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Generalized Extreme Value Regression for
Binary Rare Events Data: an Application to
Credit Defaults

Raffaella Calabrese and Silvia Angela Osmetti

Abstract

The most used regression model with binary dependent variable is the logistic re-
gression model. When the dependent variable represents a rare event, the logistic
regression model shows relevant drawbacks. In order to overcome these drawbacks
we propose the Generalized Extreme Value (GEV) regression model. In particular,
in a Generalized Linear Model (GLM) with binary dependent variable we suggest
the quantile function of the GEV distribution as link function, so our attention is
focused on the tail of the response curve for values close to one. The estimation
procedure is the maximum likelihood method. This model accommodates skewness
and it presents a generalization of GLMs with log-log link function. In credit risk
analysis a pivotal topic is the default probability estimation. Since defaults are rare
events, we apply the GEV regression to empirical data on Italian Small and Medium
Enterprises (SMEs) to model their default probabilities.

1 Introduction

Many of the most significant event in several areas are rare events - in economics
and finance, in medicine and epidemiology, in meteorology and natural science and
in international relations. In economics and finance, some pivotal applications of
the extreme value theory and the rare event methodology are credit risk, Value At
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Risk and financial strategy of risk management (Embrechts et al., 1997; Dahan and
Mendelson, 2001; Finkenstdt and Holger, 2003; Barro, 2009). In the natural science
and in epidemiology the rare events as natural disasters and the epidemics occur
infrequently but they are considered of great importance (Frei and Schar, 1998;
Roberts, 2000). In international relations, revolutions, massive economic depres-
sion and economic shocks are rare events (King and Zeng, 2001). Methodology for
modelling occurrence of a rare event is well established. The Poisson distribution is
generally used to model the frequency of rare events (see Falk, et al., 2010). In Gen-
eralized Linear Models (GLMs) literature the log-linear model is commonly used to
model independent Poisson counts (McCullagh and Nelder, 1989).
We consider binary rare events data, i.e. binary dependent variables with a very
small number of ones. In GLM literature (see McCullag and Nelder, 1989; Dobson
and Barnett, 2008) several models for binary response variable have been proposed
by considering different link functions: logit, probit, log-log and complementary
log-log models. However, the most used model for binary variables is the logistic
regression. The logistic regression shows same important drawbacks in rare events
studies: the probability of rare event is underestimated and the logit link is a symmet-
ric function, so the response curve approaches zero as the same rate it approaches
one. Moreover, commonly used data collection strategies are inefficient for rare
event data (King Zeng, 2001). The bias of the maximum likelihood estimators of
logistic regression parameters in small sample sizes, that has been well analysed in
literature (McCullagh and Nelder, 1989: Mansky and Lerman 1977; Hsieh Mansky
and McFadden, 1985), is amplified in the rare event study. Most of these problems
are relatively unexplored by literature (King and Zeng, 2001).
The main aim of this paper is to overcome the drawbacks of the logistic regression
in rare events studies by proposing a new model for binary dependent data with an
asymmetric link function given by the quantile function of the Generalize Extreme
Value (GEV) random variable. In the extreme value theory, the GEV distribution is
used to model the tail of a distribution (Kotz Nadarajah, 2000; Coles, 2004). Since
we focus our attention on the tail of the response curve for the values close to 1,
we have chosen the GEV distribution. In GLMs (Agresti, 2002) the log-log and the
complementary log-log link functions are used since they are asymmetric functions.
In particular, the log-log link function is the quantile function of the Gumbel ran-
dom variable. The inverse function of the complementary log-log is one minus the
cumulative distribution function of the Gumbel random variable.
The present paper is organized as follows. The next section explains the main draw-
backs of the logistic regression model for rare events data. In Section 3 the GEV
model for binary rare events data is proposed. The subsection 3.1 presents the
Weibull regression model as a particular case of the GEV model. Finally, in Sec-
tion 4 we apply our proposal to empirical data to estimate the default probability in
credit risk analysis. In particular, the first subsection describes the dataset of Italian
Small and Medium Enterprises (SMEs) and the second subsection shows the estima-
tion results by applying the GEV model to these data. In the following subsection,
the predictive accuracies of the logistic regression model and the GEV model are
compared for different sample percentages of rare events. Finally, the last section is
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devoted to conclusions. In appendix, we report the score functions and the Fisher
information matrix of the parameters of the GEV model.

2 The main drawbacks of the logistic regression for rare events
data

Let Y1,Y2, ...Yi, ...,Yn be Bernoulli independent random variables that are equal to
one with probability πi and zero with probability (1−πi) for i = 1,2, ...,n. A Gener-
alized Linear Model (GLM) considers a monotonic and twice differentiable function
g(·), called link function, and a covariate vector xi such that

g(π) = β
′xi.

By applying the inverse function of g(·), it results that

πi = g−1(β ′xi).

In the logistic regression model the probability πi is a logistic cumulative distribu-
tion function

π(xi) =
exp(β ′xi)

1+ exp(β ′xi)
(1)

with
β
′ = [β0,β1, ...,βk] x′ = [1,x1, ...,xk].

By applying the inverse function to the equation (1), the logistic link function is the
transformation used for the linearity

logit(π(xi)) = ln
(

π(xi)

1−π(xi)

)
= β

′xi

The maximum likelihood method is usually used to estimate the parameters vector
β .
The logistic regression shows important drawbacks when we study rare events data.
Firstly, when the dependent variable represents a rare event, the logistic regression
could underestimate the probability of occurrence of the rare event. Secondly, com-
monly used data collection strategies are inefficient for rare event data (King and
Zeng, 2001). In order to overcome this drawback the choice-based or endogenous
stratified sampling (case-control design) is used. The strategy is to select on Y by
collecting observations for which Y = 1 and a random selection of observations for
which Y = 0. This sampling method is usually supplemented with a prior correction
of the bias of MLE estimators. An alternative procedures is the weighting the data to
compensate the differences in the sample and population fractions of ones induced
by choice-based sampling by the weighted exogenous sampling maximum estima-
tor. Manski and Lerman, (1977), McCullagh and Nelder (1989) show a analytical
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approximation for the bias in the MLE estimates to account for finite sample. This
bias is amplified in application with rare events. Thirdly, the logit link is symmetric
about 0.5

logit(π(xi)) = ln
(

π(xi)

1−π(xi)

)
=−logit(π(xi)) =−ln

(
π(xi)

1−π(xi)

)
.

This means that the response curve for π(xi) approaches zero at the same rate it
approaches one. If the dependent variable represents a rare event, a symmetric link
function is not appropriated. Since a counting rare event is usually modelled by a
Poisson distribution, which has positive skewness, it is coherent to choose an asym-
metric link function in order to obtain a response curve that approaches zero at a
different rate it approaches one.
In rare events data values one of the dependent variable are more informative than
zero, this follows by the variance matrix

V (β̂ ) =

[
n

∑
i=1

πi(1−πi)x′ixi

]−1

.

The part of this matrix affected by rare events is the factor πi(1− πi). Most rare
events applications yield small estimates of P{Yi = 1|xi} = πi for all observations.
However, if the logit model has some explanatory power, the estimate of πi among
observations for which rare events are observed (i.e. for which Yi = 1) will usually
be larger, and closer to 0.5, because probabilities in rare events studies are normally
very small, than among observations for which Yi = 0. The result is that πi(1−πi)
will usually be larger for ones than zeros and so the variance will be smaller. In this
situation, additional ones will cause the variance to drop more and hence are more
informative than additional zeros.
For this reason, in this paper, we focus our attention on the tail of the response curve
for the values closed to one.

3 The Generalized Extreme Value (GEV) regression model

Extreme value theory is a robust framework to analyse the tail behaviour of distribu-
tions. Extreme value theory has been applied extensively in hydrology, climatology
and also in the insurance industry (Embrechts et al., 1997). Embrechts (1999, 2000)
considers the potential and limitations of extreme value theory for risk management.
Without being exhaustive here, De Haan et al. (1994) and Danielsson and de Vries
(1997) study quantile estimation. Bali (2003) uses the GEV distribution to model
the empirical distribution of returns. Mc Neil (1999) and Dowd (2002) give an ex-
tensive overview of extreme value theory for risk management.
Unlike the normal distribution that arises from the use of the central limit theorem
on sample average, the extreme value distribution arises from the limit theorem of
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Fisher and Tippet (1928) on extreme values or maxima in sample data. The class
of GEV distributions is very flexible with the tail shape parameter τ controlling the
shape and size of the tails of the three different families of distributions subsumed
under it. The three families of extreme value distributions can be nested into a sin-
gle parametric representation, as shown by Jenkinson (1955) and von Mises (1936).
This representation is known as the Generalized Extreme Value (GEV) distribution
and its cumulative distribution function is given by

FX (x) = exp

{
−
[

1+ τ

(
x−µ

σ

)]− 1
τ

}
−∞ < τ < ∞, −∞ < µ <+∞ σ > 0

(2)
defined on SX = {x : 1+ τ(x− µ)/σ > 0}. The parameter τ is a shape parameter,
while µ and σ(> 0) are location and scale parameters respectively.
The Type II (Fréchet-type distribution) and the Type III (Weibull-type distribution)
classes of the extreme value distribution correspond respectively to the case τ > 0
and τ < 0, while the Type I class (Gumbel-type distribution) arises in the limit as
τ→ 0. The corresponding distributions of (−X) are also called extreme value distri-
butions. We underline that Fréchet and Weibull distributions are related by a change
of sign.
In this paper we propose a generalization of the log-log model by using the quantile
function of the GEV distribution as link function. For this reason we call this pro-
posal Generalized Extreme Value (GEV) regression model.
For a binary response variable Yi and the vector of explanatory variables xi, let
π(xi) = P{Yi = 1|xi}. Since we consider the class of GLMs, we suggest the GEV
cumulative distribution function as the response curve

π(xi) = exp{−[1+ τ(β ′xi)]
−1/τ}. (3)

with
β
′ = [β0,β1, ...,βk] x′ = [1,x1, ...,xk].

For τ→ 0 the previous model (3) becomes the response curve of the log-log model
and for τ > 0 it becomes the Weibull response curve, a particular case of the GEV
one.
The link function of the GEV model is given by

[−lnπ(x)]−τ −1
τ

= β
′x (4)

that represents a noncanonical link function.
For the interpretation of the parameters β and τ , we suppose that the value of the j-
th regressor (with j = 1,2, ..k) is increased by one unit and all the other independent
variables remain unchanged. Let x∗ the new covariate values, whereas x denotes the
original covariate values. From the equation (4) we deduce that β j = g(π(x∗))−
g(π(x)) with j = 1,2, ..,k. This means that if the parameter β j (with j = 1,2, ..k)
is positive and all the other parameters are fixed, by increasing the j-th regressor



6 Raffaella Calabrese and Silvia Angela Osmetti

the estimate π(x) decreases. Otherwise, if β j is negative, by increasing the j-th
regressor the estimate π(x) of the GEV model also increases.
Moreover, we analyse the parameter β0: for all fixed values of τ and for a null
independent variable, β0 have a positive monotonic relationship with the estimate of
π(x). Finally, we analyse the influence of the τ parameter on π(x). We find that for
β0 = 0 and by considering null values for all the covariates, from the GEV model we
obtain an estimate π(x) that is about equal to e−1 for all the values of τ . This means
that π(x) variations depend on the covariate variations and not on τ variations.
We propose to estimate the parameters of these models by the maximum likelihood
method. Let Y = (Y1,Y2, ...,Yn) a simple random sample of size n from Y , the log-
likelihood function is

l(β ,τ) =
n

∑
i=1

{
−yi[1+ τ(β ′xi)]

−1/τ +(1− yi)ln[1− exp{−[1+ τ(β ′xi)]
−1/τ}]

}
.

(5)
Some simulation studies are developed to verify the existence of maximum of the
likelihood function, considered as a function of only one parameter for fixed values
of the other parameters (likelihood profile function).
The score functions, obtained by differentiating the log-likelihood function with
respect to the known parameters β and τ (see Appendix) are give by

∂ l(β ,τ)
∂β j

= −
n

∑
i=1

xi j
ln[π(xi)]

1+ τβ ′xi

yi−π(xi)

1−π(xi)
j = 0,1, ...,k, (6)

∂ l(β ,τ)
∂τ

=
n

∑
i=1

[
1
τ2 ln(1+ τβ

′xi)−
β ′xi

τ(1+ τβ ′xi)

]
yi−π(xi)

1−π(xi)
ln[π(xi)]. (7)

Since the inverse of the link function (3) is a cumulative distribution function only
for the values {xi : 1+ τxi > 0}, in order to identify the maximum likelihood esti-
mates, we apply a constrained optimization with {xi : 1+τβ ′xi > 0} The asymptotic
standard errors of the maximum likelihood estimators of the parameters in the mod-
els are given by the Fisher’s information matrix (see Appendix). Since the Fisher in-
formation matrix is not a diagonal matrix (see Appendix), the maximum likelihood
estimators of the parameters β and τ are dependent and they cannot be computed
separately.
Since the score functions do not have closed-form, the maximum likelihood esti-
mators need to be obtained by numerically maximizing the log-likelihood function
using a constrained nonlinear optimization algorithm. The optimization algorithms
require the specification of initial values to be used in iterative scheme.
Our suggestion is to use as initial point estimate for τ a value closed to zero. For
this value the GEV model becomes the log-log model. Hence, in order to obtain
the initial point estimate for β , we analyse the log-log or Gumbell regression model
(see Agresti, 2002) with the response curve

π(xi) = exp(−exp(β ′xi)). (8)
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We compute the log-likelihood function of the Gumbel regression

l(β ) =
n

∑
i=1
{yi ln[π(xi)]+(1− yi) ln[1−π(xi)]} (9)

=
n

∑
i=1
{yi ln[exp[−exp(β ′xi)]]+(1− yi) ln[1− exp[−exp(β ′xi)]]}

=
n

∑
i=1
{yi[−exp(β ′xi)]+(1− yi) ln[1− exp[−exp(β ′xi)]]}.

The score functions are given by

∂ l(β )
∂β j

=
n

∑
i=1

xi j ln[π(xi)]
yi−π(xi)

1−π(xi)
j = 0,1, ...,k. (10)

To identify the initial values for β , we choose β ∗j = 0 for j = 1, ...,k. By substituting
β ∗j = 0 for j = 1, ...,k in equation (9) we obtain

β
∗
0 = ln[− ln(y)].

We use the initial values proposed for the log-log model in order to identify the
initial values β ∗ for the GEV regression model. In particular, we propose to use
τ∗ ' 0, β ∗j = 0 for j = 1, ...,k and β ∗0 = ln [−ln(y)].
Afterwards, by substituting the initial values for the parameter β in the equation (6)
for j = 0 we obtain the estimate of τ for the first step of the iterative procedure.
By using such estimate of τ in the equation (6), we obtain the estimates of β j with
j = 0,1, ...,k for the first step in the GEV regression.

3.1 Weibull regression for binary data

A particular case of the GEV cumulative distribution function (2) for τ > 0 is the
Weibull cumulative distribution function

F(x) = exp

{
−
[
−x−µ

σ

]k
}

x > µ −∞ < µ <+∞ σ > 0 k > 0, (11)

where µ and σ(> 0) are, respectively, a location and a scale parameters and k is a
shape parameter.
By considering the Weibull cumulative distribution function (11) in the GLM for
binary dependent variable, the response curve of the Weibull regression model is

π(xi) = exp[−(β ′xi)
k], (12)
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where k > 0. The response curve of the Weibull regression model (12) is a partic-
ular case of the GEV response curve (3) for τ > 0. On the one hand, the Weibull
response curve is an asymmetric function, analogously to the response curve (8)
of the Gumbel regression model. On the other hand, unlike the Gumbel response
curve (8), the π(xi) in the Weibull model (12) approaches 1 sharply and approaches
0 slowly. In particular, the behaviour of Weibull response curve depends on k: if
k increases π(xi) approaches sharper both 0 and 1. If the value of the j-th regres-
sor (with j = 1,2, ..k) is increased and all the other independent variables remain
unchanged, the Weibull response curve (12) decreases when β j > 0 and increases
when β j < 0. The link function of the Weibull regression model[

ln
1

π(xi)

]1/k

= β
′xi. (13)

is a noncanonical link function.
We compute the log-likelihood function of the Weibull regression

l(β ,k) =
n

∑
i=1
{yi ln[π(xi)]+(1− yi) ln[1−π(xi)]} (14)

=
n

∑
i=1
{−yi(β

′xi)
k +(1− yi) ln[1− exp(−(β ′xi))

k]}.

The score functions are given by

∂ l(β ,k)
∂β j

= −k
n

∑
i=1

xi j
ln[π(xi)]

β ′xi

yi−π(xi)

1−π(xi)
j = 0,1, ...,k, (15)

∂ l(β ,k,y)
∂k

= −k
n

∑
i=1

ln[π(xi)] ln[β ′xi]
yi−π(xi)

1−π(xi)
. (16)

In order to apply an iterative algorithm, we need to identify the initial values β ∗ and
k∗ for the parameters. Our suggestion is to use k∗ = 1, β ∗j = 0 for j = 1, ...,k and

β
∗
0 = ln

[
1− n

y

]
. (17)

We obtain the initial value (17) by substituting β ∗j = 0 for j = 1, ...,k and k∗ = 1
in (15) for j = 0. We highlight that the Weibull regression with k = 1 is a log-
linear model whose response curve is the cumulative distribution function of an
exponential random variable (McCullagh and Nelder, 1989).



GEV regression model 9

4 An Application to Credit Default

Credit risk forecasting is one of the leading topics in modern finance, as the bank
regulation has made increasing use of external and internal credit ratings (Basel
Committee on Banking Supervision, 2005). Statistical credit scoring models try to
predict the probability that a loan applicant or existing borrower will default over
a given time-horizon, usually of one year. According to the Basel Committee on
Banking Supervision (2004), banks are required to measure the one year default
probability for the calculation of the equity exposure of loans. In this framework,
banks adopting the Internal-Rating-Based (IRB) approach are allowed to use their
own estimates of PDs. Moreover, Basel II requires these banks to build a rating sys-
tems and provides a formula for the calculation of minimum capital requirements
where the PD is the main input. For that reason, in many credit risk models such as
CreditMetrics (Gupton et al., 1997), CreditRisk+ (Credit Suisse Financial Products,
1997) or CreditPortfolioView (Wilson, 1998), default probabilities are essential in-
put parameters.
Altman (1968) was the first to use a statistical model to predict default probabil-
ities of firms, calculating his well known Z-Score using a standard discriminant
model. Almost a decade later Altman et al. (1977) modified the Z-Score by extend-
ing the data-set to larger-sized and distressed firms. Besides this basic method, more
accurate ones such as logistic regression, neural networks, smoothing nonparamet-
ric methods and expert systems have been developed and are now widely used for
practical and theoretical purposes in the field of credit risk measurement (Hand and
Henley 1997a, b).
SMEs play a very important role in the economic system of many countries and
particularly in Italy (about 90% of Italian firms are SMEs (Vozzella, Gabbi 2010).
Furthermore, a large part of the literature (Altman, Sabato 2006; Ansell and al.
2009; Ciampi, Gordini 2008; Vozzella, Gabbi 2010) has focused on the special
character of small business lending and the importance of relationships banking
for solving information asymmetries. The informative asymmetries puzzle affects
particulary SMEs for their difficulty to estimate and make known their fair value.
Therefore, the lending to SMEs is riskier than to large corporates (Altman, Sabato
2006; Dietsch, Petey 2004; Saurina, Trucharte 2004). As a consequence, Basel II
(BCBS, 2004) establishes that banks should develop credit risk models specifically
addressed to SMEs. Only a few studies consider SMEs (Andreeva et al., 2011; Alt-
man and Sabato, 2007; Altman et al. 2010; Hu and Ansell, 2007) since the gathering
of SMEs data is quite difficult. Discriminant analysis and logistic regression have
been the most widely used methods for constructing scoring systems for SMEs (e.g.
Hand and Henley, 1997a, b; Hand and Niall, 2000).
In this paper we propose the GEV regression model in order to overcome the draw-
backs of the logistic regression for rare events. Since defaults in credit risk analysis
are rare events, we apply the GEV model to empirical data on Italian SMEs to
model the default probability. Compliant to Basel II, the default probability is one
year forecasted. Therefore, let Yt be a binary r.v. such that
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Yt =

{
1, if a firm is default at time t;
0, otherwise.

and let xt−1 be the covariate vector at time t − 1. In this application we aim at
estimating the conditional probability of default

π(xt−1) = P(Yt = 1|xt−1)

by applying and comparing the GEV and the logistic regression models.

4.1 The data set

Data used in our analysis comes from AIDA-Bureau van Dijk, a large Italian fi-
nancial and balance sheets information provider. We consider defaulted and non
defaulted SMEs over the years 2005− 2009. In particular, since the default proba-
bility is one year forecasted, the covariates concern the period of time 2004−2008.
The database contains accounting data of around 210,000 Italian firms with total as-
set below 10 millions euro (Vozzella and Gabbi, 2010). From the sample we exclude
the firms without the necessary information on the covariates.
Often default definitions for credit risk models concern single loan defaults of a
company versus a bank, as also emerges from the Basel II instructions. This is the
case for banks building models based on their portfolio data, that is relying on sin-
gle loans data which are reserved (e.g., Altman and Sabato (2005) develop a logit
model for Italian SMEs based on the portfolio of a large Italian bank). However,
traditional structural models (i.e. Merton, 1974) refer to a firm-based definition of
default: a firm defaults when the value of the assets is lower than the value of the
liabilities, that is when equity is negative. In this work default is intended as the end
of the firms activity, i.e. the status, where the firm needs to liquidate its assets for the
benefit of its creditors. In practice, we consider a default occurred when a specific
firm enters a bankruptcy procedure as defined by the Italian law. The reason for this
choice lies in the data availability.
In according with Altman and Sabato (2006) on this dataset we apply a choice-
based or endogenous stratified sampling. In this sampling scheme data are stratified
by the values of the response variable. We draw randomly the observations within
each stratum defined by the two categories of the dependent variable (1=default,
0=non-default) and we consider all the defaulted firms. Then, we select a random
sample of non-defaulted firms over the same year of defaults in order to obtain a
percentage of defaults in our sample as close as possible to the default percentage
(5 %) for Italian SMEs (Cerved Group, 2011). In order to analyze the properties of
our model for different probabilities of the rare event P{Y = 1}, we consider also a
default percentage of 1%.
By applying the choice-based sampling, the observations are dependent. Since the
sample sizes of this application are high, according to the superpopulation theory
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(Prentice, 1986) we can consider all the examined samples as simple random sam-
ples.

4.2 The estimation results

We apply the GEV regression model proposed in this work to the AIDA database.
This application is interesting since it concerns SMEs, on which the availability of
data is very difficult, in the Italian credit market, which could be different from other
countries.
In order to model the default event, we choose the independent variables that repre-
sent financial and economic characteristics of firms according to the recent literature
(Vozzella and Gabbi, 2010; Ciampi and Gordini, 2008; Altman et al., 2006). These
covariates cover the most relevant aspects of firm’s operations: leverage, liquidity
and profitability.
Firstly, we consider 16 covariates: liquidity ratio, current ratio, leverage, solvency
ratio, debt/EBITDA, return on equity, return on investment, turnover per employee,
added value per employee, cash flow, banks/turnover, debt/equity ratio, return on
solvency, EBITDA/turnover, total personnel costs/added value, cash flow/turnover.
Secondly, we examine the multicollinearity and we remove the variables with a Vari-
ance Inflation Factor higher than 5 (Greene, 2000, p.257-258). Thirdly, by applying
the GEV model 7 variables are significant at the level of 5% for the PD forecast:

• Solvency ratio: the ratio of a company’s income over the firm’s total debt obliga-
tions;

• Return on investment: the ratio of the returns of a company’s investments over
the costs of the investment:

• Turnover per employee: the ratio of sales divided by the number of employees;
• Added value per employee: the enhancement added to a product or service by a

company divided by the number of employees;
• Cash flow: the amount of cash generated and used by a company in a given

period;
• Bank loans over turnover: short and long term debts with banks over sales vol-

ume net of all discounts and sales taxes;
• Total personnel costs over added value: the ratio of a company’s labour costs

divided by the enhancement added to a product or service by a company.

In order to avoid the overfitting, data are randomly divided into two parts: a sample
on which the regression models are estimated and a control sample on which we
evaluate the predictive accuracy of the models. The Table 1 reports the parameter
estimates obtaining by applying the GEV model to the sample of 1485 defaulters
and 29700 non-defaulters over the years 2005−2008.
In section 3 we explain the interpretation of the parameters of the GEV model.

According to these interpretations we can analyse the influence of each variable in
Table 1 on the PD estimate.
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Parameter Estimate
τ 1.1173e−1

Intercept 1.1139
Solvency ratio 8.1916e−4

Return on Equity 7.5574e−4

Turnover per employee -1.7804e−3

Added value per employee 1.8200e−4

Cash flow -7.2060e−7

Bank loans over turnover 3.8413e−4

Total personnel costs divided added value 5.8071e−4

Table 1 Parameter estimates using the sample of Italian SMEs (1485 defaulters and 29700 non-
defaulters) over the years 2005−2008.

At first, Ansell et al. (2009) explain that the solvency ratio should have an inverse
relationship with the PD estimate, coherently with our result but in contrast with
Ansell et al.’s (2009) result. The return on equity and the added value per employee
show the same kind of relationship with the PD, the first result coincides but the
second one is in contrast with Ciampi and Gordini (2008). We highlight that our
result for the added value per employee coincides with the expectations.
On the contrary, the turnover per employee and the cash flow show a direct rela-
tionship with PD, coherently with Altman and Sabato (2006), Ciampi and Gordini
(2008). The last two results in Table 1 are in contrast with the expectations: bank
loans divided turnover and total personnel costs divided added value show an inverse
relationship with the PD estimate. For this reason we analyse the results obtained
in literature for these two variables. Ciampi and Gordini (2008) obtain a direct rela-
tionship of bank loans divided turnover with the PD estimate. Alternatively, Altman
and Sabato (2006) consider the short term debt over equity book value to model the
PD and they show that this variable has an inverse relationship with the PD esti-
mate, analogously to our result. On the contrary, Fantazzini and Figini (2009) show
that the short term debt has a direct influence on PD, coherently with the expecta-
tion. Ciampi and Gordini (2008) consider also total personnel costs divided added
value in their regression model but their analysis shows a result coherent with the
expectations and in contrast with the one showed in Table 1. Fantazzini and Fig-
ini (2009) consider also labour costs in their model. In particular, they introduce
the personnel expenses over sales in the regression model and this variable shows a
direct influence with the PD estimate.

4.3 Forecasting accuracy

We compare the predictive accuracy of the GEV regression model here proposed
with the one of logistic regression model. The predictive accuracy of these models
is assessed using two performance measures: the Mean Square Error (MSE) and the
Mean Absolute Error (MAE), defined as
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MSE =
1
n

n

∑
i=1

(yi− ŷi)
2 MAE =

1
n

n

∑
i=1
|yi− ŷi|. (18)

where yi and ŷi are the actual and the predicted dependent variable on loan i, re-
spectively. Models with lower MSE and MAE forecast the dependent variable more
accurately.
The identification of defaulters is a pivotal aim for bank internal models. The rea-
son is that it is much more costly to classify a SME as non-defaulter when it is a
defaulter that to classify a SME as non-defaulter when it is a defaulter. In particular,
when a defaulted firm is classified as non-defaulter by scoring model, banks give it
a loan. If the borrower becomes defaulter, the bank may lose the whole or a part of
the credit exposure. On the contrary, when a non-defaulter is classified as defaulter,
bank loses only interest on loans.
For this reason, we focus our attention on the tail of the response curve for values
of the dependent variable equal to one that represent defaults. Since for banks the
underestimation of the PD could be very risky, the main aim of this subsection is to
show that the GEV model overcomes the drawback of the logistic regression in the
underestimation of rare events. For all these reasons we compare the two models by
computing MAE and MSE only for the defaulters. This means that in the equations
(18) we consider only the positive errors yi− ŷi > 0 and n is the number of default-
ers. We denote these errors by MAE+ and MSE+, respectively.
Since the developed models may overfit the data, resulting in over-optimistic es-
timates of the predictive accuracy, the MSE and the MAE must be assessed on a
sample which is different from that used in estimating the model parameters. We
choose a control sample size of 10% of the sample size used in estimating the model
parameters. In particular, models are validated by using out-of-sample and out-of-
time tests. In the first approach the model is fitted using data from a sample (Sample
1) and tested on a different sample (Out-of-sample sample). On the contrary, in the
out-of-time test the model is fitted using data from one time period (Sample 2) and
tested on a subsequent period (Out-of-time sample). In particular in the second ap-
proach we estimate the model by using defaulters and non defaulters over the years
2005− 2008 and we test the model by using the observations from 2009. The out-
of-sample and out-of-time sample sizes are reported in Table 2.
We compare the sample and the control sample predictive accuracy of our proposal

Sample 1 Out-of-sample Sample 2 Out-of-time
1% 5% 1% 5% 1% 5% 1% 5%

Defaulters 1,485 1,485 165 165 1,650 1,650 64 64
Non-defaulters 133,650 29,700 14,850 148,500 33,000 3,300 5,760 1,280

Table 2 The out-of-sample and out-of-time samples.

with the logistic regression model on AIDA data for different sample percentages
of the rare event {Y = 1}. As above-mentioned, we consider both the probabilities
of the rare event 0.05 and 0.01.
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Table 3 reports the MAE and the MSE for each model and for each sample fre-
quency of the rare event on the sample (denoted by the subscript “c”) and on the
out-of-sample (denoted by the subscript “cs”). In order to evaluate the weights of
the errors MSE+ and MAE+ on the respective (total) errors MSE and MAE, we
compute the ratios (MSE+/MSE) and (MAE+/MAE) weighted by sample relative
frequencies of the rare events, equal to 0.05 and 0.01. We report their values be-
tween round brackets in Table 3.
From the results reported in Table 3, our proposal exhibits both the MAE and the
MSE lower than the respective errors of the logistic regression model for both the
sample and control sample and for both the sample percentages of rare events. By
comparing the percentages in round brackets, we deduce that for the logistic re-
gression model the weights of positive errors are relevant. On the contrary, for our
proposal the weights of these positive errors yi− ŷi > 0 are negligible. This means
that the GEV model overcomes the drawback of the logistic regression in the under-
estimation of rare events.
Since the errors for the sample and the control sample are similar, the covariates
are significant for the default discrimination of both the regression models. This
means that both the models are well-explained. Moreover, by comparing the errors
for different sample percentages of rare events, our model improves its accuracy by
reducing the occurrence probability of the rare event. On the contrary, the logistic
regression model shows worse performance. Since the main aim for banks is the

Sample percentage of {Y = 1} Error Models
GEV regression Logistic regression

5%

MAE+
s 0.4248(4.06%) 0.8829(52.49%)

MSE+
s 0.2080(3.40%) 0.8171(97.50%)

MAE+
cs 0.4171 (3.99%) 0.8702 (51.86%)

MSE+
cs 0.1967 (3.22%) 0.8067 (97.43%)

1%

MAE+
s 0.3331(0.55%) 0.9502(45.46%)

MSE+
s 0.1399 (0.34%) 0.9270(89.13%)

MAE+
cs 0.3234 (0.53%) 0.9320(45.46%)

MSE+
cs 0.1301 (0.32%) 0.9084(89.05%)

Table 3 Forecasting accuracy measures of different models over different sample percentage of
rare event {Y = 1} on the sample (denoted by the subscript “c”) and the out-of-sample (denoted
by the subscript “cs”).

forecasting of default probability, the two models are validated on a subsequent pe-
riod. This means that the two models are fitted on data referring the period of time
2004-2008 and the out-of-time predictive accuracy is evaluated on the sample refer-
ring to 2009. The sample sizes used in the out-of-time test are reported in Table 2.
We compare the predictive accuracy of our model with the logistic one by comput-
ing the MAE+ and MSE+ on the sample (denoted by the subscript “c”) and out-of-
time sample (denoted by the subscript “cs”). The results in Table 4 show both the
MAE+ and MSE+ lower than the respective errors of the logistic model. The results
obtained from the out-of-time test are coherent with the ones of the out-of-sample
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test: in Table 4 the percentages in round brackets exhibit relevant weights of the
positive errors yi− ŷi > 0 for the logistic regression and irrelevant positive errors
for our model. Moreover, by comparing the errors for different sample percentages
of rare events the logistic model shows a worst performance for lower sample per-
centage of rare events: the values of the MAE+ and MSE+ increase by reducing the
percentage of rare events. On the contrary, the GEV model improves its accuracy.
From these results the GEV model can be considered a suitable regression model
for rare events.
Finally, in order to analyse the robustness of the GEV model we estimate the coef-

Sample percentage of {Y = 1} Error Models
GEV regression Logistic regression

5%

MAE+
s 0.4282(4.14%) 0.8815(52.53%)

MSE+
s 0.2103(3.50%) 0.8161(97.61)

MAE+
cs 0.4375 (3.96%) 0.9100 (48.35%)

MSE+
cs 0.2119 (3.19%) 0.8489 (94.74%)

1%

MAE+
s 0.3509(0.58%) 0.9478(45.53%)

MSE+
s 0.1541 (0.39%) 0.9246(88.90%)

MAE+
cs 0.3393 (0.55%) 0.9797(47.56%)

MSE+
cs 0.1369 (0.33%) 0.9601(88.90%)

Table 4 Forecasting accuracy measures of different models over different sample percentage of
rare event {Y = 1} on the sample (denoted by the subscript “c”) and the out-of-time (denoted by
the subscript “cs”).

ficients of both the regression models on a sample with a given sample percentage
of rare events and we evaluate the accuracy on a sample with a different sample
percentage of defaulters. By computing the MAE and the MSE on all the SMEs, the
errors of our model do not change in comparison with the respective errors above-
mentioned on a sample with the same percentage of defaulters1. This means that our
model is robust for different sample percentages of defaulters. On the contrary, for
the logistic regression models the same errors are significantly different.

Conclusions remarks

In this work we aim at proposing a new GLM regression model with a flexible
asymmetric link function for binary response data in rare event studies. At first, we
analyse the main drawbacks of the logistic regression model for rare events data. As
well known, the GEV distribution is a suitable function for modelling extreme val-
ues and rare event data. For this reason we propose the quantile function of the GEV
distribution as link function. The GEV model depends on the regression parameters
and on the shape parameter of the GEV distribution. Since the score functions do

1 Form these results the GEV model can be considered a suitable regression model for rare events.
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not have closed-form, we obtain the maximum likelihood estimators by maximizing
the log-likelihood function using an iterative algorithm. We specify initial values of
parameters for this iterative algorithm and the Fisher information matrix. The main
advantage of the GEV model is its excellent performance to identify the rare events.
Thanks to this characteristic, the drawback with the logistic regression model in un-
derestimating the probability of rare events is overcome.
In order to evaluate the performance of our methodological proposal we apply the
GEV model to empirical data on Italian Small Medium Enterprizes (SMEs). Since
defaults are events, we model the default probability for Italian SMEs over the years
2005-2009 by considering financial and economic covariates of SMEs. We test this
model by comparing the predictive accuracy of our model with the logistic one.
The application shows the substantial underestimation of the default probability
by applying the logistic regression model. By reducing the sample frequencies of
rare events (defaults), the predictive performance of the logistic regression model to
identify the rare events becomes worse. On the contrary, the GEV model overcomes
the underestimation problem and its accuracy to identify the rare events improves
by reducing the sample percentage of rare events. Finally, we shows that the GEV
model is a robust model, unlike the logistic regression model.
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5 Appendix

In this appendix we obtain the score functions and the Fisher information matrix
for β and τ of the GEV regression model. The notation used here is defined in the
section 3. At first, in order to compute the score functions we consider the following
equations

∂ li(β ,τ,yi)

∂β j
=

∂ li(π(xi))

∂π(xi)

∂π(xi)

∂β j

∂ li(β ,τ,yi)

∂τ
=

∂ li(π(xi))

∂π(xi)

∂π(xi)

∂τ
(19)

with j = 1,2, ...,k and i = 1,2, ...,n. From equations (3) and (5) we obtain that

∂ li(π(xi))

∂π(xi)
=

yi

π(xi)
− 1− yi

1−π(xi)

∂π(xi)

∂β j
=−xi j(1+ τβ

′xi)
−( 1

τ
+1) exp

[
−(1+ τβ

′xi)
− 1

τ

]
∂π(xi)

∂τ
=−(1+ τβ

′xi)
− 1

τ

[
1
τ2 ln(1+ τβ

′xi)−
β ′xi

τ(1+ τβ ′xi)

]
exp
[
−(1+ τβ

′xi)
− 1

τ

]
Substituting the former results in equations (19), the score functions (6) and (7) are
obtained.
The second order partial derivatives of the log-likelihood function with respect to
parameters (β ,τ) are

∂ 2li(β ,τ,yi)

∂ 2β j
=

∂ 2li(π(xi))

∂ 2π(xi)

[
∂π(xi)

∂β j

]2

+
∂ li(π(xi))

∂π(xi)

∂ 2(π(xi))

∂ 2β j

∂ 2li(β ,τ,yi)

∂ 2τ
=

∂ 2li(π(xi))

∂ 2π(xi)

[
∂π(xi)

∂τ

]2

+
∂ li(π(xi))

∂π(xi)

∂ 2(π(xi))

∂ 2τ

∂ 2li(β ,τ,yi)

∂β jβk
=

∂ 2li(π(xi))

∂ 2π(xi)

∂π(xi)

∂β j

∂π(xi)

∂βk
+

∂ li(π(xi))

∂π(xi)

∂ 2(π(xi))

∂β j∂βk
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∂ 2li(β ,τ,yi)

∂β jτ
=

∂

∂β j

[
∂ li(β ,τ,yi)

∂τ

]
where

∂ 2li(π(xi))

∂ 2π(xi)
= − yi

[π(xi)]2
− 1− yi

[1−π(xi)]2

∂ 2(π(xi))

∂ 2β j
= x2

i j(1+ τβ
′xi)
− 1

τ
−1 exp−(1+ τβ

′xi)
− 1

τ

[
τβ ′xi− τ

1+ τβ ′xi

]
∂ 2(π(xi))

∂ 2τ
= π(xi)[−ln(πxi)]

[
1
τ2 ln(1+ τβ

′xi)−
β ′xi

τ(1+ τβ ′x)

]2

[−ln(πxi)−1]

−
[
− 2

τ3 ln(1+ τβ
′xi)+

2β ′xi + τ(β ′x)2

τ2(1+ τβ ′xi)

]
∂ 2(π(xi))

∂β j∂βk
= xi jxik(1+ τβ

′x)−
1
τ
−1 exp−(1+ τβ

′xi)
− 1

τ

[
τβ ′xi− τ

1+ τβ ′xi

]
The Fisher information is the negative of the expectation of the second derivatives

of the log-likelihood with respect to the parameters β and τ

−E
(

∂ 2li(β ,τ,yi)

∂β j∂βk

)
= −∂π(xi)

∂β j

∂π(xi)

∂βk

−E
(

∂ 2li(β ,τ,yi)

∂ 2π(xi)

)
= −∂π(xi)

∂β j

∂π(xi)

∂βk

1
π(xi)[1−π(xi)]

−E
(

∂ 2li(β ,τ,yi)

∂β j∂τ

)
= −xi j

ln2[π(xi)]π(xi)

(1+ τβ ′x)[1+π(xi)]

[
1
τ2 ln(1+ τβ

′xi)−
β ′xi

τ(1+ τβ ′xi)

]
−E
(

∂ 2li(β ,τ,yi)

∂ 2τ

)
= −∂ 2π(xi)

∂ 2τ

1
π(xi)[1−π(xi)]

(20)

since E
(

∂ li(π(xi))

∂π(xi)

)
= 0.

By substituting the previous results in the equations (20) the Fisher information
matrix is obtained.


