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Abstract

We generalize the empirical growth-of-firms literature by linking a mixture of discrete and

continuous alternative metrics of size via a Copula approach. We look at the result of the fitted

Copula and justify the metric we base our analysis upon. We then employ the Amadeus dataset

and investigate the growth dynamics of the European pharmaceutical industry in the Single Mar-

ket Programme era, 1990-2004. Relying on a set of dynamic panel Probit methods that deal with

unobserved heterogeneity and initial conditions, we analyze how our units of investigation, multi-

nationals, capture opportunities over time. We find strong evidence of state dependence and mean

reversion, as predicated by the theory of maturation - firms face a period of rapid growth, followed

by a slow down, or even a stop, in growth. We finish off our exercise by conditioning the fitted

Copula on the predicted selected measure of size and simulating the remaining measures. Our

methodology has a fair explanatory power.
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1 Introduction

The literature on firm growth has repeatedly relied on a given measure (metric) of size, often being

one of the (approximately) continuous variables: employment, assets or sales. To our knowledge, no

empirical paper has investigated the possibility that, in principle, there may be systematic differences

among the alternative metrics of size available, with the implicit risk that the resulting analysis would

suffer from being tailored to the adopted metric. This paper is the first of its kind that conditions the

analysis of firm growth on a deep investigation of the relation between alternative measures of size.

Given that we are assembling very different measures of size, some discrete and others (approximately)

continuous, the Copula is the appropriate approach to study how the alternatives associate to one an-

other. We wish to shed light on the concordance of the variables, i.e. how similar, or different, the

alternative metrics might be.1 If we were to find evidence of highly related metrics, we could send out

the message that one does not have to worry much about devising a selected metric. The researcher

should, in this case, stick to the most straightforward measure of size available in his dataset. The

result of strong concordance between the alternative metrics, in conjunction with a knowledge of the

Copula function, could then be exploited in a methodology that allows one to simulate the remaining

metrics conditional on the observability of one selected metric.

Upon having a justifiable measure of size at hand, a second purpose of the paper is to investigate

the growth dynamics of the European pharmaceutical multinationals during the Single Market Pro-

gramme era. We compare alternative estimation techniques and select the one that best explains our

data. We predict the chosen size metric and repeat the simulation exercise, this time conditioning on

the predicted value of the metric. As a digression we investigate how the alternative metrics of firm

size available in our data satisfy Sutton’s lower bound.

Gibrat’s (1931) “law of proportionate effect” (English translation Gibrat (1957)) states that the

expected rate of growth of a firm’s size is, each time period, independent of its current magnitude.

Such an innovative theory, capable of explaining important regularities, has motivated an extensive

literature in industrial economics, with clear focus on the understanding of skewness in firm size dis-

tributions. This “growth-of-firms literature”, also termed “stochastic literature on firm size”, sees

skewness as the result of the relationship between a firm’s size and its rate of growth, i.e. if larger

1We will use interchangeably the terms “association” and “concordance” and we will be careful to confine the term
“correlation” to cases of linear dependence of random variables.
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firms tend to grow faster/slower than their smaller rivals then the industry size distribution tends to

exhibit more/less skewness, this producing longer/shorter upper tails.2 Albeit merely statistical, this

literature has received considerable attention in industrial economics, due to its contribution in explain-

ing firms’ market concentration, one of the three components of the structure-conduct-performance

paradigm that started with Mason (1939, 1948) and continued with Bain (1951, 1956).3

The lack of economic theory behind this “stochastic literature on firm size” gave room to a new

stream of literature, originating in the 1970s, which employed either optimization theory, or game

theory, to explain firm’s growth.4 In this approach skewness takes a more deterministic nature, given

by the observable role of measurable economic factors.

Sutton (1997a, 1998) bridges the gap between these two streams of literature by proposing a game

theoretical “independent submarkets” theory. He rationalizes skewness to be the result of the limiting

firm size distribution of an industry. His theory of firm size distribution relies on a simplified discrete

metric that counts the number of opportunities the firm has captured, expressed in his terminology

as the number of “independent submarkets” the firm has entered. This simple metric suggested orig-

inally by Ijiri and Simon (1967) and Simon and Ijiri (1977), was termed by Sutton the number of

“independent isolated islands” a firm expands to. Here size is determined by the cumulated sum of

(homogeneous) unitary expansions. In his book, Sutton (1998) sketches how to extend the theory of

unitary expansions to the more realistic case of unequal (heterogeneous) discrete opportunities (pp.

258-9, 290-1), called “random increments” in Simon and Ijiri (1977). In a nutshell, Sutton’s main

finding is that a lower bound in a Lorenz curve distribution (i.e. a minimum degree of inequality in

firm size) is the best that one can do to unravel the industry distribution of firm size:5 any distance

between the actual data and the lower bound can be justified by, among other things, the degree of

heterogeneity in the arrival of opportunities.6

2By modifying the boundary conditions and underlying assumptions, the literature has derived and discussed several
distributions such as: Exponential, Fisher’s log series, Geometric, Log-normal, Negative Binomial, Pareto (Zipf), Poisson,
and Yule.

3A non-exhaustive list of followers includes: Simon (1955), Hart and Prais (1956), Adelman (1958), Simon and Bonini
(1958), Hart (1962), Hymer and Pashigian (1962), Mansfield (1962), Ijiri and Simon (1964, 1967), Samuels (1965), Steindl
(1965, 1968), Wedervang (1965), Quandt (1966), Singh et al. (1968), Simon and Ijiri (1977), Buldyrev et al. (2007), Cefis
et al. (2007).

4Here a non-exhaustive list of papers includes: Hjalmarsson (1974), Lucas Jr (1978), Jovanovic (1982), Selten (1983),
Hall (1987), Klepper and Graddy (1990), Cohen and Klepper (1992, 1996), Ericson and Pakes (1995), Klepper (1996),
Klepper and Simons (2000), Cabral and Mata (2003), Klette and Kortum (2004), Klepper and Thompson (2006).

5The Lorenz curve offers a convenient way to represent the size distribution of firms. In the normalized area [0, 1]2,
it shows the proportion of the measure of size controlled by a given proportion of number of firms. If the curve is a
straight line, all firms would be of equal size, and the industry would be completely unconcentrated. On the other side,
in the case of asymmetries, the curve would differ from the straight diagonal line. A typical feature here is that the
top x percentage of firms control more than the top x percentage of business in that industry. The area between the
diagonal and the curve is often utilized as a measure of concentration, and is known as Gini coefficient.

6Empirical support for this theory is available in Bottazzi et al. (2001), de Juan (2003), Amisano and Giorgetti (2005),
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It is the relation between size measured as cumulated number of unitary opportunities and alter-

native heterogeneous metrics of size that motivates our work. Our paper considers a firm catching a

new opportunity, whenever it expands its number of subsidiaries. In line with the “growth-of-firms

literature” we treat arrival of opportunities as stochastic. However, aligned to its competing stream

of literature, we investigate the dynamics of a firm’s success in capturing opportunities in a more

structural way. Do firms that capture more opportunities grow faster and, therefore, end up being the

large companies in the industry? Assume, momentarily, that the cumulated number of opportunities

satisfies the law of proportionate effects and, as such, gives rise to a skewed distribution. Could one

go further and generalize the argument to any metric of size? That is, if a firm is large in cumulated

number of opportunities, will the same firm be large in any other measure of size? The heterogeneity

of opportunities would advise us to be cautious with a mapping from number of opportunities to alter-

native measures of size, as one cannot rule out patterns where big companies are those that have won

only a small number of large opportunities. While Simon and Ijiri (1977) in a section called “random

increments” manage to extend the “growth-of-firms” theory to cover alternative discrete measures of

size, their generalization to (approximately) continuous metrics of size, is limited to the statement:

Whether sales, assets, number of employees, value added, or profits, are used as the size

measure, the observed distributions always belong to the class of highly skewed distributions

· · · ,

re-emphasized in Sutton (1997b) as:

Size can be measured in a number of ways, and these arguments have been variously applied

to measures of annual sales, of current employment, and of total assets. Though we might

in principle expect systematic differences between the several measures, such differences

have not been a focus of interest in the literature.

This paper fills in the generalization gap by empirically investigating the association between alterna-

tive discrete and (approximately) continuous measures of firm size.

We develop our framework as follows. We first investigate how different metrics of size relate to

one another in a joint multivariate nonnormal distribution, where nonnormality is induced by combin-

ing different (discrete and quasi-continuous) distributions. Given nonnormality, we rely on a Copula

Bottazzi and Secchi (2005, 2006), Buzzacchi and Valletti (2006).
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approach: a methodology that only requires that one knows the empirical marginals of the variates

in order to fit the multivariate distribution. Then, we carefully investigate the persistence of firm

expansion, relying on the simplest discrete measure of size. To fulfil this goal we make use of dynamic

panel Probit models, which account for unobserved heterogeneity and correct for the initial conditions

problem. We give robustness to our results by comparing alternative Probit estimation methods. We

believe it is fruitful to model firm expansion - the ability of firms at capturing opportunities - in a

simple way, and then have a tool that bridges from that simplified measure into more sophisticated,

but related, metrics of size.

The European pharmaceutical industry during the early period of the EU enlargement, 1990-2004,

offers us a valid firm-level dataset. We focus on this industry for two reasons: firstly, it is an important

industry for the European economy in terms of manufacturing value added and R&D;7 secondly, the

industry was heavily regulated at the national level before the Single Market Programme era (see Cec-

chini et al. (1988)), therefore the enlargement of the European market gives the firms in this industry

significant scope to expand, increase production efficiency and enhance R&D capacity through merg-

ers and acquisitions, relocation or external collaboration. In turn, this translates into more business

opportunities.8 Given that multinationals are the unit of investigation of this paper, we shall call firms

“multinationals” and employ the abbreviation MNE. We obtain our data from a commercial database

called Amadeus. It is worth mentioning that our data provide no information on MNE exit, meaning

that exit dynamics cannot be studied.9

The rest of the paper is organized as follows: in Section 2 we present a simple conceptual model; in

Section 3 we outline the dynamic panel Probit approach with unobserved heterogeneity and compare

alternative econometric techniques. Section 4 describes our data. Our results are discussed in Section

5. Section 6 concludes.

2 The Conceptual Model

We generalize Steindl’s (1965) formulation of Gibrat’s (1931) law and allow MNE size to be measured

by any metric h ∈ H. We call the size of the MNE i at time t, shit. We denote the iid random variable

7It is the 5th largest industry in the European Union in terms of manufacturing value added, amounting to 3.5 per
cent, and it accounts for about 17 per cent of total EU business R&D expenditures (EFPIA (2005)).

8Studies on the pharmaceutical industry which are relevant to this paper can be found in Howells (1992), Matraves
(1999), Bottazzi et al. (2001), Kotzian (2004), Bottazzi and Secchi (2005, 2006), Buldyrev et al. (2007) and Cefis et al.
(2007).

9For an investigation of the sample selection bias generated by nonrandom firm exit, refer to Hall (1987), Evans
(1987a,b), Dunne et al. (1988, 1989) and Geroski and Machin (1991).
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of proportionate rate of growth between t− 1 and t, with εhit. Absolute growth is expressed as

shit − shi,t−1 = shi,t−1ε
h
it. (1)

Under the assumption of discrete time periods short enough to make the variance of εit small, log

transformations of Eq. (1) lead to the random walk on a logarithmic scale approximation

logshit ' logshi0 + εhi1 + εhi2 + · · ·+ εhit. (2)

In the limit as t → ∞, logshi0 can be omitted from Eq. (2), being small compared to logshit.
10 If we

apply the Lindeberg-Levy central limit theorem we get that logshit has a limiting normal distribution.

Hence, shit has a skewed limiting lognormal distribution.

We wish to give Eq. (1) a general form. We do that in two parts. First, we decompose the original

stochastic term, εhit, into observable and unobservable components. Second, we express the right hand

side of the equation with a function f . We assume f to depend on lagged size, and the observable

and unobservable effects. We incorporate the observable effects into the vector z. This modification,

brings in a set of new parameters θh, and mitigates the role of the unobservable random component

(random variable), re-labeled henceforth as uhit. Absolute growth becomes

shit − shi,t−1 = f
(
shi,t−1, z

h
it, u

h
it;θ

h
)
, (3)

10Eq. (2) is easily obtained in the following way. Define the stochastic growth rate as

εhit ≡
shit − shi,t−1

shi,t−1

.

We wish to compound the growth rates over time. Starting at an initial time 0, we have

εhi1 =
shi1 − shi0
shi0

.

Solving this for shi1 yields to

shi1 =
(

1 + εhi1

)
shi0.

Similarly,

shi2 =
(

1 + εhi2

)
shi1 =

(
1 + εhi2

)(
1 + εhi1

)
shi0

and for any future time t we get

shit = shi0

(
1 + εhi1

)(
1 + εhi2

)
· · ·
(

1 + εhit

)
.

Now, if we take the log of both sides of the above equation and avail of the fact that the approximation log (1 + ε) ≈ ε
(true for small variance of ε), we reach Eq. (2).

6



which is nothing more than a generalization of Eq. (1).11

We denote this absolute growth of the MNE i in period t, with yhit ≡ shit− shi,t−1. If we were willing

to assume the error component uhit to be iid, we could claim invertibility of the function f in uhit;

meaning that a relation uhit = f−1
(
yhit, s

h
i,t−1, z

h
it;θ

h
)

exists. This assumption, along with the further

requirement that the conditional distribution P
(
uhit|shi,t−1, z

h
it;θ

h
)

is known - or P
(
yhit|shi,t−1, z

h
it;θ

h
)

given the invertibility of f is known - would allow us to access the maximum likelihood estimator.

However, as we wish to test the theory of maturation (Rostow (1959)), which states that: firms face

a period of rapid growth, followed by a slow down or even a stop in growth, we model autocorrelation

in the error term. So, the probability that a firm experiences an increment in size the next period, is

proportional to a weighted sum of the increments it had in the past (Ijiri and Simon (1967), Simon

and Ijiri (1977)). By introducing autocorrelation we compromise, giving away the simple invertibility

of f in uit. We will outline how to recover appropriate estimation techniques in Section 3 and detail

the procedure in Appendix A.

Among the elements of H we have a simple discrete measure of size: the number of new opportu-

nities (which we interchangeably call expansions) an MNE has captured. We denote this metric with

h = op and update Eq. (3) to be

yopit = f
(
sopi,t−1, z

op
it , u

op
it ;θop

)
, (4)

where yopit ∈ {0, 1}, with a value of 1 indicating an expansion, which happens if the MNE expands the

number of its subsidiaries by at least one unit.

Our decision to have lagged number of opportunities, sopi,t−1, directly influencing the absolute growth

is motivated by Gibrat’s law, as re-interpreted in Simon and Ijiri (1977) and Sutton (1998). Each active

MNE in the industry has a certain probability of capturing an opportunity, i.e. a certain probability of

expanding. The number of opportunities captured has a direct influence on each MNE’s propensity to

expand, thus conforming to Gibrat’s law: the probability that an MNE captures a new opportunity is

proportionate to its size. As an MNE becomes larger it has more chances to catch new opportunities,

and the continuation of this process is reflected in the skewness of the industry distribution.

Behind our structural model there is an underlying economic story. In every period of time, MNEs

11If we parameterize f to be

f
(
shi,t−1, z

h
it, u

h
it;θ

h
)

= shi,t−1

(
zhitθ

h + uhit

)
and then define εhit ≡ zhitθ

h + uhit, we are back to Eq. (1), assuming uhit is iid.
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are given the chance to expand their size by capturing one of the opportunities available in the market.

We motivate the “race” for opportunities in the following way. Depending on their profit realization,

our agents succeed, or not, in capturing one of the available opportunities. However, opportunities

can have a different degree of intensity that is, we count opportunities as single homogeneous units,

but recognize that each opportunity spreads effects into alternative heterogeneous metrics of size.

Understanding how sum of opportunities and sum of alternative measures of size relate one another

is a target that we aim to. Our data allow for three alternative metrics of size. Two are discrete: i)

the aforementioned number of opportunities captured, sop; ii) number of subsidiaries established or

acquired, ssu, and one is (approximately) continuous: iii) operational revenues, sor. A more exhaustive

list of single measures of size adopted in the literature includes: assets, capital, employment, inputs,

output, plants and equipment, profit, sales and turnover, as documented in Table 1.

We assume the existence of a positive monotonic relation between absolute growth and profit. We

formulate the underlying profit function as the sum of the following components:

πit = q
(
shi,t−1, z

h
it

)
+ uhit. (5)

The algebraic expression in (5) tells us that MNE i’s profit in period t, πit, is given by the sum of

an observable part, expressed by the deterministic function of pre-determined variables and lagged

size, q
(
shi,t−1, z

h
it

)
, and the unobservable variable, uhit.

12 The lagged observable shi,t−1 influences the

absolute growth either directly, as discussed earlier, or in an indirect way; through scope economies,

economies of scale in terms of production and R&D, or superior market power that can be gained as

MNEs evolve.

The unobservable part of Eq. (5) is a composite error that groups a time-specific function of

unobservable multinational shifters and a pure idiosyncratic error component, say

uhit = chit + εhit. (6)

We turn our attention back to the simplest discrete metric of size, sop. Considering that one firm

can only expand by zero or one opportunity, we relate the absolute growth and profit in the following

12One could model the observable term zhit as a “portmanteau” variable, or alternatively as inclusive of factors related
to the demand and cost side, as discussed in Quandt (1966). The latter would be an attempt to model profit as the
result of a combination of demand shocks, level of competition, scope economies and success of R&D investments.

8



binary way:

yopit = 1I (πit ≥ 0) , (7)

where 1I is the indicator function.13

With an obvious interest in the dynamics of expansion, we choose the variables entering zopit to be

the lagged dependent variable yopi,t−1, along with a set of time dummies and observable MNE-specific

characteristics such as a vector of time-invariant characteristics. The lagged dependent variable is

aimed at capturing any form of persistence in the growth process. Its inclusion is in line with Ijiri

and Simon’s (1967) model of autocorrelated growth, whose simulations are the core of Ijiri and Simon

(1964).14

Although not the main focus of the paper, we believe that applying this model to the pharmaceutical

data contributes toward a better understanding of European pharmaceutical industry dynamics and

the resulting industry concentration. Evidence of a positive and significant coefficient, attached to

an expansion that occurred at time t − 1, would indicate the sustainability of this industry. In other

words, it would suggest that the industry is able to generate profits that are large enough to support

its expensive innovative activities. In this way, past expansions exert a behavioral effect on current

expansion and this effect is termed “true state dependency” by Heckman (1981b). However, as is often

the case, the examination of dynamics can be blurred by what Heckman (1981b) has termed “spurious

state dependency”. This occurs if unobservable multinational-level effects are serially correlated over

time, or are correlated with initial expansion, and these correlations have not been properly controlled

for. In those cases, the lagged expansion will incorrectly capture this unobserved effect, behaving as

if it is a driving force behind the current expansion, even if there is no state dependence at all. To

tackle this problem we adopt a dynamic panel random effects model. We will discuss the mechanism

and detail of this model in the next section.

Eq. (7) suggests an econometric relation to study size growth, when size is measured by number

of opportunities. What happens if size is measured by any other metric? Here, one might be tempted

to extend the mapping between profit and expansion to accommodate each alternative metric of size.

However, this would be a tedious and difficult task, as we would have to assume a mapping function

13We have arbitrarily set the profit cutoff at zero. Alternatively, we could have set it at π, or at πt if it varied over
time. The implication of not observing the cutoff point is that in our econometrics we shall not be able to identify either
the constant, if π 6= 0, or the time dummies, if πt 6= 0.

14The serial correlation assumption states that the probability of growth of an existing MNE is proportional to the
weighted sum of past increments of size, and the weight is decreasing the further the occurrence of each increment
from the current period. Such a carry-over effect can be triggered by successful innovation in production or marketing
processes.
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for each metric, and subsequently estimate each resulting (linear or nonlinear) dynamic model. Given

the intricacy of the procedure, we opt for an alternative approach, which we believe simplifies and

accelerates the process. We define the joint density function of the various metrics of size, with G(s),

where s ≡
[
s1, s2, · · · , sH

]
. Next, given that we are mixing together discrete and continuous measures

of size, it would be inappropriate to assume, as is often the case, G(·) to be multivariate normal, so

the functional form of G(·) has to be fitted. We exploit the information on the marginal distribution

of each metric of size, Gh(·), and employ the Copula approach to recover the multivariate CDF G(·)

from the H marginals. Knowing G(·) we undertake the following exercise. We test the Copula by

simulating s̃−[h] from the conditional distribution G(s|sh), where sh denotes the values for the selected

size metric h and the tilde vector s̃−[h] indicates the simulated values for the remaining size metrics.15

We evaluate the goodness-of-fit of the simulated metrics. We continue the exercise by simulating a

new vector ˜̃s
−[h]

, this time from the conditional Copula G(s|ŝh), where ŝh is the predicted value of

the size metric. We evaluate, once more, the quality of the new simulations. We present the Copula

approach in Appendix B.

The next section outlines the econometric methodologies we make use of.

3 Econometrics

Given that this section only discusses methods to estimate the absolute growth of the variable number

of opportunities, we ease the notation by omitting the superscript op. We specify the latent profit

function for our dynamic model as

πit = γyi,t−1 + x1itβ1 + x2itβ2 + cit + εit i = 1, · · · ,M ; t = 1, · · · , T, (8)

where yi,t−1 is the lagged version of the binary variable. We partition the explanatory covariates into a

row vector of strictly exogenous variables x1it and a row vector of sequentially exogenous variables x2it.

We formulate the cit component as a time varying function of the unobserved MNE-level heterogeneity

cit = δtα̃i, (9)

whose δt parameters pertain to cases of free correlation in the composite error, as we will discuss below.

The εit term is an idiosyncratic error, which we assume to be identically distributed and independent

15In our data s̃−[h] is the vector inclusive of s̃su and s̃or.
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of unobserved heterogeneity and the covariates. Our data share a pattern common in firm-level data:

the number of MNEs M is large relative to the number of periods T , so asymptotics rely on M →∞.

The presence of a large cross-section in a nonlinear panel model rules out the possibility of modeling

the α̃i as parameters. In fact, because of the “incidental parameters” problem a fixed effects analysis

would produce inconsistent estimates of the parameters (Heckman (1981a,b)). So, the rest of the

paper will treat the unobserved heterogeneity as a random variable drawn along with (yi,Xi) where

Xi ≡ [x′i1,x
′
i2, · · · ,x′iT ]′, xit ≡ [x1it,x2it] and t = τi, τi+1, · · · , T . We indicate with τi the period in

which MNE i appears in the sample for the first time. So, for the balanced panel (the incumbents) we

have τi = 1 (and initial conditions at time τi−1 = 0) and for the new entrants τi > 1.

What we observe in our data is not the latent profit function shown in Eq. (8), but rather the

binary outcome of an MNE expansion, whose relation with profits has been represented in Eq. (7).

We assume the idiosyncratic error, εit, to be distributed as NID(0, σ2
ε ) and given that yit is a binary

variable, we standardize the idiosyncratic error as NID(0, 1). The implication is that all parameters,

as well as the function of unobserved heterogeneity, will be re-scaled by σε, as shown in Arulampalam

(1999). Hence, the conditional probability that an MNE i expands in period t = τi, τi + 1, · · · , T is

P
(
yit = 1|yi,t−1, · · · , yi,τi−1

,Xi, α̃i;θ
)

= Φ (γyi,t−1 + x1itβ1 + x2itβ2 + cit) , (10)

where Φ is the standard normal cumulative density function and θ are the parameters to be estimated.

The joint conditional density for (yi,τi , yi,τi+1, · · · , yiT ) results in the following dynamic unobserved

effects Probit model,

P
(
yi,τi , yi,τi+1, · · · , yiT |yi,τi−1

,Xi, α̃i;θ
)

=

T∏
t=τi

Φ [(γyi,t−1 + x1itβ1 + x2itβ2 + cit)(2yit − 1)] . (11)

The presence of unobserved heterogeneity makes the log-likelihood function of the above density

not suitable to estimate the θ parameters consistently, unless one has a way to integrate the unobserved

heterogeneity out. In order to do so we need, first, to ensure that we account for any possible correla-

tion between the unobserved heterogeneity and the regressors - given that not all our regressors, and

surely not the lagged dependent variable, are orthogonal to the unobserved heterogeneity. Secondly,

for the balanced sub-sample we shall have a way to cope with the initial conditions problem, i.e., an

existing relation between the initial observations of the dependent variable yi0 and the unobserved

heterogeneity α̃i. This is an effect that is induced by the fact that the stochastic process that has
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determined an expansion in the initially observed period, which corresponds to the first period we have

data available (period 0 in our notation), has been ongoing prior to that date and, as such, we cannot

take it as exogenous. The initial conditions problem is particularly severe for small T .

Both of the above issues can be tackled. We make use of the Mundlak (1978)-Chamberlain (1984)

approach and account for the correlation between the unobserved heterogeneity, the subset of sequen-

tially exogenous regressors x2it and the lagged dependent variable, so that the latent profit function

displayed in Eq. (8) is augmented to be

πit = γyi,t−1 + x1itβ1 + x2itβ2 + x̄2iλ1 + cit + εit. (12)

The terms on its right hand side are in following order: the lagged dependent variable; the vector of

strictly exogenous variables, x1it, which includes a constant, MNE headquarters area dummies (eui and

usi) and T − 1 time dummies; the vector of sequentially exogenous variables, x2it, which incorporates

the lagged size variable measured by number of opportunities, sopi,t−1; the vector x̄2i, which corresponds

to the average number of opportunities s̄opi - employed along with the lagged dependent variable and

lagged size to study the theory of maturation (Rostow (1959)); the unobserved heterogeneity, which

we have parameterized in Eq. (9) as cit = δtα̃i; and to complete the list, the idiosyncratic error term

εit. The term x̄2i in Eq. (12) is computed as

x̄2i ≡
1

T − τi + 1

T∑
t=τi

x2it. (13)

Turning to the initial conditions problem, the panel data econometric literature has developed al-

ternative ways to deal with it. Heckman (1981a,b) suggests recovering a full conditional density for

(yi0, yi1, · · · , yiT |Xi), by extending the original density to the initial period and integrating out the

unobserved heterogeneity. To fulfill his idea he specifies first a parametric density for yi0 given (Xi, α̃i),

thus extending the density to the initial period, and then a parametric density for α̃i given Xi, so as

to integrate out the unobserved heterogeneity. The lack of an existing program to estimate Heckman’s

full model has given rise to alternative estimation methods. Orme (2001) introduces a more immediate

two-step procedure, which is suitable to cases of low correlation between the initial conditions and the

unobserved heterogeneity. Wooldridge (2005) proposes parameterizing a conditional density for the

unobserved heterogeneity only, so as to integrate out the unobserved heterogeneity, leaving the density

for (yi1, yi2, · · · , yiT ) conditional on (yi0,Xi).
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As mentioned, the initial conditions problem concerns only the MNEs that are in the sample the

entire time period, the balanced panel, not those that enter at some time τi > 1, the new entrants. In

Appendix A we internalize this distinction in our modeling of probabilities for the two groups. Each of

the three solutions can be estimated in Stata either directly, or via an add-on program called gllamm.

In Appendix A we detail the three methods and discuss the estimation procedures that have been

implemented in Stata.

4 Data

We gathered information on pharmaceutical MNEs from a commercial database called Amadeus, which

is published by Bureau van Dijk (BvD) Electronic Publishing. The publisher collects firms’ account

data from official or commercial sources of individual European countries and processes the data in

order to achieve maximum comparability across countries. The database contains balance sheets,

profits and losses tables, and other information among which is business activity, date of corporation,

location, ownership, etc. This database is by far the most comprehensive source of financial information

on European firms.16 A firm is recorded by Amadeus as an EU pharmaceutical MNE, if at some time

t it has pharmaceutical-related subsidiaries (either production, research or marketing driven) in more

than one country, and if at least one of these countries belongs to the EU-15.17 Acquired or new own-

established subsidiaries are treated in the same way, as we believe that both greenfield investments

and acquisitions reflect MNEs’ willingness and action to expand. Expansions through both platforms

are influenced by industry-level trends, such as relocation of business activities, or adjustments to the

Single Market. Consequently, acquired or new own-subsidiaries are components of the same industrial

dynamics.

The starting year of the sample period is chosen to be 1991 (t = 1 marks the end of the year in our

notation), which is just two years before to the implementation of the European Single Market, which

occurred on the first day of 1993.18 The last period is the year 2004 (T in our notation). Information

on firm exit is not available in Amadeus. Also, mergers complicate the identification of the MNEs in

16At the time when we prepared the sample of the pharmaceutical industry, year 2004, Amadeus covered approximately
11 million public and private firms in 41 European countries.

17Following the EU statistical classification of economic activities, NACE Revision 1.1, they are classified as: 2441
(manufacture of basic pharmaceutical products), 2442 (manufacture of pharmaceutical preparations), 5146 (wholesale
of pharmaceutical goods), 5231 (dispensing chemists), 5232 (retail sale of medical and orthopaedic goods) and 7310
(research and experimental development on natural sciences and engineering).

18We expect that the pharmaceutical MNEs have taken into account some of the potential gains from the integrated
market in their business strategy, triggering their expansion pattern already in early-nineties.
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the sample, as the Amadeus database drops the MNEs that have been acquired, and only records the

acquirer. This makes it impossible to construct a proper panel of expansion history. To get around this

difficulty, we adopt Bottazzi and Secchi’s (2005; 2006) procedure, which treats the merged enterprises

as single entities throughout the period of investigation.

The total number of MNEs in the dataset is 265. For these 265 MNEs we count 827 new subsidiaries

established or acquired and 930 existing subsidiaries, for a total of 1757 subsidiaries. These are the

result of either greenfield investments by MNE parent companies themselves, or acquisitions through

mergers or acquisitions.

Given that our paper generalizes the study of firm growth to alternative metrics of size, in the rest

of this section we describe the behavior of each measure that our database allows for.

We directly use the information on subsidiaries to generate an initial discrete measure of MNE size:

the cumulated number of subsidiaries acquired over time. We indirectly utilize the data on subsidiaries

to construct a second discrete variable of MNE size: the cumulated number of opportunities, alias

expansions, captured over time.19

All in all the size metrics we make use of, are the following:

1. Discrete metrics:

(a) sopit is the stock of business opportunities captured by the MNE i up to period t. It serves as

our most straightforward measure of size, that we use to investigate the dynamics of MNE

expansion.

(b) ssuit is the total number of pharmaceutical-related subsidiaries the MNE i has established or

acquired up to year t.

2. Quasi-continuous metric:

(a) lsorit is the log transformation of MNE i’s operational revenues.20 This is a stock variable

obtained by summing up, each year, operational revenues of all pharmaceutical-related

subsidiaries belonging to that MNE, and taking its logarithm.

19Our dataset allows us to trace the absolute growth (the flow) of the two aforementioned discrete metrics, back to the
year 1983. One issue we had to cope with is that size (the stock) at year 1983 was only available for the metric “number of
subsidiaries”. In order to get around this issue, we proxied size measured by the total “number of opportunities” at year
1983, in the following way. For the time span 1983-2004, we obtained the cumulative absolute growth of both number of
opportunities and number of subsidiaries. For the specified period, we calculated the ratio between cumulated number of
opportunities and cumulated number of subsidiaries. Next, under the assumption of regularity in the expansion process,
we approximated the cumulated number of opportunities for 1983 by multiplying our computed ratio with the number
of subsidiaries acquired by the MNEs up to 1983.

20As operational revenues is a (quasi-) continuous random variable, we take its log as we wish to test if the distribution
is lognormal.
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Table 2 provides valuable information on our metrics. The first row displays several statistics that

should facilitate an understanding of the expansion process, yopit . We see that the average absolute

growth of opportunities captured by the cross-section of MNEs, i.e. the share of MNEs that have

expanded in a given period, ranges between 14 and 22 per cent most of the time, before shrinking to

lower values after 2001. The second row documents the statistics for the stock of opportunities, sopit .

We note that the US company Schering Plough (S.P.) holds the largest number of opportunities, a

number that rises from 23 to 24, before being overtaken in 2004 by the Swiss company Novartis, with

its 25 opportunities. The MNEs’ average number of opportunities increases about a unit during the

period of investigation, but that comes along with a rise in the dispersion. Skewness does not follow

the same trend as it slightly contracts during the period. A similar set of statistics is documented for

number of subsidiaries. Once more, we describe first the absolute growth of this metric. We notice that

the largest growth occurs in year 2000 when the largest MNE establishes or acquires 17 subsidiaries.

Year 2000 is certainly a boom year, as it displays the largest increase in the industry, with 84 new

subsidiaries attained in total. Average growth in number of subsidiaries shares a downward trend

with the average growth in number of opportunities. What differs here is the dispersion, in this case

marked by a positive trend with a rather oscillating behavior. If we convey our attention to the stock

of subsidiaries, ssuit , we directly observe the evolution of the largest company Novartis, which steadily

grows over time, reaching a count of 49 subsidiaries in 2000. From year 2003 Pfizer takes over the

lead, eventually holding 55 subsidiaries in 2004.21 MNEs hold, on average, 4.86 subsidiaries in 1990

and that number grows to 6.63 in 2004. It also happens that the inequality in subsidiary ownership

increases over time, as indicated by the upward movement of standard deviation and skewness.

Table 2 additionally provides statistics for our (quasi-) continuous metric of size, operational rev-

enues, sorit . Here, the quality of the Amadeus dataset limits the time span of availability to the period

1995 to 2003, as too many missing values were present prior to 1995, and there was no usable infor-

mation in 2004. Missing values were also present in the time span 1995-2003, starting with a total of

67 observations (out of 226) in year 1995 and dropping to a negligible 5 observations (out of 265) in

year 2003.22 It is worthwhile mentioning that in order to make the table more readable all statistics of

operational revenues, aside from skewness, are expressed in millions of dollars. Skewness is related to

the log transformation of operational revenue, which is the variable that we use in the Copula approach

21Pfizer (US) acquired Pharmacia & Upjohn (UK) in 2003.
22At the beginning of this section we praise the Amadeus dataset but one serious problem we came across is the large

number of missing values that relevant variables such as profit, employment etc. presented. Due to this issue, we found
operational revenues to be the only continuous variable that was worth using.
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and in the simulations.23 The table reveals that the leading MNE in terms of operational revenues

is Bayer, which retains the leading position for most of the period of interest. Operational revenues,

dispersion and skewness all grow over time, and almost double their values from 1995 to 2003.

We provide further evidence on the behavior of the three size metrics by inspecting the frequencies

and distributions. We plot the histograms of the three size metrics in Figure 1 for the first and last

year of the sample in which all metrics are available, i.e 1995 and 2003. An examination of the two

discrete metrics of size, sop and ssu, confirms that the size distribution of the European pharmaceutical

industry is skewed towards small firms. The number of MNEs increases from 226 to 265, between 1995

and 2003, and this makes the visual comparison of the two time periods more difficult. The values

of skewness reported in Table 2 help our reading of the figures, suggesting an almost unnoticeable

contraction in skewness, if we compare Sub-figures 1(a) with 1(d), and an increase in skewness, if the

comparison is between Sub-figures 1(b) and 1(e). The remaining Sub-figures, 1(c) and 1(f), depict the

frequency of the log of operational revenues. The histogram resembles more of a normal distribution

(which would approximate lognormality of operational revenues) but still presents a certain degree of

skewness, as confirmed by the statistics reported in Table 2. At the lower end of the distribution of

1995 the prominent bar of zeros indicates that there are several firms with zero operational revenues.

By 2003 the number of MNEs with zero operational revenue reduces markedly.

We have emphasized the role of skewness above, as this statistic has been at the core of study of

the growth-of-firms literature.

The last rows of Table 2 add information on the break-down of the number of MNEs in our sample

by the geographical location of the headquarters (EU, US, Other). Furthermore, statistics are included

indicating the number of new entrants each year. We note that the number of new entrants reaches

a peak of 8 MNEs in 1996 and 1998 and decreases thereafter, vanishing by 2004. Relative to the full

sample of MNEs, new entrants have a very marginal role, never going beyond 3.5 per cent. The fact

that this particular industry displays “weak” dynamics of entry is convenient, because it allows one

to ignore the aforementioned concern that Gibrat’s law might be rendered invalid in light of excessive

entry and exit, recalling that exit is not documented in our dataset. In the last line, we document the

frequency that an opportunity is captured by a new entrant, and we see an oscillating trend that goes

from 0 to 19 per cent.

In addition to the frequency histograms, we plot in Figure 2 the empirical cumulative density func-

23We define the log of a transformation of sor as: lsor ≡ log(1 + sor).
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tions (ECDF) for the normalized measures of size. We observe that in 1995 the ECDFs of the discrete

metrics sop and ssu track one another, highlighting the high proportion of firms with a low value of

these discrete measures of size. Such a pattern is not shared by the ECDF of the log of sor. The latter

is less skewed and closely resembles a normal distribution. In 2003 the ECDF lines for sop and ssu

depart from one another - a trend that we expected, given the skewness statistics reported in Table 2.

As for the ECDF of lsor, we do not notice much difference from the 1995 line.

The cross-analysis of the descriptive statistics from Table 2, and the visual inspections of Figure 1

and Figure 2, convey the following message. While the discrete measures of size share, with the ex-

ception of skewness, all their trends, the (quasi-) continuous metric of size seems to exhibit a different

behavior. If we were to draw conclusions from these descriptive statistics we would state that only the

discrete measures of size co-move. This would be a shallow statement as we need further investigation.

In order to produce a more reliable study of the cross-relation of the variables, we appeal to a Copula

approach. If we can show with this method that all the metrics of size concord, then it would be

enough to analyze the growth dynamics of any metric, and in that case, why not choose the most

straightforward one?

Given that the second purpose of the paper is to estimate a dynamic model of pharmaceutical

MNE growth relying on size measured by number of opportunities, we now discuss the explanatory

variables that we use in our estimations:

1. yopi,t−1 is a one-year lagged dependent variable, which equals 1 if some subsidiaries were established

or acquired between t − 2 and t − 1, i.e., the MNE i captured an opportunity in the previous

period.

2. Two dummy variables for ownership: eui and usi. They take value 1 if the MNE i has head-

quarters located in the EU or in the US, respectively, and zero otherwise. The reference group

is Other.

3. sopi,t−1 is the stock of business opportunities captured by the MNE i up to period t− 1.

4. Instruments s̄opi and agei,89.

(a) s̄opi is the time mean of sopi,t−1.

(b) agei,89 is the pre-sample MNE age in 1989 (t=-1 in our notation), postulated to be exoge-

nous.
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The next section discusses our results.

5 Results

As mentioned in previous sections, the proper way to link a mixture of discrete and continuous vari-

ables or, generally speaking, variables that come from different distributions, is to utilize a multivariate

distribution that has marginals uniform over [0,1], i.e. to employ a Copula approach. We start this

section by discussing the results obtained from applying this technique to our data.

In order to be able to estimate the Copula, we first fit the parametric distributions of the various

measures of size. Table 3 exhibits, for each time period, the estimated parameters of distributions

with positive support. We investigate four discrete distributions - Exponential, Geometric, Negative-

Binomial and Poisson - and four continuous distributions - Normal, Exponential, Gamma and Weibull.

Most of the distributions rely on one parameter, except for the Negative-Binomial, Normal and Gamma,

which rely on two.24 We only fit the distributions of the various metrics of size for the period 1995-

2003 as the data on operational revenues are limited to that time span. The first panel of Table 3,

investigates size measured by cumulated number of opportunities. Here, it is the Geometric distribu-

tion that gives the best fit, as one can see from the Pearson χ2 goodness-of-fit statistic.25 The same

parametric distribution also provides the best approximation for size measured by cumulated number

of subsidiaries, though in this instance we point out the fact that the statistic is only accepted at the

1 per cent level in some cases. As for the (quasi-) continuous metric, the log of a transformation of

operational revenues, we select the Weibull distribution and remark on the fact that in two periods the

statistic is accepted only at the 1 per cent level. The last column of Table 3 shows the results for the

pooled data. None of the distributions that we investigate describes satisfactorily the entire period.

With the parametric distributions on hand for each time period, we have all the information re-

quired to fit a parametric Copula. We utilize the package copula written in R.26 We fit, by maximum

likelihood, the most popular classes of Copulas: Elliptical (Normal) and Archimedean (Clayton, Frank

and Gumbel). For all time periods, Table 4 provides the estimated parameters which are: the marginal

24We have utilized libraries in R to fit the distributions. Refer to Ricci (2005) for details on the procedures adopted.
25The Pearson χ2 goodness-of-fit computation, divides the data into J bins and tests the following statistic:

χ2 =

J∑
j=1

(Oj − Ej)2

Ej
,

where Oj is the observed frequency for bin j and Ej is the expected frequency of bin j (calculated from the chosen
CDF).

26Consult Yan (2007) and Kojadinovic and Yan (2010) for a detailed exposition of the technique.
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parameters and, either the concordance coefficients for the Elliptical Copula, or the Copula parameter

for the Archimedean Copula. The arguments of the likelihood maximization are: the concordance

coefficients, the Copula parameter and the new marginal parameters. We look at the log-likelihood

values and choose as best fitting Copula the Elliptical Normal Copula.

Relevant to our paper is the evidence of strong concordance of the three variates, as confirmed by

the high positive values of the Spearman’s % estimated parameters.27 This result relaxes the choice of

our metric. So, we choose as our measure of size the cumulated number of expansions/opportunities,

sop. We utilize this metric, not only because we believe it is the most straightforward measure, but

also because we think it is a building block of the remaining metrics.28

In order to evaluate the accuracy of the employed Copula we simulate, for all time periods and

metrics of size, 1000 observations.29 Of those, each period we retain the Mt observations that have

the simulated cumulated number of opportunities, s̃op, closest to the true observed values sop, i.e. we

condition the Copula simulations on the values of size measured by number of opportunities.30 That

is, we get conditionally on the observed sop, the simulated values for the remaining two metrics. We

repeat this procedure bs = 100 times. Table 5 displays statistics on the goodness-of-fit of the Cop-

ula, inclusive of a 95 per cent empirical confidence interval. In its first column we have the average

(over the bs repetitions) simulated coefficient of determination, which tells us that conditioning on the

number of opportunities, on average we are able to simulate correctly almost 80 per cent of number of

subsidiaries and over 60 per cent of the log of operational revenues. As can be seen from the 95 per

cent empirical confidence intervals, both coefficients of determination are highly concentrated. This

signals that we have a fair methodology to move from one metric to another. To validate further the

estimated Copula, in its second column Table 5 reports the average simulated p-value of the Pearson

χ2 test for the equality of the simulated distributions and the distributions observed in our data. With

a probability value of 5 per cent we accept, in all time periods, the equality of distributions of the

number of subsidiaries. We only accept the first period for the log of operational revenues, but we no-

tice that all time periods satisfy a 1 per cent level test. Overall we judge positively the goodness-of-fit

of the conditional simulations.

At this point, with a selected metric at hand, and a consolidated mapping of metric to metrics at

27Alternatively we could have used Kendall’s τ , as a measure of association.
28Even though technically in our data we derived opportunities from the number of subsidiaries.
29We employed the mvdc function, which is part of the Copula package in R, to obtain our simulations. The mvdc

function requires as inputs the parametric distributions for all variables (size metrics) and their estimated parameters.
30In case of multiplicity of simulated observations close to a certain value of the observed metric, we randomly pick

one of them.
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our disposal, we proceed to the second purpose of the paper: investigating the growth dynamics of

European pharmaceutical MNEs.

We commence with a brief recap. In Section 2 we have related the profit function to a functional

form of any metric of lagged size and some shifters (observable and unobservable). We have further

developed the profit relation into the econometric Eq. (12). In the econometrics section, Section 3,

we have set out the conditions required to estimate the parameters of the binary relation expressed

in Eq. (7) via a dynamic random coefficients Probit estimator. We have pointed out the issue of

possible correlation between the unobserved heterogeneity and a subset of regressors that include the

lagged dependent variable and the sequentially exogenous variables. We have suggested the Mundlak-

Chamberlain correction, as a solution. Now, we analyze the benefit of introducing this correction, in

either a pooled dynamic Probit model or a random effects dynamic Probit model. We impose equicor-

relation, which means that in Eq. (9) we fix δt = 1 for all t = 1, 2, · · · , T and δt = δ0 for t = 0. The

results are documented in Table 6. The introduction of the correction term on the one hand invigorates

the effect of state dependence, on the other hand it produces a significant mean reversion effect on

size. This latter consequence brings into the framework rich trajectories of growth that depend, among

other things, on how far away the MNE is from its long run average size. Another interesting result

we spot in the table is the reduced weight that unobserved heterogeneity carries upon the inclusion of

the Mundlak-Chamberlain correction term in the random effects estimator; as confirmed by the lower

values of the estimated coefficient of intertemporal correlation, ρ̂. A final important finding that we

highlight is the lack of predictive power of the estimations without the Mundlak-Chamberlain adjust-

ment. It strikes us to see how unsuccessful the estimates without the correction term are in predicting

the positive outcomes of expansion. The introduction of the correction term brings the percentages

up to figures above 12 per cent, which is still not high but certainly is encouraging.31

Also, we have stressed that the combination of the balanced part of the panel commencing prior to

our initial period of observation, and a nonlinear dynamic panel model with unobserved heterogeneity,

brings in the problem of possible correlation between the initial conditions and the unobserved hetero-

geneity. In Appendix A we present and review solutions to this initial conditions problem, and set out

several estimation techniques that deal with it directly in Stata. In the same appendix, we show that

all of the solutions, but the “Wooldridge” one, require an initial conditions equation. We specify such

an equation to depend on the constant, area dummies of the headquarters, the pre-sample information

31This is not surprising, given that the binary dependent variable displays zeros 84 per cent of the time.
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on age and the average number of opportunities.

An exhaustive comparison of alternative techniques to estimate a dynamic Probit model with un-

observed heterogeneity is offered in Table 7. All estimation methods use the Mundlak-Chamberlain

correction term. Our first estimate is a pooled Probit, see column one of the table. The point estimate

of the coefficient associated with the lagged dependent variable yi,t−1 is positive and statistically signif-

icant at the 1 per cent level, providing evidence of the theory of maturation: if an MNE has expanded

in the previous period it faces, ceteris paribus, a higher probability of expanding in the current period.

Such an effect can be either reinforced, reduced or even wiped out, by the sum of the product between

the estimated coefficients and their variables, average size s̄opi (a variable that ranges in the interval of

[0.5, 23.6]) and lagged size sopi,t−1 (a variable that ranges in the interval of [0, 24]). The coefficients of

s̄opi and sopi,t−1 are close to one another, but have opposite sign. This implies that if a firm is at its early

stage of growth, with size below its average long-run level, the overall effect on size growth is positive.

As size reaches its average level, the positive boost on growth vanishes, and the effect is reversed after

size overtakes that average value. The area dummies are non-significant, suggesting that the physical

location of the MNE headquarters gives no comparative advantage on growth. This is an effect that

we believe is triggered by the strong deregulation that took place during the Single Market Programme

era.

Now consider the random effects estimator. The point estimate of the parameter associated with

yi,t−1 is smaller than that of the pooled Probit model, though the probability distributions of the two

estimators are not significantly different from one another at the 5 per cent level. The non-significant

discrepancy between the two estimates is explained further if one accounts for the different normal-

ization of the error term, which imposes σ2
u = 1 in the pooled Probit and σ2

ε = 1 in the random

effects estimation. The random effects coefficients need to be multiplied by a factor of
√

1− ρ to be

comparable to those of the pooled Probit (see Arulampalam (1999)), with ρ denoting the equicorre-

lation between the composite error in two time periods.32 However, in our context ρ is estimated to

be very low at ρ̂ = 0.066, suggesting that one has a good enough approximation if the effect of the

normalization is disregarded; this makes the two sets of results directly comparable.33 Although not

too high, we note that the estimated coefficient ρ̂ is significant at the 1 per cent level, which confirms

our suspicion that some intertemporal correlation between uit and uis, with s 6= t, exists.

To deepen our understanding of the effect of state dependence, we calculate the Average Partial

32ρ ≡ Corr (uit, uis) =
σ2
α̃

σ2
α̃+σ2

ε
, for s, t = 1, 2, ..., T ; s 6= t. As ρ is bounded between 0 and 1,

√
1− ρ is smaller than 1.

33Because
√

1− ρ̂ is ≈ 1.
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Effect (APE) from the counterfactual outcome probabilities that rely, for all i and t, on the two ex-

treme states: complete expansion, yi,t−1 = 1, denoted with subscript (1), and absence of expansion,

yi,t−1 = 0, denoted with subscript (0). We compute the expected growth in the two states, as follows:

ŷop(1) =
1

M

M∑
i=1

1

T − τi + 1

T∑
t=τi

Φ[(γ̂ + x1itβ̂1 + x2it(1)β̂2 + x̄2i(1)λ̂1 + ĉit)
√

1− ρ̂]

ŷop(0) =
1

M

M∑
i=1

1

T − τi + 1

T∑
t=τi

Φ[( x1itβ̂1 + x2i(0)

(
β̂2 + λ̂1

)
+ ĉit)

√
1− ρ̂] (14)

where the term
√

1− ρ̂ is used to make the random effects APE comparable to the pooled Probit - a

term that at low values of ρ̂ we suggest can be disregarded. The explanatory variables with subscript

(1) are defined as x2it(1) ≡ x2i0 + t and x̄2i(1) ≡ 2x2i0+T−τi
2 , respectively. The explanatory variables

with subscript (0) are defined as x2i(0) ≡ x2it = x̄2i. The APE is computed as the difference between

ŷop(1) and ŷop(0). The results of the APE are reported in percentages at the bottom of Table 7. The APE

of the pooled Probit model is larger than that of the random effects model by 1.6 percentage points,

suggesting a mild “spurious” state dependence.

We move forward and set out the results now based on an analysis with correction for the initial

conditions problem, starting with Heckman’s solution. We run two alternative econometric estimation

techniques. One relies on Arulampalam and Stewart (2009) and the other on Stewart (2006). We

outline their technicalities in Appendix A.34 We estimate a simplified initial conditions equation,

whose notation is displayed in Eqs. (19) and (20). As mentioned earlier, we use pre-sample age, area

dummies and average (lagged) size as instruments for the correlation between the initial conditions and

the unobserved heterogeneity. Controlling for average size in the initial conditions equation makes the

additional exogenous variable, age, non-significant, but due to data limitations we have no alternative

available. The implication is that we might incur some bias in integrating the initial conditions

out. As for the coefficient of intertemporal equicorrelation, ρ, it is still low and significant at 5 per

cent using Arulampalam and Stewart’s (2009) procedure, but is nearly doubled and highly significant

using Stewart’s (2006) procedure. The discrepancy could be attributed to the different integration

methodologies adopted by the competing methods. Whatever the reason might be for the difference,

we see that about 6 to 12 per cent of the intertemporal correlation is explained by the unobserved

heterogeneity. Wooldridge (2005) offers a second approach to solving the initial conditions problem.

34Due to a failure of convergence of the estimation algorithm, we do not report or discuss the free correlation cases
related to these two estimation techniques.
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Again, we confine our interest to the case of equicorrelation. The results are documented in column five.

We have a new coefficient that is associated with MNE initial expansion. It has a highly significant

positive parameter, hinting that initial expansion produces a persistent long-run effect on absolute

growth. The last attempt to solve the initial conditions problem is offered by Orme’s (2001) two-step

estimator, which is suitable to environments with weak correlation. His methodology brings in a new

variable: the inverse Mill’s ratio, imr. We start by explaining the equicorrelated estimation that is

reported in column six. The inverse Mill’s ratio is significant at the 10 per cent, and the remaining

parameters are very much in line with the estimates indicated by the previous techniques, so we omit

discussing them further. Our last estimation is dedicated to the case of free correlation, i.e. the

instance where we only impose δT = 1, leaving all other δt parameters unconstrained. We study free

correlation under Orme’s (2001) two-step estimator. Table 7, column seven, reports the estimates of

the unconstrained coefficients δt, next to those of the time dummies.

We select as the best estimation technique, the one that predicts correctly the highest percentage

of expansions. This is Arulampalam and Stewart’s (2009) methodology, with an accuracy just above

16 per cent. The results that are going to be discussed in the rest of the section will focus on this

estimation.

In addition to the analysis of state dependence discussed above, the effect of size on expansion

merits closer examination. We are interested in answering the following questions:

1. Does initial size matter in explaining MNEs’ absolute growth?

2. Do MNEs grow along different paths according to their initial sizes?

3. Does Gibrat’s law hold?

In order to respond to these questions we assign the MNEs to five size strata. We construct the strata

from the MNE’s initial size, sopi,90.35 For each stratum, the average expansion is estimated in each

period t as:

ŷoprt =
1

Mrt

∑
i∈Mrt

Φ[(γ̂ + x1itβ̂1 + x2itβ̂2 + x̄2iλ̂1 + ĉit)
√

1− ρ̂] (15)

r = NE, 1, 2, 3, 4 t = τi, τi + 1, · · · , T. (16)

35Because of the discrete nature of sopi,90, each size stratum does not have an equal number of MNEs in it. The first

stratum includes the MNEs that have captured only one opportunity up to year 1990 (27.2 per cent of the sample); the
second stratum those that have sopi,90 ∈ {2, 3} (20 per cent of the sample); the third stratum have sopi,90 ∈ {4, 5, 6} (12.8

per cent of the sample); and the fourth stratum with sopi,90 ≥ 7 (14.7 per cent of the sample). A final stratum contains

the subsample of new entrants (25.3 per cent of the sample)
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where Mrt is the set of MNEs in the rth stratum that are active in period t and Mrt is its number of

elements.

Figure 3 displays the estimated, and observed, average expansion (and its cumulated version) of

the absolute and proportional growth for sop over time and by strata. Sub-figure 3(a) plots the average

expected absolute expansion, i.e. the average probability of expansion. The figure sheds light on the

first question. If we momentarily exclude the new entrants (NE) from the analysis, we observe at

the beginning of the period a clear pattern of positive monotonicity between initial size and absolute

growth. For example, by looking at stratum 4, which includes the largest MNEs in year 1990, we

note that in the early nineties its MNEs had more than double the average probability of success of

MNEs belonging to the second largest stratum, stratum 3. This monotonicity vanishes over time, up

to the point that a common converging path arises for all strata after year 2000. By the end of the

period, year 2004, the average probabilities of expansion are clustered at a level of approximately 10

per cent. During the period the largest MNEs have lost a good bit of their positive momentum. We

have purposely excluded from the discussion the role of new entrants, as these are known to have an

atypical pattern that can undermine Gibrat’s law, as demonstrated in Simon and Ijiri (1977).36 From

Sub-figure 3(a) we observe that the stratum that includes the new entrants carries, on average, a higher

probability of success than stratum 1 and 2, and in certain years even the stratum 3. More importantly,

the NE stratum always exhibits a higher probability of expansion than stratum 1, indicating that a

portion of new entrants moves away from the lowest part of the distribution over time, a trend that is

confirmed in Ijiri and Simon (1964). The fact that all strata converge to a similar value of growth by

the end of the time period, can certainly be explained by the Mundlak-Chamberlain correction which,

being significant, introduces a mean reversion effect in the growth dynamics.

Sub-figure 3(b) represents the cumulated version of Sub-figure 3(a). The particular trends of ex-

pected cumulated expansions that are graphed in the figure, can be used to answer the second question

posed above. Here the strong role of initial size is neatly visible. By the end of the period of investiga-

tion, year 2004, we find that an MNE from the largest stratum (stratum 4) is, on average, expected to

gain about 2.5 new opportunities, versus the 1.5 opportunities of an MNE that belongs to the second

largest stratum (stratum 3). A similar comparison could be extended to the remaining strata. Strata

with different initial sizes seem to converge to different steady state levels, where the convergence to a

steady state here is suggested by the flattening of the paths toward the end of the period. Abstracting

36Even though new entry does not play a major role in this industry as highlighted in Table 2.
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from time effects that illustrate yearly changes common to all MNEs, the strict concavity in the paths,

followed by convergence to a steady state (more marked in the largest stratum (stratum 4)), could be

signalling underlying diseconomies of scale, which might be induced by rising managerial costs or by

transaction costs in large enterprises.

We compare the predicted average absolute growth plotted in Sub-figure 3(a) with the observed

absolute growth graphed in Sub-figure 3(c). While the predicted values emphasize a converging trend

common to all strata, the observed data exhibits a diverging drift for the two largest strata (strata 3

and 4) in the year 2003. Due to the scaling of the data this anomaly is less visible in the cumulative

values plotted in Sub-figures 3(b),(d).

In order to answer the third question, i.e. to have a proper say on Gibrat’s law, we look at growth

defined in proportional terms. Sub-figures 3(e)-(f) graph this information for us. We analyze Sub-

figure 3(e). Not only is Gibrat’s law violated for the stratum of new entrants, a result that confirms

the empirical findings of Lotti et al. (2003) and Calvo (2006), but its violation is also extended to the

stratum of small MNEs that are part of the balanced part of the panel. A violation that might happen

to be worsened if we had data on MNE exit.

We have largely investigated the dynamics of MNEs growth under the metric “number of opportu-

nities”. We wish now to push the analysis further. We exploit our estimated Copula and simulate the

predicted size values for the remaining metrics - a method that saves us from estimating linear and

nonlinear dynamic panel models again and again. We proceed as follows. We utilize the primitives

of our chosen dynamic Probit estimation and predict the size measure “cumulated number of oppor-

tunities”, ŝop.37 We repeat the exercise of drawing 1000 simulations for all periods of time and each

metric of size, but this time we condition the simulations to the predicted number of opportunities ŝop.

Given that we have conditioned the simulations to the estimated value of number of opportunities,

rather than the observed number of opportunities, the first column of Table 8 adds a coefficient of

determination for the distance between this predicted value and its observed value. The coefficient of

determination of ŝop depicts a high explanatory power of the predicted metric, with a modest down-

trend over time. Similarly to Table 5, we report the coefficient of determination and the p-value of the

Pearson χ2 test of equality of distributions for the two conditionally simulated metrics. The results

are similar to those discussed in Table 5, suggesting that it is also true in this case that the simulated

37We construct the variable by adding to its initial size ŝopi,τi−1 (set to 0 for new entrants) the cumulated unitary

expansions that are obtained from tagging an expansion as occurring (= 1), if the predicted probability is above 0.5, as
not occurring (= 0), otherwise.
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distributions are not too far off their corresponding observed distributions. An encouraging result.

We finish this section with an ultimate result on inequalities. For the entire period of investigation,

in Table 9 we report the Gini coefficient of concentration for the Lorenz curves of Sutton’s lower bound,

the observed metrics and the predicted and simulated metrics. The table highlights a few important

facts: i) Sutton’s lower bound is not satisfied for the size metrics sop, ssu (except for years 2002 and

2003) and lsor, but is satisfied for sor; ii) the predicted and simulated metrics generate a pattern

comparable to the original metrics; iii) not surprisingly, the log transformation of operational revenues

gives the lowest inequality. We plot the Lorenz curves in Figure 4. We only present the figure for year

2003. In Sub-figure 4(a) the 45 degree line exhibits the pattern of an equally-distributed size. The fig-

ure confirms that the larger the inequality carried by the metric, the farther the corresponding Lorenz

curve drifts away from the 45 degree line. This behavior is confirmed by all our metrics: sop (dashed

line), ssu (dotted line), sor (short dotted-dashed line) and lsor (dotted-dashed line). Sub-figure 4(b)

repeats the plot for the predicted and simulated size metrics, and the concentration pattern is not

much different from the one just discussed.

6 Conclusions

Prior to selecting a measure (metric) upon which to study the dynamics of firm growth, this paper

undertakes a diligent study of the association between different measures of size. We rely on a Copula

approach and a dataset on pharmaceutical multinationals that allows us to construct three measures of

size, two discrete and one (quasi-) continuous. Only having three metrics to work with is a limitation

dictated by the quality of the data. We have no reliable information that allows us to extend the

analysis further. With this restriction in mind, we believe that investigating the relation between

alternative metrics is a step forward in the literature on firm growth, and generally speaking, in any

literature that utilizes metrics of size. A dataset holding a more exhaustive list of metrics of size could

be exploited to put forward a more complete analysis of association among variables. It would be

informative to discover that there are metrics with very little, or null, concordance.

The results from the Copula estimation provide evidence of concordance in the behavior of the

alternative variates. We base this statement not only on the high values of the estimated concordance

coefficients (always above 75 per cent), but also on the ability of the Copula conditioned on one metric,

to simulate the remaining metrics - as confirmed by the statistics documented in Table 5. Evidence

of strong association in the variates is the “no impediment to” that we needed to freely select the
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metric that we believed to be the most straightforward measure to employ: the cumulated number of

expansions.

With this metric at hand, we proceed further with an analysis which studies the dynamics of the

European pharmaceutical industry within a period of enlargement: the Single Market Programme

(SMP), 1990-2004. Under appropriate assumptions outlined in the paper, we estimate a dynamic

panel random effects Probit model of expansion. In our estimations we did our best to account, on

the one hand for the correlation between the unobserved heterogeneity and the regressors, and on the

other hand for the correlation between the unobserved heterogeneity and the initial conditions. We

present results from alternative estimation techniques. We pick the one that predicts, correctly, the

highest number of opportunities (expansions).

Understanding the evolution of the European pharmaceutical industry during the SMP period, is

key to learning about the resulting configuration of market structure. Disentangling the MNE size

dynamics and testing the theory of firm growth are the essential requirements. Relative to the former,

one of the main findings of the paper is that there is a considerable positive relation between past and

current expansion, i.e. we find evidence of strong state dependence. In a counterfactual, where we

compare the two extreme scenarios of continuous expansion and lack of expansion, we quantify the

average partial effect exerted by the state dependence to be about 25 per cent. We read this percentage

as a sign of the healthy growth that the European pharmaceutical industry carries through the period.

In addition, we uncover that size has a significant mean reversion effect on MNE growth. This effect

is confirmed in our analysis of absolute growth by strata. Initial size matters at the beginning of the

period of investigation, but over time due to the mean reversion impact, such an initial advantage

vanishes. This confirms the theory of maturation, which states that firms face a period of rapid

growth, followed by a slow down, or even a stop in growth. We add onto the analysis the role of

proportional growth by strata, and find out that new entrants have a higher probability of expansion

than the subset of incumbents with low initial size. This finding suggests that Gibrat’s law is invalid

for firms at the lower end of the size distribution. Ultimately, we find that concentration measures

based on the two least heterogeneous size metrics, number of opportunities and number of subsidiaries

do not satisfy Sutton’s lower bound, while the most heterogenous metric, operational revenue leads to

a concentration curve which is well above the lower bound.

At last, it is worth stressing that we have limited the Copula analysis to its static case. We leave

to future research a dynamic investigation of alternative metrics of size.
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Table 1: Size metrics used in previous studies

Size Measure Papers

Assets Hart and Prais (1956), Adelman (1958), Simon and Bonini (1958), Ijiri and
Simon (1964), Samuels (1965), Scherer (1965), Quandt (1966), Samuels and
Smyth (1968), Singh et al. (1968), Radice (1971), Smyth et al. (1975), Dunne
and Hughes (1994), Amaral et al. (1997).

Capital employed Samuels and Chesher (1972), Chesher (1979).

Capital invested Hall and Weiss (1967), Smyth et al. (1975).

Employment Simon and Bonini (1958), Mansfield (1962), Saving (1965), Scherer (1965),
Smyth et al. (1975), Evans (1987b), Hall (1987), Pavitt et al. (1987), Dunne
et al. (1989), Dunne and Hughes (1994), Variyam and Kraybill (1994), Amaral
et al. (1997), Axtell (2001), Cabral and Mata (2003), Lotti et al. (2003), Calvo
(2006).

Input Amaral et al. (1997).

Market valuation Samuels and Smyth (1968), Singh et al. (1968), Radice (1971), Smyth et al.
(1975).

Output Mansfield (1962).

Plants and equipments Amaral et al. (1997).

Profit Hart (1962).

Property Amaral et al. (1997).

Sales Hall and Weiss (1967), Samuels and Smyth (1968), Singh et al. (1968), Radice
(1971), Smyth et al. (1975), Hart and Oulton (1996), Amaral et al. (1997),
Geroski et al. (1997), Sutton (1997b), Bottazzi et al. (2001), Higson et al.
(2002), Bottazzi and Secchi (2005), Bottazzi and Secchi (2006), Buldyrev et al.
(2007), Cefis et al. (2007), Amisano and Giorgetti (2005).

Turnover Freeman (1986), Dunne et al. (1988).
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Table 3: Fitting distributions with positive support
Distribution Param. 1995 1996 1997 1998 1999 2000 2001 2002 2003 95-03

sop

Exponential
rate 0.233 0.231 0.227 0.225 0.221 0.216 0.211 0.210 0.207 0.219
s.e. (0.016) (0.015) (0.015) (0.014) (0.014) (0.014) (0.013) (0.013) (0.013) (0.005)

p− val χ2 [0.168] [0.111] [0.097] [0.043] [0.038] [0.015] [0.008] [0.005] [0.006] [0.000]

Geometric†
prob. 0.189 0.188 0.185 0.184 0.181 0.178 0.174 0.174 0.171 0.180
s.e. (0.011) (0.011) (0.011) (0.011) (0.010) (0.010) (0.010) (0.010) (0.010) (0.003)

p− val χ2 [0.989] [0.938] [0.789] [0.648] [0.685] [0.573] [0.517] [0.535] [0.496] [0.013]

Negative-Binomial

size 1.722 1.658 1.632 1.617 1.622 1.628 1.636 1.611 1.592 1.628
s.e. (0.218) (0.203) (0.196) (0.190) (0.188) (0.186) (0.185) (0.179) (0.176) (0.063)
µ 4.283 4.329 4.406 4.437 4.534 4.628 4.737 4.757 4.834 4.559
s.e. (0.257) (0.258) (0.261) (0.259) (0.262) (0.264) (0.267) (0.267) (0.271) (0.088)

p− val χ2 [0.024] [0.011] [0.018] [0.009] [0.006] [0.002] [0.001] [0.001] [0.001] [0.000]

Poisson
λ 4.283 4.329 4.406 4.437 4.534 4.629 4.737 4.758 4.834 4.559

s.e. (0.138) (0.136) (0.136) (0.134) (0.134) (0.134) (0.135) (0.134) (0.135) (0.045)
p− val χ2 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

ssu

Exponential
rate 0.183 0.179 0.175 0.173 0.170 0.163 0.158 0.158 0.154 0.167
s.e. (0.012) (0.012) (0.011) (0.011) (0.011) (0.010) (0.010) (0.010) (0.009) (0.004)

p− val χ2 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Geometric†
prob. 0.155 0.152 0.149 0.148 0.145 0.140 0.137 0.136 0.134 0.143
s.e. (0.010) (0.009) (0.009) (0.009) (0.008) (0.008) (0.008) (0.008) (0.008) (0.003)

p− val χ2 [0.046] [0.072] [0.110] [0.133] [0.086] [0.029] [0.065] [0.071] [0.027] [0.000]

Negative-Binomial

size 1.213 1.173 1.157 1.146 1.151 1.118 1.111 1.094 1.074 1.130
s.e. (0.131) (0.123) (0.119) (0.115) (0.114) (0.108) (0.107) (0.104) (0.101) (0.037)
µ 5.460 5.577 5.707 5.777 5.896 6.133 6.313 6.345 6.487 5.983
s.e. (0.365) (0.371) (0.376) (0.376) (0.379) (0.394) (0.403) (0.404) (0.415) (0.130)

p− val χ2 [0.001] [0.005] [0.007] [0.008] [0.004] [0.002] [0.004] [0.009] [0.003] [0.000]

Poisson
λ 5.460 5.577 5.707 5.777 5.896 6.133 6.313 6.345 6.487 5.983

s.e. (0.155) (0.154) (0.155) (0.153) (0.153) (0.155) (0.156) (0.155) (0.156) (0.052)
p− val χ2 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

lsor∗

Normal

mean 4.575 4.618 4.696 4.785 4.726 4.664 4.734 4.897 5.120 4.768
s.e. (0.143) (0.141) (0.137) (0.135) (0.131) (0.132) (0.129) (0.127) (0.124) (0.044)
s.d. 2.007 2.014 2.009 2.001 2.007 2.051 2.039 2.031 2.001 2.025
s.e. (0.101) (0.099) (0.097) (0.095) (0.093) (0.093) (0.092) (0.090) (0.088) (0.031)

p− val χ2 [0.006] [0.002] [0.001] [0.001] [0.001] [0.000] [0.000] [0.012] [0.002] [0.000]

Exponential
rate 0.219 0.217 0.213 0.209 0.212 0.214 0.211 0.204 0.195 0.210
s.e. (0.016) (0.015) (0.015) (0.014) (0.014) (0.014) (0.013) (0.013) (0.012) (0.005)

p− val χ2 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Gamma

shape 3.889 3.883 4.283 4.778 4.919 4.177 4.390 4.646 5.197 4.428
s.e. (0.375) (0.368) (0.398) (0.440) (0.441) (0.366) (0.380) (0.396) (0.442) (0.132)
rate 0.850 0.841 0.912 0.998 1.041 0.895 0.927 0.949 1.015 0.929
s.e. (0.088) (0.085) (0.090) (0.097) (0.098) (0.083) (0.085) (0.085) (0.091) (0.029)

p− val χ2 [0.041] [0.033] [0.105] [0.079] [0.112] [0.028] [0.040] [0.196] [0.365] [0.000]

Weibull†

shape 2.378 2.386 2.451 2.535 2.515 2.391 2.438 2.526 2.675 2.475
s.e. (0.133) (0.131) (0.130) (0.132) (0.127) (0.120) (0.120) (0.121) (0.127) (0.042)
scale 5.139 5.183 5.277 5.384 5.329 5.249 5.324 5.499 5.735 5.360
s.e. (0.161) (0.159) (0.154) (0.150) (0.146) (0.148) (0.146) (0.143) (0.140) (0.050)

p− val χ2 [0.152] [0.105] [0.114] [0.080] [0.090] [0.031] [0.020] [0.374] [0.116] [0.000]

† Selected distribution based on the Pearson χ2 test.
∗ Due to a lack of data the variable presents, in subsequent period, the following number of missing values:

67, 60, 50, 44, 32, 23, 17, 8 and 5.

30



Table 4: Fitting Copulas
Copula Marginal parameter Concordance coefficient Copula parameter Log-likelihood

probop probsu shapeor scaleor %op,su %op,or %su,or % ll

1995

Elliptical Normal†
0.204 0.172 2.078 4.654 0.929 0.780 0.787

-6,108
(0.006) (0.005) (0.044) (0.071) (0.003) (0.011) (0.011)

Archimedean

Clayton
0.204 0.168 1.669 4.549 2.681

-6,678
(0.005) (0.004) (0.032) (0.073) (0.090)

Frank
0.193 0.162 2.198 4.944 2.697

-7,306
(0.005) (0.004) (0.056) (0.071) (0.154)

Gumbel
0.194 0.165 2.062 4.655 2.023

-6,590
(0.005) (0.005) (0.035) (0.071) (0.050)

1996

Elliptical Normal†
0.193 0.162 2.039 4.646 0.925 0.789 0.780

-6,226
(0.006) (0.005) (0.042) (0.072) (0.004) (0.011) (0.011)

Archimedean

Clayton
0.204 0.182 1.706 4.551 2.574

-6,644
(0.005) (0.005) (0.036) (0.072) (0.092)

Frank
0.192 0.160 2.196 4.977 2.404

-7,360
(0.005) (0.004) (0.056) (0.072) (0.152)

Gumbel
0.191 0.160 2.128 4.814 2.113

-6,609
(0.005) (0.004) (0.035) (0.070) (0.052)

1997

Elliptical Normal†
0.186 0.157 2.088 4.855 0.934 0.805 0.802

-6,229
(0.005) (0.005) (0.042) (0.073) (0.003) (0.010) (0.010)

Archimedean

Clayton
0.202 0.164 1.821 4.676 2.528

-6,720
(0.005) (0.004) (0.036) (0.069) (0.088)

Frank
0.190 0.151 2.254 5.013 2.351

-7,444
(0.005) (0.004) (0.058) (0.071) (0.149)

Gumbel
0.196 0.164 2.188 4.786 1.970

-6,642
(0.005) (0.005) (0.041) (0.068) (0.048)

1998

Elliptical Normal†
0.188 0.158 2.112 4.924 0.926 0.797 0.798

-6,295
(0.005) (0.005) (0.043) (0.074) (0.004) (0.010) (0.010)

Archimedean

Clayton
0.201 0.171 1.758 4.827 2.623

-6,708
(0.005) (0.004) (0.034) (0.074) (0.090)

Frank
0.186 0.160 2.464 5.151 2.482

-7,329
(0.005) (0.004) (0.062) (0.066) (0.152)

Gumbel
0.201 0.163 2.259 4.860 2.025

-6,580
(0.005) (0.004) (0.039) (0.067) (0.050)

1999

Elliptical Normal†
0.199 0.162 2.555 4.863 0.930 0.782 0.769

-6,145
(0.006) (0.005) (0.046) (0.069) (0.003) (0.011) (0.011)

Archimedean

Clayton
0.196 0.164 1.783 4.743 2.407

-6,788
(0.005) (0.004) (0.036) (0.071) (0.084)

Frank
0.197 0.152 2.268 5.061 2.319

-7,370
(0.005) (0.004) (0.058) (0.071) (0.147)

Gumbel
0.183 0.148 2.275 5.027 2.053

-6,758
(0.005) (0.004) (0.040) (0.069) (0.050)

31



Table 4: Fitting Copulas (cont.)
Copula Marginal parameter Concordance coefficient Copula parameter Log-likelihood

probop probsu shapeor scaleor %op,su %op,or %su,or % ll

2000

Elliptical Normal†
0.197 0.159 2.125 4.711 0.902 0.788 0.779

-6,329
(0.006) (0.005) (0.044) (0.070) (0.005) (0.011) (0.011)

Archimedean

Clayton
0.192 0.158 1.739 4.636 2.382

-6,899
(0.005) (0.004) (0.035) (0.072) (0.085)

Frank
0.182 0.147 2.272 5.064 2.562

-7,490
(0.005) (0.004) (0.057) (0.070) (0.148)

Gumbel
0.186 0.147 2.118 4.867 2.055

-6,779
(0.005) (0.004) (0.036) (0.072) (0.050)

2001

Elliptical Normal†
0.183 0.147 2.126 4.877 0.911 0.813 0.807

-6,404
(0.005) (0.004) (0.041) (0.073) (0.004) (0.010) (0.010)

Archimedean

Clayton
0.186 0.156 1.780 4.744 2.475

-6,865
(0.005) (0.004) (0.034) (0.071) (0.084)

Frank
0.180 0.136 2.277 5.113 2.505

-7,581
(0.005) (0.004) (0.058) (0.071) (0.152)

Gumbel
0.178 0.148 2.151 4.890 2.052

-6,806
(0.005) (0.004) (0.038) (0.071) (0.050)

2002

Elliptical Normal†
0.183 0.146 2.195 5.101 0.920 0.822 0.802

-6,402
(0.005) (0.004) (0.043) (0.073) (0.004) (0.009) (0.010)

Archimedean

Clayton
0.186 0.148 1.868 5.024 2.519

-6,976
(0.005) (0.004) (0.036) (0.072) (0.087)

Frank
0.181 0.140 2.408 5.279 2.180

-7,553
(0.005) (0.004) (0.061) (0.070) (0.147)

Gumbel
0.180 0.143 2.343 5.187 2.057

-6,847
(0.005) (0.004) (0.040) (0.069) (0.050)

2003

Elliptical Normal†
0.177 0.144 2.278 5.263 0.893 0.833 0.800

-6,525
(0.005) (0.004) (0.043) (0.073) (0.005) (0.009) (0.010)

Archimedean

Clayton
0.179 0.147 2.006 5.263 2.407

-7,054
(0.004) (0.004) (0.040) (0.070) (0.085)

Frank
0.173 0.142 2.507 5.479 2.329

-7,561
(0.005) (0.004) (0.063) (0.070) (0.154)

Gumbel
0.180 0.145 4.463 5.395 2.016

-6,848
(0.005) (0.004) (0.042) (0.068) (0.049)

† Selected Copula based on the log-likelihood value reported in the last column.
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Table 5: Coefficient of determination and Pearson’s χ2 test of equality of distributions

Year s̃su† l̃s
or†

s̃su† l̃s
or†

R2 p− value χ2

1995
0.778 0.597 0.211 0.072

[0.771,0.786] [0.593,0.601] [0.001,0.853] [0.000,0.579]

1996
0.773 0.596 0.304 0.043

[0.765,0.783] [0.591,0.600] [0.003,0.930] [0.000,0.432]

1997
0.778 0.605 0.329 0.012

[0.770,0.787] [0.602,0.608] [0.008,0.913] [0.000,0.127]

1998
0.770 0.584 0.362 0.013

[0.761,0.781] [0.582,0.587] [0.006,0.942] [0.000,0.158]

1999
0.779 0.600 0.291 0.049

[0.771,0.789] [0.597,0.602] [0.005,0.832] [0.000,0.451]

2000
0.726 0.607 0.122 0.038

[0.716,0.737] [0.602,0.611] [0.000,0.631] [0.000,0.350]

2001
0.726 0.628 0.143 0.030

[0.716,0.737] [0.623,0.632] [0.000,0.684] [0.000,0.277]

2002
0.732 0.653 0.147 0.037

[0.722,0.741] [0.652,0.655] [0.000,0.696] [0.000,0.378]

2003
0.703 0.661 0.066 0.029

[0.693,0.715] [0.657,0.663] [0.000,0.456] [0.000,0.289]

In square brackets 95 per cent empirical confidence interval.
† Simulations from Copula, conditioning on sop.

Table 6: Dynamic panel Probit estimation. Dependent variable yit. Impact of Mundlak-Chamberlain
(MC) correction.

Variable Pooled† Random Effect†† Pooled† Random Effect††

no MC correction no MC correction MC correction MC correction
Const [β1,0] -1.755*** -1.804*** -1.339*** -1.371***

(0.151) (0.162) (0.144) (0.147)
yi,t−1 [γ] 0.369*** 0.144* 0.571*** 0.456***

(0.065) (0.079) (0.070) (0.083)
sopi,t−1 [β2,1] 0.039*** 0.032*** -0.538*** -0.530***

(0.008) (0.009) (0.074) (0.040)
s̄opi [λ1,1] 0.594*** 0.591***

(0.072) (0.041)
eui [β1,1] -0.112 -0.137 -0.096 -0.103

(0.079) (0.103) (0.073) (0.089)
usi [β1,2] 0.068 0.076 0.062 0.058

(0.107) (0.128) (0.103) (0.109)
Year dummies yes yes yes yes
ρ 0.149*** 0.066***

(0.033) (0.025)
Statistics
APE of yi,t−1 17.3 8.5 34.4 32.8
Percentage of positive 0.96 0.00 14.2 12.1
predicted outcomes
Log-likelihood -1370.2 -1351.7 -1242.3 -1237.6
BIC 2886.5 2857.7 2638.9 2637.6
N. of observations 3369 3369 3369 3369
† Clustered standard errors in brackets.
†† Robust standard errors in brackets, computed using Fisher’s information matrix.
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Table 7: Dynamic panel Probit estimation. Dependent variable yit
Variable Pooled† Random Effect†† Arulampalam Stewart EC†† Wooldridge EC†† Orme EC†† Orme FC††,†††

& Stewart EC††
Main equation
Const [β1,0] -1.339*** -1.371*** -1.279*** -1.500*** -1.464*** -1.020*** -0.985***

(0.144) (0.147) (0.138) (0.186) (0.152) (0.149) (0.194)
yi,t−1 [γ] 0.571*** 0.456*** 0.462*** 0.474*** 0.415*** 0.420*** 0.422***

(0.070) (0.083) (0.077) (0.093) (0.083) (0.083) (0.084)
eui [β1,1] -0.096 -0.103 -0.093 -0.106 -0.092 -0.094 -0.092

(0.073) (0.089) (0.078) (0.118) (0.090) (0.089) (0.090)
usi [β1,2] 0.062 0.058 0.060 0.046 0.046 0.015 0.016

(0.103) (0.109) (0.107) (0.145) (0.111) (0.109) (0.111)

s
op
i,t−1

[β2,1] -0.538*** -0.530*** -0.549*** -0.435*** -0.512*** -0.520*** -0.520***

(0.074) (0.040) (0.075) (0.043) (0.040) (0.040) (0.041)

s̄
op
i

[λ1,1] 0.594*** 0.591*** 0.610*** 0.510*** 0.571*** 0.572*** 0.572***

(0.072) (0.041) (0.073) (0.044) (0.041) (0.041) (0.042)
yi,90 [µ0] 0.214***

(0.074)

Initial condition
equation (1990)
Const [η1] -2.246*** -2.266*** -2.219*** -2.219***

(0.432) (0.421) (0.408) (0.408)
eui [η2] 0.469 0.467 0.461 0.461

(0.404) (0.392) (0.389) (0.389)
usi [η3] 0.433 0.432 0.433 0.441

(0.506) (0.445) (0.433) (0.441)
agei,89 [η4] -0.004 -0.004 -0.004 -0.004

(0.005) (0.005) (0.005) (0.005)

s̄
op
i

[λ0,1] 0.178*** 0.180*** 0.178*** 0.178***

(0.033) (0.033) (0.032) (0.032)
imr αi [δ0] 1.483 0.375 -0.207*** -0.244*

(0.902) (0.518) (0.044) (0.133)

t91 [β1,3] | αi [δ1] -0.679*** -0.675*** -0.804*** -0.614*** -0.610*** -0.672*** -1.023*** | 0.272

(0.186) (0.198) (0.192) (0.223) (0.200) (0.194) (0.355) | (0.225)
t92 [β1,4] | αi [δ2] -0.707*** -0.719*** -0.843*** -0.783*** -0.665** -0.729*** -0.642*** | -0.068

(0.182) (0.195) (0.187) (0.225) (0.197) (0.191) (0.324) | (0.222)
t93 [β1,5] | αi [δ3] -0.710*** -0.735*** -0.855*** -0.776*** -0.688*** -0.752*** -0.823** | 0.063

(0.174) (0.195) (0.177) (0.225) (0.197) (0.191) (0.323) | (0.223)
t94 [β1,6] | αi [δ4] -0.182 -0.184 -0.298* -0.237 -0.143 -0.206 -0.091 | -0.086

(0.159) (0.176) (0.157) (0.204) (0.177) (0.172) (0.285) | (0.197)
t95 [β1,7] | αi [δ5] -0.326** -0.329* -0.439*** -0.349* -0.288 -0.348** -0.274 | -0.055

(0.147) (0.178) (0.146) (0.205) (0.180) (0.174) (0.291) | (0.205)
t96 [β1,8] | αi [δ6] -0.067 -0.066 -0.171 -0.157 -0.034 -0.098 0.132 | -0.190

(0.148) (0.168) (0.146) (0.196) (0.169) (0.164) (0.265) | (0.191)
t97 [β1,9] | αi [δ7] -0.077 -0.071 -0.173 -0.109 -0.046 -0.108 -0.094 | -0.007

(0.149) (0.167) (0.144) (0.193) (0.168) (0.162) (0.263) | (0.189)
t98 [β1,10] | αi [δ8] 0.070 0.074 -0.023 -0.025 0.093 0.026 0.068 | -0.032

(0.148) (0.162) (0.143) (0.190) (0.163) (0.157) (0.249) | (0.181)
t99 [β1,11] | αi [δ9] 0.134 0.140 0.046 0.164 0.158 0.093 -0.099 | 0.166

(0.144) (0.160) (0.139) (0.184) (0.161) (0.155) (0.251) | (0.179)
t00 [β1,12] | αi [δ10] 0.295** 0.303* 0.212 0.277 0.315** 0.250* 0.176 | 0.067

(0.145) (0.157) (0.137) (0.181) (0.157) (0.152) (0.241) | (0.175)
t01 [β1,13] | αi [δ11] 0.312** 0.322** 0.234* 0.315* 0.328** 0.265* 0.064 | 0.175

(0.145) (0.156) (0.139) (0.180) (0.157) (0.151) (0.243) | (0.174)
t02 [β1,14] | αi [δ12] 0.164 0.163 0.079 0.082 0.164 0.092 -0.014 | 0.098

(0.151) (0.161) (0.145) (0.189) (0.162) (0.157) (0.246) | (0.179)
t03 [β1,15] | αi [δ13] 0.164 0.161 0.079 0.159 0.158 0.085 0.059 | 0.026

(0.152) (0.163) (0.145) (0.188) (0.164) (0.159) (0.245) | (0.183)

ρ 0.066*** 0.064** 0.116*** 0.072*** 0.063*** 0.067***
(0.025) (0.017) (0.033) (0.025) (0.024) (0.025)

APE of yi,t−1 34.4 32.8 25.0 39.3 31.6 30.9 30.4

Percentage of positive 14.2 12.1 16.7 13.9 12.5 13.7 14.6
predicted outcomes

Statistics
Log-likelihood -1242.3 -1237.6 -1312.5 -1046.0 -1233.1 -1232.4 -1227.8
BIC 2638.9 2637.6 2837.7 2304.8 2636.8 2635.5 2731.8
N. of the main equation 3369 3369 3375 3375 3369 3375 3375
N. of the initial equation na na 198 198 na 198 198

† Clustered standard errors in brackets.
†† Robust standard errors in brackets, computed using Fisher’s information matrix.
††† Free correlation parameters and robust standard errors after the slash punctuation.
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Table 8: Coefficient of determination and Pearson’s χ2 test of equality of distributions

Year ŝop ˜̃ssu† ˜̃lsor† ˜̃ssu† ˜̃lsor†

R2 p− value χ2

1995
0.951 0.764 0.575 0.366 0.234

[0.950,0.952] [0.757,0.772] [0.570,0.580] [0.003,0.954] [0.000,0.938]

1996
0.936 0.733 0.574 0.359 0.181

[0.935,0.937] [0.725,0.743] [0.567,0.580] [0.003,0.915] [0.000,0.861]

1997
0.930 0.723 0.559 0.320 0.070

[0.929,0.931] [0.713,0.732] [0.548,0.569] [0.003,0.862] [0.000,0.555]

1998
0.920 0.704 0.536 0.274 0.070

[0.919,0.921] [0.694,0.716] [0.523,0.549] [0.001,0.804] [0.000,0.640]

1999
0.910 0.693 0.523 0.201 0.094

[0.908,0.912] [0.682,0.705] [0.508,0.538] [0.000,0.731] [0.000,0.644]

2000
0.897 0.614 0.507 0.302 0.055

[0.895,0.899] [0.601,0.629] [0.492,0.522] [0.002,0.889] [0.000,0.449]

2001
0.881 0.589 0.496 0.138 0.042

[0.879,0.884] [0.574,0.604] [0.480,0.512] [0.000,0.611] [0.000,0.359]

2002
0.871 0.578 0.473 0.072 0.042

[0.869,0.874] [0.566,0.593] [0.454,0.493] [0.000,0.435] [0.000,0.389]

2003
0.863 0.541 0.449 0.095 0.043

[0.860,0.865] [0.525,0.558] [0.427,0.473] [0.000,0.523] [0.000,0.363]

In square brackets 95 per cent empirical confidence interval.

† Simulations from Copula, conditional to the estimated ŝop.

Table 9: Gini Coefficient

Year Sutton’s lb sop ssu lsor sor ŝop ˜̃ssu† ˜̃
lsor† ˜̃sor†

1995 0.556 0.473 0.528 0.247 0.846 0.521 0.475 0.158 0.771

1996 0.556 0.475 0.533 0.245 0.851 0.528 0.473 0.160 0.790

1997 0.556 0.481 0.540 0.240 0.859 0.536 0.484 0.157 0.794

1998 0.556 0.481 0.540 0.235 0.854 0.540 0.481 0.150 0.795

1999 0.556 0.488 0.547 0.239 0.855 0.544 0.487 0.148 0.795

2000 0.556 0.488 0.554 0.248 0.860 0.547 0.472 0.156 0.819

2001 0.556 0.487 0.554 0.242 0.862 0.548 0.476 0.158 0.830

2002 0.556 0.493 0.560 0.233 0.861 0.550 0.483 0.150 0.825

2003 0.556 0.496 0.564 0.218 0.862 0.550 0.462 0.143 0.821

† Simulations from Copula, conditional to the estimated ŝop.
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Figure 1: Histograms
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Figure 2: Empirical cumulative density function for normalized measures of size
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Figure 3: Absolute and proportional growth of estimated and observed number of opportunities
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Figure 4: Lorenz concentration curves (year=2003)
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ŝ op ssu

lsor sor

˜̃

˜̃˜̃

(b) Predicted or simulated size metrics

38



A Solutions to the Initial Conditions Problem

A.1 Heckman’s Procedure

Heckman (1981a,b) suggests a way to account for the initial conditions and integrate the unobserved

heterogeneity out of the density function displayed in Eq. (11)

P (yi0, yi1, · · · , yiT |Xi;θ) =

∫
G (yi0|Xi, α)

T∏
t=1

Φ [(zitϑ+ cit) (2yit − 1)]h (α|Xi) dα, (17)

where G(yi0|Xi, α) is the conditional distribution of the initial value of the dependent variable, and

h(α|Xi) is the conditional distribution of the unobserved heterogeneity. For the sub-sample of MNEs

that enter in the industry at time τi > 1, the new entrants, Eq. (17) simplifies to

P (yiτi , · · · , yiT |yi,τi−1 = 0,Xi;θ) =

∫ T∏
t=τi

Φ [(zitϑ+ cit) (2yit − 1)]h (α|Xi) dα. (18)

The remainder of the section concentrates on the balanced panel, as it is this one that suffers the

initial conditions problem.

We recall from Section 3 the time varying function of unobserved heterogeneity cit = δtα̃i and

assume α̃i|Xi ∼ NID(0, σ2
α̃).38 Next, we formulate the underlying profit function for the initial period

as

πi0 = wiη + x̄2iλ0 + ui0, (19)

where wi as suggested in Heckman (1981a,b) includes a constant and any exogenous pre-sample re-

gressor. The initial period composite error ui0, consists of

ui0 = δ0α̃i + εi0, (20)

with εi0 ∼ N(0, 1) assumed to be orthogonal to α̃i, as well as to Xi and wi.

The initial conditions problem arises because of the correlation between ui0 and α̃i, given Xi and

wi. In order to grasp the problem, we rewrite the initial profit function of Eq. (19) as

π̃i0 = wiη̃ + x̄2iλ̃0 + α̃i + ε̃i0, (21)

38So that (cit|Xi) ∼ NID(0, δ2t σ
2
α̃) has a variance that is allowed to vary over time.
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and specify the joint distribution for (ui0, α̃i|Xi,wi) to be the bivariate normal

 α̃i

ui0

|Xi,wi

 ∼ N

 0

0

 ,

 σ2
α̃ ρ0σα̃σu0

ρ0σα̃σu0
σ2
u0


 , (22)

which implies that the conditional distribution for ui0 given α̃i is ∼ N [ρ0
σu0

σα̃
, σ2
u0

(1 − ρ2
0)], where ρ0

denotes the correlation coefficient between ui0 and α̃i. Because of the assumption of normality of

(ui0, α̃i), ε̃i0 is itself ∼ N
[
0, σ2

u0

(
1− ρ2

0

)]
. Thus, we re-formulate the initial latent profit function as

π̃i0 = wiη̃ + x̄2iλ̃0 + ρ0
σu0

σα̃
α̃i +

(
σu0

√
1− ρ2

0

)
εi0, (23)

where we assumed εi0 ∼ N(0, 1). If we divide this equation by σu0

√
1− ρ2

0, we obtain the transformed

latent profit function

πi0 = wiη + x̄2iλ0 + δ0α̃i + εi0, (24)

where πi0 = π̃i0
σu0

√
1−ρ2

0

, η = η̃

σu0

√
1−ρ2

0

, λ0 = λ̃0

σu0

√
1−ρ2

0

, δ0 = 1
σα̃
· ρ0√

1−ρ2
0

.

We now have all the components to parameterize the functions G(·) and h(·) in Eq. (17) with

Φ(wiη + x̄2iλ0 + δ0σα̃α) and φ(α), respectively. The density can be reformulated as

P
(
yi0, yi1, · · · , yiT |Xi,θ

F
)

= (25)∫ ∞
−∞

Φ {[wiη + x̄2iλ0 + δ0σα̃α] (2yi0 − 1)}
T∏
t=1

Φ {[zitϑ+ x̄2iλ1 + δtσα̃α] (2yit − 1)}φ(α)dα,

with α = α̃
σα̃

and δT set to one to identify σα̃, and θF indicating the parameters to be estimated in

the free correlation scenario.

It is very common in empirical papers, that use dynamic Probit models, to impose equicorrelation

in the composite error. Such an assumption sets the δt parameters (for t = 1, · · · , T ) to one, and

consequently the density in Eq. (26) simplifies to

P
(
yi0, yi1, · · · , yiT |Xi,θ

E
)

= (26)∫ ∞
−∞

Φ {[wiη + x̄2iλ0 + δ0σα̃α] (2yi0 − 1)}
T∏
t=1

Φ [(zitϑ+ x̄2iλ1 + σα̃α) (2yit − 1)]φ(α)dα,
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with θE denoting the set of parameters to be estimated in the equicorrelation case.

The next two sections outline two alternative estimation procedures to estimate Heckman’s solution

to the initial conditions problem within the Stata environment.

A.1.1 Arulampalam and Stewart Standard Random Effects

Arulampalam and Stewart (2009) propose an approach to estimate Heckman’s estimator, that can

easily be implemented in software that deals with heteroscedasticity, such as the add-on program for

Stata, gllamm. For the free correlated case, the authors suggest employing T + 1 time dummies to

identify the free correlation parameters. The density function of an expansion is modified to

P
(
yit = 1|yi,t−1, · · · , yi0,Xi,wi, αi;θ

AS,F
)

=

Φ

[
(wiη + x̄2iλ0 + δ0α̃i) d

0
it + (zitϑ+ x̄2iλ1) (1− d0

it) + α̃i

T∑
τ=1

δτd
τ
it

]
, (27)

with t = 1, · · · , T and δT set to one.

The alternative case of equicorrelation sets the δτparameters to one, for τ = 1, · · · , T , and subse-

quently the conditional probability of an expansion changes to

P
(
yit = 1|yi,t−1, · · · , yi0,Xi,wi, αi;θ

AS,E
)

=

Φ
[
(wiη + x̄2iλ0 + δ0α̃i) d

0
it + (zitϑ+ x̄2iλ1 + α̃i) (1− d0

it)
]
. (28)

A.1.2 Stewart’s Method

Stewart has written a Stata code redprob that can estimate both cases of free correlation, Eq. (26),

and equicorrelation, Eq. (27), using Gaussian-Hermite quadrature. Details on the use of his program

are outlined in Stewart (2006).

The next section illustrates Orme’s alternative solution to the initial condition problem.

A.2 Orme’s Two-Step Procedure

Orme (2001) proposes an easy-to-use two-step estimator that is suitable for cases of low correlation

between the initial conditions and unobserved heterogeneity (weak correlation). Under the assumption

that yit and yi0 are independent of one another, one can integrate the unobserved heterogeneity out
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of the density in the following way

Pi (yi1, · · · , yiT |yi0;θ) =

∫∞
−∞ F (yi1, · · · , yiT |α)G (yi0|α)h (α) dα∫∞

−∞G (yi0|α)h (α) dα
. (29)

If we consider yi0 as exogenous, the above conditional joint probability simplifies to

Pi (yi1, · · · , yiT |yi0;θ) =

∫ ∞
−∞

F (yi1, · · · , yiT |α)h (α) dα, (30)

where we have exploited the condition G (yi0|α)|ρ0=0 = G (yi0), with ρ0 already defined as the corre-

lation coefficient between α̃i and ui0.

By virtue of local approximation, Orme (2001) extends the logic to low values of ρ0, and approxi-

mates the conditional joint density of Eq. (29) with

P ai
(
yi1, · · · , yiT |yi0;θO

)
=

∫ ∞
−∞

F a (yi1, · · · , yiT |α)h (α) dα, (31)

where the superscript a denotes an approximation of the function.

Similarly to Heckman (1981a,b), Orme (2001) assumes bivariate normality for the unobserved

heterogeneity and the initial composite error (ui0) but, differently from Heckman, he conditions the

unobserved heterogeneity to the initial composite error and formulates

α̃i = ρ0
σα̃
σu0

ui0 +
√

1− ρ2
0σα̃εi0, (32)

with εi0 assumed to be conditionally independent of ui0, as well as wi and Xi, and distributed as

NID(0, 1).

The estimation of the approximated conditional density formulated in Eq. (31) requires a two-step

procedure:

Step 1 Normalize σ2
u0

= 1, so thatG (yi0) can be estimated as an ordinary Probit. Having E (εi0|yi0) = 0,

by construction, the conditional expectation for the initial composite error yields

E (ui0|yi0) =
(2yi0 − 1)φ (wiη + x̄2iλ0)

Φ [(2yi0 − 1) (wiη + x̄2iλ0)]
. (33)
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Step 2 Augment the specification in Eq. (12) as follows:

πit = γyi,t−1 + x1itβ1 + x2itβ2 + x̄2iλ1 + ρ0σα̃ui0 +
√

1− ρ2
0σα̃εi0 + εit, t = 1, 2, · · · , T, (34)

where εit is NID(0, 1). Next, derive the following density:

P ai
(
yi1, · · · , yiT |yi0;θO,E

)
=

T∏
t=1

Φ [(zitϑ+ x̄2iλ1 + δ0ûi0) (2yit − 1)] . (35)

where ûi0 is the Probit residual from the first stage, and the parameter δ0 is the product ρ0σα̃.

Arulampalam and Stewart (2009), recognize that Orme’s two-step procedure can be generalized to

allow for free correlation. It is enough to interact the initial composite error with time dummies dt,

yielding the following modified version of Eq. (34):

πit = γyi,t−1 + x1itβ1 + x2itβ2 + x̄2iλ1 + dtρ0σα̃ui0 +
√

1− ρ2
0σα̃εi0 + εit, (36)

which has augmented density

P ai
(
yi1, · · · , yiT |yi0;θO,F

)
=

T∏
t=1

Φ [(zitϑ+ x̄2iλ1 + δtûi0) (2yit − 1)] , (37)

where δt ≡ dtρ0σα̃.

Arulampalam et al. (2000) show that Orme’s estimator is heteroscedastic for high values of ρ0, as

the conditional variance of the second stage error component is:

V ar(εi0|yi0) = σ2
α̃

{
1− ρ2

0

[
φ (wiη + x̄2iλ0)

Φ (wiη + x̄2iλ0) Φ (−wiη − x̄2iλ0)

]2
}
. (38)

A.3 Wooldridge’s Method

Wooldridge (2005) proposes conditioning the distribution of unobserved heterogeneity on the ini-

tial value of the dependent variable and full history of the (exogenous) time-varying covariates.
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Wooldridge’s idea produces the following density function

P
(
yi1, · · · , yiT |yi0,Xi,θ

W
)

=∫ ∞
−∞

[
T∏
t=1

ft (yit = 1|yi,t−1, · · · , yi0,Xi, c)

]
h (c|yi0,Xi) dc. (39)

Using Mundlak-Chamberlain’s approach, we parameterize the general functions in Eq. (39) as

h (ci|yi0,Xi) ∼ N
(
µ0yi0 + x̄2iλ0, σ

2
α

)
ft (yit = 1|yi,t−1, · · · , yi0,Xi, ci) = Φ [(zitϑ+ ci) (2yit − 1)] .

One limitation of Wooldridge’s methodology is that one cannot identify the time-invariant variables

that are correlated with the unobserved heterogeneity. Nevertheless they should all be included in the

exogenous variables, as they bring about explanatory power to the estimation process. The major

advantage of Wooldridge’s methodology is that it can be easily estimated in Stata using the command

xtprobit.

The densities to be estimated, in case of equicorrelation are

P
(
yi1, · · · , yiT |yi0,Xi,θ

W,E
)

=∫ ∞
−∞

T∏
t=1

Φ {[zitϑ+ x̄2iλ0 + µ0yi0 + σα̃α] (2yit − 1)}φ(α)dα, (40)

and in case of free correlation

P
(
yi1, · · · , yiT |yi0,Xi,θ

W,F
)

=∫ ∞
−∞

T∏
t=1

Φ [(zitϑ+ x̄2iλ0 + µ0yi0 + δtσα̃α) (2yit − 1)]φ(α)dα, (41)

with δT set to one to identify σα̃.

B The Copula

The Copula is a function that maps from marginals to the multivariate joint distribution.39 As such, it

can be used to recover multivariate joint distributions from information on marginal distributions and

39It was first introduced by Hoeffding (1940) (see collection Hoeffding (1994)), but is commonly associated to Sklar
(1973).
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is particularly suitable to deal with non-normal data or with marginals coming from different para-

metric families. Prior to outlining the Copula, we introduce some notation. Let (R1, R2, · · · , RH) be

H random variables, with distribution functions G1 (r1) = P (R1 ≤ r1) , G2 (r2) = P (R2 ≤ r2) , · · · ,

GH (rH) = P (RH ≤ rH), respectively, and joint distribution function L (r1, r2, · · · , rH) = P (R1 ≤ r1,

R2 ≤ r2, · · · , RH ≤ rH). Also, let <̄ denote the extended real line [−∞,∞]. We define an H-

dimensional distribution function L with domain <̄H a function that has the following properties:

1. L (∞, · · · ,∞, rh,∞, · · · ,∞) = Gh (rh) for anyh ≤ H;

2. L (∞, · · · ,∞, · · · ,∞) = 1;

3. L (r1, · · · , rH) = 0 if rh = −∞ for any h ≤ H;

4. L is H-increasing.

Next, if we denote with = the unit interval [0, 1], we have all the notation required to formulate the

main Copula’s theorem:

Theorem B.1 (Sklar’s theorem) Let L be an H-dimensional distribution function with distribution

functions G1, G2, · · · , GH and denote with % the vector of parameters that measures the dependence

between the marginals. Then, there exists an H-Copula C such that ∀ (r1, r2, · · · , rH) ∈ <̄H ,

L (r1, r2, · · · , rH) = C [G1 (r1) , G2 (r2) , · · · , GH (rH) ;%] . (42)

If G1, G2, · · · , GH are all continuous, then C is unique; otherwise C is uniquely determined on

[RanG1 ×RanG2 × · · · ×RanGH ], where Ran denotes the range of the distribution function. Con-

versely, if C is an H-Copula and G1, G2, · · · , GH are distribution functions, then the function L

defined in Eq. (42) is an H-dimensional distribution function with marginal distribution functions

G1, G2, · · · , GH .

Sklar’s (1973) theorem states that an H−dimensional Copula is the function C that maps from the

unit space =H to the unit interval = and that satisfies the conditions:

1. C (1, · · · , 1, uh, 1, · · · , 1) = uh ∀h ≤ H and uh ∈ [0, 1];
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2. C (u1, · · · , uH) = 0 if uh = 0 for any h ≤ H;

3. C is H-increasing.

Hence, an H-dimensional Copula is a multivariate distribution function that has all H one-dimensional

marginals over the uniform distribution, U(0, 1).

An important corollary of the theorem B.1 sets out a method to construct Copulas directly from

joint distribution functions:

Corollary B.2 (From joint distribution functions to Copulas) Let L,C,G1, G2, · · · , GH be as

in theorem B.1, and let G−1
1 , G−1

2 , · · · , G−1
H , be inverse (quantile) functions of G1, G2, · · · , GH , respec-

tively. Then for any point (u1, u2, · · · , uH) ∈ =H ,

C (u1, u2, · · · , uH ;%) = L
[
G−1

1 (u1) , G−1
2 (u2) , · · · , G−1

H (uH)
]
, (43)

with G−1
1 = r1, G

−1
2 = r2, · · · , G−1

H = rH . Corollary B.2 is particularly useful for simulations.

In the rest of the section we introduce the parametric Copula functions that are available for the

multivariate case of H > 2. We separate them in two classes: Elliptical and Archimedean.

B.1 Elliptical Copula

If we differentiate Eq. (43) we get the density of the Elliptical Copula

c (u1, u2, · · · , uH ;%) =
l
[
G−1

1 (u1), G−1
2 (u2), · · · , G−1

H (uH)
]∏H

h=1 lh
[
G−1
h (uh)

] , (44)

where l is the joint probability density function of the Elliptical distribution, and lh the marginal

density functions. If we assume the marginal distribution functions to be standard normals, Gh = Φ,

we have the H-dimensional Copula standard normal (gaussian), whose density is given by

c (u1, u2, · · · , uH ; Γ) =

|Γ|−1/2
exp

{
−1

2

[
Φ−1 (u1) , · · · ,Φ−1 (uH)

]′ (
IH − Γ−1

) [
Φ−1 (u1) , · · · ,Φ−1 (uH)

]}
, (45)

where IH denotes the identity matrix and Γ the dispersion matrix.
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B.2 Archimedean Copula

Theorem B.3 (Nelsen (2006)’s Archimedean Copula) Let ϕ be a continuous strictly decreasing

function from = to [0,∞] such that ϕ(0) = ∞ and ϕ(1) = 0, and let ϕ−1 denote the inverse of ϕ. If

CH is the function from =H to = given by

CH (u1, u2, · · · , uH ; %) = ϕ−1 [ϕ (u1) + ϕ (u2) + · · ·+ ϕ (uH)] , (46)

then CH is a H-Copula ∀h ≥ 2, if and only if ϕ−1 is completely monotonic on [0,∞).

We now parameterize the generation function ϕ and its inverse ϕ−1 and obtain some well-known

Archimedean Copulas:

1. Clayton Copula: If we let the generator function be t = ϕ (u; %) = u−% − 1 for % > 0, then its

inverse is ϕ−1 (t; %) = (1 + t)
−1/%

, and the resulting multivariate Copula is

CH (u1, u2, · · · , uH ; %) =
(
u−%1 + u−%2 + · · ·+ u−%H −H + 1

)−1/%
. (47)

2. Frank Copula: If we let the generator function be t = ϕ (u; %) = − ln
(e−%u−1)
(e−%−1) for % > 0, then

its inverse is ϕ−1 (t; %) = − 1
% ln [1− (1− e−%) e−t], and the resulting multivariate Copula is

CH (u1, u2, · · · , uH ; %) = −1

%
ln

[
1 +

(e−%u1 − 1) (e−%u2 − 1) · · · (e−%uH − 1)

(e−% − 1)
H−1

]
. (48)

3. Gumbel Copula: If we let the generator function be t = ϕ (u; %) = (− lnu)
%

for % ≥ 1, then its

inverse is ϕ−1 (t; %) = exp
(
−t1/%

)
, and the resulting multivariate Copula is

CH (u1, u2, · · · , uH ; %) = exp
{
− [(− lnu1)

%
+ (− lnu2)

%
+ · · ·+ (− lnuH)

%
]
1/%
}
. (49)

Consult Nelsen (2006) for further reading on Copulas.
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