-s
q
u
a
re
d

0
.3
5
8

0
.8
2
4

0
.3
4
3

0
.3
5
9

0
.8
2
4

0
.3
3
4

0
.8
3
3

0
.8
2
6

0
.7
5
4

0
.3
1
9

0
.8
3
2

0
.8
2
5

0
.7
5
2

0
.3
1
0

F
st
a
t
in
st
r

7
5
.4
1

5
.6
4
7

6
5
.9
2

6
4
.9
7

4
.8
7
5

5
4
.5
6

1
4
6
4

7
.5
7
8

8
7
8
.6

7
5
.2
9

1
2
9
2

5
.7
4
8

7
6
8
.7

6
3
.4
8

F
p
-v
a
l

0
7
.5
6
e
-0
6

0
0

1
.7
3
e
-0
5

0
0

4
.3
4
e
-1
0

0
0

0
5
.8
5
e
-0
8

0
0

S
ta
n
d
a
rd

e
rr
o
rs

in
p
a
re
n
th
e
se
s.

N
o
t
re
p
o
rt
e
d
�
rm

,
se
g
m
e
n
t,
a
n
d
(p
a
c
k
a
g
e
x
ti
m
e
)
�
x
e
d
e
¤
e
c
ts
.

y
A
R
p
ro
x
y
in

th
e
A
R
sp
e
c
i�
c
a
ti
o
n
s.

*
*
*
p
<
0
.0
1
,
*
*
p
<
0
.0
5
,
*
p
<
0
.1

53



T
ab
le
12
:
G
M
M
de
m
an
d
es
ti
m
at
io
n:
D
ep
en
de
nt
V
ar
ia
bl
e
L
og
N
or
m
al
iz
ed
M
ar
ke
t
Sh
ar
es

V
A
R
IA
B
L
E
S

A
R

S
C
en
d

S
C
ex

N
N
A
R

N
S
C
en
d

N
S
C
ex

L
og
it

N
es
te
d
L
og
it

�
1
[c
on
s]

-6
.0
64
**
*

-3
.7
02
*

-7
.4
15
**
*

-2
.3
28
**

7.
49
7*
*

5.
72
6

9.
03
0*
**

2.
51
3*

(2
.0
16
)

(2
.1
54
)

(1
.0
04
)

(1
.0
47
)

(3
.4
49
)

(3
.6
72
)

(3
.3
84
)

(1
.2
84
)

�
2
[i
nv
]

-2
0.
99
4*
**

-2
2.
93
2*
**

-8
.7
59
**
*

-7
.2
02
**
*

-2
.8
01

-4
.6
60

2.
54
3

-3
.6
28
**
*

(3
.6
38
)

(4
.0
15
)

(2
.4
57
)

(1
.9
63
)

(4
.8
02
)

(5
.2
64
)

(2
.8
74
)

(1
.1
27
)

�
�
[p
]

0.
55
4

1.
28
1

-0
.9
45

3.
33
7*
**

8.
28
4*
**

6.
84
8*
**

9.
03
5*
**

5.
33
9*
**

(1
.6
65
)

(1
.7
85
)

(0
.8
14
)

(0
.8
64
)

(2
.1
35
)

(2
.3
74
)

(2
.1
82
)

(0
.9
05
)

�
r
[l
ry
]

1.
93
8*
**

1.
08
2*
**

1.
07
5*
**

0.
55
6*
**

0.
20
9

0.
43
7*
**

(0
.5
35
)

(0
.0
56
)

(0
.0
19
)

(0
.5
50
)

(0
.1
83
)

(0
.1
02
)

(1
�
�
g
)
[l
s =
g
]

1.
01
8*
**

0.
91
0*
**

1.
14
7*
**

0.
64
1*
**

(0
.2
50
)

(0
.2
80
)

(0
.2
29
)

(0
.0
99
)

S
T
A
T
IS
T
IC
S

N
.

36
44

36
44

36
44

36
44

36
44

36
44

36
44

36
44

N
.
m
c<
0

35
90

18
00

36
44

53
10

0
0

0
R
2

0.
35
9

0.
36
1

0.
80
9

0.
78
3

0.
36
5

0.
54
1

0.
19
7

0.
72
5

H
an
se
n
C
p
-v
al
lr
j

.
.

0.
63
9

.
.

.
0.
00
1

.
H
an
se
n
J
st
at

25
.1
80

7.
95
2

85
.8
70

41
.1
20

8.
13
3

12
.3
30

8.
13
7

12
.4
40

H
an
se
n
J
p
-v
al

1.
42
e-
05

0.
04
7

0
8.
87
e-
08

0.
04
3

0.
00
6

0.
04
3

0.
02
9

R
ob
u
st
S
ta
n
d
ar
d
er
ro
rs
in
p
ar
en
th
es
es
;
**
*
p
<
0.
01
,
**
p
<
0.
05
,
*
p
<
0.
1,
y
A
R
p
ro
xy
in
th
e
A
R
sp
ec
i�
ca
ti
on
s.

N
ot
re
p
or
te
d
�
rm
,
se
gm
en
t,
an
d
(p
ac
ka
ge
x
ti
m
e)
�
xe
d
e¤
ec
ts
.

54



T
ab
le
13
:
P
ow
er
of
th
e
su
pp
ly
IV

V
A
R
IA
B
L
E
S

c
n
c

s
s =
g

c
A
R

n
c
A
R

s
A
R

s =
g
A
R

c
S
C

n
c
S
C

s
S
C

s =
g
S
C

co
n
s

-0
.7
57
**
*

1.
18
7*
**

0.
01
1*
**

0.
24
8*
*

0.
30
6*
**

1.
07
8*
**

0.
01
1*
**

0.
25
3*
*

0.
33
0*
*

0.
56
7*
**

0.
01
7*
**

0.
46
2*
*

(0
.0
77
)

(0
.4
12
)

(0
.0
03
)

(0
.1
11
)

(0
.0
79
)

(0
.0
79
)

(0
.0
03
)

(0
.1
20
)

(0
.1
37
)

(0
.1
41
)

(0
.0
05
)

(0
.1
91
)

in
v

0.
00
8

-0
.4
22

-0
.0
32
**
*

-1
.8
64
**
*

-0
.0
30

-0
.0
03

-0
.0
32
**
*

-1
.8
63
**
*

-0
.0
97

-0
.0
68

-0
.0
10
**

-0
.5
55
**
*

(0
.1
16
)

(0
.6
19
)

(0
.0
04
)

(0
.1
67
)

(0
.1
10
)

(0
.1
11
)

(0
.0
04
)

(0
.1
68
)

(0
.1
13
)

(0
.1
16
)

(0
.0
04
)

(0
.1
57
)

lr
y

-0
.1
89

-0
.2
61
**
*

-0
.0
05

-0
.1
19

-0
.0
02

-0
.0
06
**

0.
00
2*
**

0.
09
0*
**

(0
.4
99
)

(0
.5
04
)

(0
.0
19
)

(0
.1
02
)

(0
.0
02
)

(0
.0
02
)

(0
.0
00
)

(0
.0
03
)

z 1
-0
.0
28
**
*

-0
.0
02

0.
00
0*
*

0.
00
5*
*

-0
.0
15
**
*

-0
.0
07
**

0.
00
0

0.
00
5

-0
.0
03

-0
.0
02

0.
00
0

0.
00
2

(0
.0
02
)

(0
.0
08
)

(0
.0
00
)

(0
.0
02
)

(0
.0
03
)

(0
.0
03
)

(0
.0
00
)

(0
.0
04
)

(0
.0
02
)

(0
.0
02
)

(0
.0
00
)

(0
.0
03
)

z 2
0.
00
0*
**

-0
.0
00

0.
00
0

0.
00
0

0.
00
0*
**

0.
00
0*
*

0.
00
0

0.
00
0

0.
00
0*
**

0.
00
0*
**

-0
.0
00

-0
.0
00

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

z 3
0.
00
2*
**

0.
00
2*
**

-0
.0
00
*

-0
.0
03
**
*

(0
.0
01
)

(0
.0
01
)

(0
.0
00
)

(0
.0
01
)

z 4
-0
.0
01
**

0.
00
1

-0
.0
00

-0
.0
02
*

-0
.0
02

-0
.0
02

-0
.0
00

-0
.0
01

0.
00
5*
**

0.
00
5*
**

-0
.0
00
*

-0
.0
04
**

(0
.0
01
)

(0
.0
03
)

(0
.0
00
)

(0
.0
01
)

(0
.0
03
)

(0
.0
03
)

(0
.0
00
)

(0
.0
04
)

(0
.0
02
)

(0
.0
02
)

(0
.0
00
)

(0
.0
02
)

z 5
0.
00
0*
**

-0
.0
00

-0
.0
00

0.
00
0

0.
00
0*
**

0.
00
0*
*

-0
.0
00

0.
00
0

0.
00
0*
**

0.
00
0*
**

-0
.0
00

-0
.0
00

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

z 6
0.
00
2*
**

0.
00
2*
**

-0
.0
00
*

-0
.0
01
*

(0
.0
00
)

(0
.0
00
)

(0
.0
00
)

(0
.0
01
)

z 7
-0
.0
41
**
*

0.
08
4

0.
00
0

-0
.0
84
**
*

-0
.0
41
**
*

-0
.0
29
**
*

0.
00
0

-0
.0
84
**
*

-0
.0
41
**
*

-0
.0
37
**
*

0.
00
0

-0
.0
81
**
*

(0
.0
10
)

(0
.0
54
)

(0
.0
00
)

(0
.0
14
)

(0
.0
09
)

(0
.0
10
)

(0
.0
00
)

(0
.0
14
)

(0
.0
09
)

(0
.0
10
)

(0
.0
00
)

(0
.0
13
)

S
T
A
T
IS
T
IC
S

N
.

36
44

36
44

36
44

36
44

36
44

36
44

36
44

36
44

36
44

36
44

36
44

36
44

R
2

0.
85
2

0.
19
3

0.
28
6

0.
28
0

0.
83
0

0.
81
8

0.
28
6

0.
28
0

0.
82
6

0.
81
9

0.
34
8

0.
42
0

F
te
st
in
st
r

61
.7
7

0.
78
4

11
.5
7

29
.0
9

17
.7
2

3.
88
7

9.
92
5

24
.9
3

8.
94
3

7.
12
8

45
.2
4

11
7.
5

S
ta
n
d
ar
d
er
ro
rs
in
p
ar
en
th
es
es
;
**
*
p
<
0.
01
,
**
p
<
0.
05
,
*
p
<
0.
1,
y
A
R
p
ro
xy
in
th
e
A
R
sp
ec
i�
ca
ti
on
s.

N
ot
re
p
or
te
d
�
rm
,
se
gm
en
t,
an
d
(p
ac
ka
ge
x
ti
m
e)
�
xe
d
e¤
ec
ts
.

55



T
ab
le
14
:
G
M
M
Su
pp
ly
E
st
im
at
io
n

V
A
R
IA
B
L
E
S

c
c
A
R

c
S
C

n
c

n
c
A
R

n
c
S
C



1
[c
on
s]

0.
85
4

1.
09
8*
**

1.
12
7*
**

1.
13
8*
**

1.
40
2*
**

1.
39
3*
**

(0
.7
08
)

(0
.1
78
)

(0
.0
65
)

(0
.1
25
)

(0
.1
08
)

(0
.0
76
)



2
[i
nv
]

-8
.8
28
*

-2
.2
44
**
*

-0
.5
11
**

-1
.1
65

-0
.5
23

-0
.4
14
*

(4
.7
46
)

(0
.8
24
)

(0
.2
15
)

(0
.7
25
)

(0
.3
86
)

(0
.2
16
)



3
[l
ry
]

0.
41
1*
**

0.
05
5*
**

0.
05
6

0.
04
1*
*

(0
.1
23
)

(0
.0
18
)

(0
.0
80
)

(0
.0
19
)

s
(e
n
d
)

-2
74
.2
95
**

-6
8.
17
4*
**

-3
7.
69
7*
**

8.
83
9

-2
9.
84
8*
**

-4
5.
89
1*
**

(1
31
.7
40
)

(2
0.
80
4)

(1
0.
56
7)

(2
1.
10
2)

(1
1.
34
1)

(1
2.
74
8)

s =
g
(e
n
d
)

-0
.6
72
*

0.
24
4*

0.
25
8*
*

(0
.3
85
)

(0
.1
31
)

(0
.1
18
)

S
T
A
T
IS
T
IC
S

N
.

36
44

36
44

36
44

36
44

36
44

36
44

R
2

.
.

0.
49
7

0.
17
8

0.
64
0

0.
40
6

H
an
se
n
J
p
-v
al

.
.

0.
92
0

0.
26
0

.
0.
95
6

H
an
se
n
J
st
at

.
.

0.
16
7

1.
26
9

.
0.
08
93

R
ob
u
st
S
ta
n
d
ar
d
er
ro
rs
in
p
ar
en
th
es
es
;
**
*
p
<
0.
01
,
**
p
<
0.
05
,
*
p
<
0.
1,

y
A
R
p
ro
xy
in
th
e
A
R
sp
ec
i�
ca
ti
on
s.
N
ot
re
p
or
te
d
�
rm
,
se
gm
en
t,
an
d
(p
ac
ka
ge
x
ti
m
e)
�
xe
d
e¤
ec
ts
.

A
d
ot
in
th
e
ov
er
id
en
ti
�
ca
ti
on
J
te
st
is
d
u
e
to
th
e
la
ck
of
ov
er
id
en
ti
fy
in
g
re
st
ri
ct
io
n
s.

56


