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Abstract

In evaluating credit scoring predictive power it is common to use the Re-

ceiver Operating Characteristics (ROC) curve, the Area Under the Curve

(AUC) and the minimum probability-weighted loss. The main weakness of

the first two assessments is not to take the costs of misclassification errors

into account and the last one depends on the number of defaults in the credit

portfolio. The main purposes of this paper are to provide a curve, called curve

of Misclassification Error Loss (MEL), and a classifier performance measure

that overcome the above-mentioned drawbacks. We prove that the ROC dom-

inance is equivalent to the MEL dominance. Furthermore, we derive the prob-

ability distribution of the proposed predictive power measure and we analyse

its performance by Monte Carlo simulations. Finally, we apply the suggested

methodologies to empirical data on Italian Small and Medium Enterprisers.

1 Introduction

In this paper, the authors address the problem of assessing the predictive power of

credit scoring models. We assume we have a database which contains the charac-

teristics of borrowers. This information is used to construct a scoring model (Crook
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et al., 2007; Thomas et al., 2002) that permits banks to discriminate between those

borrowers that will pay on time and those borrowers that will pay late or default.

A commonly used decision rule is an optimal cut-off, where borrowers with scores

greater than or equal to the optimal cut-off are classified as non-defaulters; others

with scores below this optimal cut-off are classified as potential defaulters.

A significant innovation of the revised Framework on International Convergence

of Capital Measurement and Capital Standards (Basel Committee on Banking Su-

pervision (BCBS), 2004) is the greater use of assessments of risk provided by banks’

internal systems as inputs to capital calculations. When following the “Internal

Ratings-Based” (IRB) approach to the revised Framework, banking institutions are

allowed to use their own internal measures as input for their minimum regulatory

capital calculations, subject to certain conditions and to explicit supervisory ap-

proval. This is forcing banks and supervisors to develop methodologies to evaluate

the accuracy of internal rating models. In this context, validation comprises a range

of approaches and tools used to assess the soundness of IRB systems. Therefore,

the field of model validation is one of the major challenges for financial institutions

and supervisors.

Performance assessments are used by banks to choose between alternative scoring

models (Stein and Jordao, 2003) and to monitor rating models over time to decide

when the discriminatory power has deteriorated to the extent that the scoring model

needs replacing by a new one. For this decision process it is pivotal to understand

the classifier performances of scoring models across credit portfolios with different

characteristics.

The Basel Committee on Banking Supervision (BCBS, 2005) summarizes a num-

ber of statistical methodologies for assessing discriminatory power described in the

literature. Credit scoring models are usually evaluated using power curve such as

the Cumulative Accuracy Profile (CAP) and the Receiver Operating Characteristic

(ROC) curves (Kraznowski and Hand, 2009). Unlike the ROC curve, the CAP curve

depends on the composition of the portfolio (BCBS, 2005). Hence, the CAP curve

cannot be used for monitoring scoring models over time when the composition of the

portfolio changes and for comparing classifier performances of rating models across
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different portfolios (Sobehart and Keenan, 2001). Therefore, in this paper we focus

only on the ROC curve and its summary index known as the Area Under the Curve

(AUC).

Both the ROC curve and the AUC do not depend on the proportion of defaulters

in the credit portfolio. Therefore, they could be used to monitor the performance

of credit models over time. The main drawback of the ROC curve and the AUC is

the assumption of equal misclassification error costs. There are usually large costs

associated with extending credit to defaulting obligors and usually smaller costs

associated with not granting credit (or granting credit with overly restrictive terms)

to subsequently non-defaulting obligors. For this reason, many authors (Beling et

al., 2005; Crook at al., 2007; Oliver and Thomas, 2009; Oliver and Wells, 2001;

Stein, 2004) take the costs of misclassification errors into account. Most of these

authors (Beling et al., 2005; Crook at al., 2007; Oliver and Wells, 2001; Oliver

and Thomas, 2009) compute the optimal cut-off by maximizing the expected profit,

which is equivalent to minimizing the Probability-Weighted (PW) loss function.

For this reason we consider the minimum of the PW loss function as a classifier

performance measure in this paper. Analogously to the Bayesian error rate (BCBS,

2005), in the PW loss function the misclassification errors are weighted by the the

proportion of defaulters. Hence, the minimum of the PW loss function should be

estimated on portfolios with representative default probability and cannot be used

by banks for monitoring scoring models across different portfolios (Hand and Henley,

1997; Hand and Vinciotti, 2003).

Within this research field, in order to overcome the drawbacks of the above-

mentioned methodologies, the main aim of this work is to propose both a curve and

a performance measure that take the costs of misclassification errors into account

and are robust for different numbers of defaulters in the portfolio. Based on our

knowledge, this is the first paper with this aim. In particular, we propose the curve

of Misclassification Error Loss (MEL) which represents graphically the discrimi-

natory power when the cut-off changes and its shape depends on the ratio of the

misclassification error costs. Coherently with the MEL curve, we propose consider-

ing the minimum of the MEL curve as a performance measure that depends on the
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ratio of the misclassification error costs, but not on the number of defaults in the

portfolio. We prefer to consider the ratio of misclassification error costs since it is

usually known, unlike the misclassification error costs (Adams and Hand, 1999).

Some important theoretical results are obtained in this work: the ROC dom-

inance is equivalent to the MEL dominance, the normalized area under the MEL

curve is equal to the Gini index, the slope of the MEL curve is obtained and the

probability density function of the minimum of the MEL curve is derived. More-

over, the minimum of the MEL curve is compared with the minimum of the PW loss

function using both simulations and real data. The most innovative aspect of this

work is that we incorporate the main characteristics of credit model validation in

our simulations. Based on our knowledge, this is the first work that performs Monte

Carlo simulations on the classifier performance by drawing from skewed score dis-

tributions and by considering low proportions of defaulters in credit portfolios. The

simulation results show that our proposal exhibits a definitely better performance

than the minimum of the PW loss function.

Another innovative aspect of this paper is the application of the methodological

proposals to Italian Small and Medium Enterprises (SMEs). Basel II (BCBS, 2004)

establishes that banks should develop credit risk models specifically addressed to

SMEs. To the authors’ knowledge, no empirical studies are mainly focused on the

validation of scoring models for SMEs, only a few studies hint at this topic (Altman

and Sabato, 2006; Fantazzini and Figini, 2008). In particular we consider 34,290

Italian SMEs over the years 2005-2009. The main result is that our methodology,

unlike the minimum of the PW loss function, allows to classify correctly two scoring

models according to their classifier performances.

The present paper is organized as follows. Section 2 analyses the ROC curve, the

AUC index and the minimum of the PW loss function. In section 3 the MEL curve

and its minimum are suggested. In the following section we compare the properties

of our proposal to those of the minimum of the PW loss function by simulations.

Successively, in Section 5 we compare our proposals with the ROC curve and the

minimum of the PW loss function on a database of Italian SMEs. Finally, the last

section is devoted to conclusions.
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2 The validation of credit scoring models

Let S be the score on a continuous scale that is assigned to a borrower and which

is intended to forecast the borrower’s creditworthiness. The borrower’s future state

at the end of a fixed time period could be default or non-default. The conditional

distribution functions of S given the borrower’s future state default or non-default

are denoted respectively by Fd(·) and Fn(·). Analogously, the conditional probability

density functions of S given the future state default or non-default are indicated by

fd(·) and fn(·).

The institution’s intention with the score variable S is to forecast the borrower’s

future state by relying on the information on the borrower’s creditworthiness that is

summarized in S. A commonly used decision rule is a cut-off s∗ where each debtor

with a score lower than s∗ is classified as a potential defaulter and each debtor with a

score higher than s∗ as a non-defaulter (see Thomas et al., 2002). For a given cut-off,

the errors of the scoring model are given by 1− Fd(s
∗) and Fn(s

∗) which represent

respectively the Type I and the Type II errors by choosing that the borrower is a

future defaulter as null hypothesis.

The research field of this work is to evaluate how well credit models can discrim-

inate between the future defaults and non-defaults. The most basic approach to

assessing the performance of a default prediction model is to consider the number

of predicted defaults (or non-defaults) and compare this with the actual number of

defaults (or non-defaults) experienced. A common means of representing this is a

contingency table or confusion matrix, as in Table 1.

In particular, True Default (TD) and True Non-default (TN) are respectively the

number of defaults and non-defaults that are predicted correctly. Conversely, False

Default (FD) indicates the number of predicted defaults that do not occur and False

Non-default (FN) is the number of predicted non-defaults that actually default.

The total number of defaults in the credit portfolio is indicated by D and the

total number of non-defaults by ND. For a given cut-off s∗, the false positive rate

is defined as

F̂n(s
∗) =

FD

ND
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Actual default Actual non-default

Default forecast TD FD

(score below s∗)

Non-default forecast FN TN

(score above s∗)

D ND

Table 1: Contingency table or confusion matrix.

and the true positive rate is

F̂d(s
∗) =

TD

D
.

The alarm rate is given by

F̂ (s∗) =
TD + FD

D +ND

and it represents the proportion of defaulters. For different cut-off values, any model

would exhibit different performances; thus, contingency tables could be used as a

means of assessing competing models only for a given cut-off value s∗. In order

to represent the model performance for all possible cut-off values, the most pop-

ular graphic representation is the Receiver Operating Characteristic (ROC) curve

(BCBS, 2005).

2.1 ROC curve

The ROC curve is defined as the plot of the non-diagonal elements combination of

a contingency table for all possible cut-off points. This means that the ROC curve

is represented by the plot of the true positive rate on the vertical axis, versus the

false positive rate on the horizontal axis, for all possible cut-off points

ROC(u) = Fd[F
−1
n (u)], u ∈ (0, 1).

In Figure 1, the ROC curve is plotted. A perfect model would correctly predict the

full number of defaults and it is represented by the horizontal line at the unit true

positive rate. On the other side, a model with zero predictive power is represented by
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the straight line 45. Finally, any other case of some predictive power is represented

by a concave curve positioned between the two extreme cases.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fn(s)

F
d(s

)

Scoring model
Random model
Perfect model

Figure 1: The Receiver Operating Characteristic (ROC) curve.

In the case that the ROC curve of a particular model lies uniformly above the

ROC curve of a competing model, the former exhibits superior discriminatory power

for all possible cut-off points. In analytic terms, this relationship is defined as follows.

Definition 2.1. The credit scoring model S1 ROC dominates the scoring model S2

whenever ROC1(s) > ROC2(s) ∀s ∈ R.

In the case that the two curves intersect, it is not clear which model has the

higher discriminatory power. The slope of the ROC at each point on the curve is

the ratio of the probability density functions fd(s) and fn(s) for a given score s

(Tasche, 2002).

A drawback of the ROC curve is that it assumes equal misclassification error

costs for Type I and II Errors (Provost and Fawcett, 2001). This assumption could

be very risky for banks. The reason is that it is much more costly to classify a

borrower as non-defaulter when he is a defaulter than to classify a borrower as

defaulter when he is a non-defaulter (Stein, 2005). In particular, when a defaulted

borrower is classified as non-defaulter by scoring models, banks give him a loan.

When the borrower becomes defaulter, the bank may lose the whole or part of the
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credit exposure, which represents the costs corresponding to Type I error for False

Negative. On the contrary, when a non defaulter is classified as defaulter, the bank

loses only the interest on loans.

The aim of this work is to propose a curve that incorporates misclassification

error costs.

2.2 Classifier performance measures

In order to validate a credit model, how the discriminatory power can be measured

is a trivial question. From Figure 1, the stronger the slope of the ROC curve for

Fn(·) is close to 0, implying the default probability estimate being close to 1 for low

scores (Tasche, 2006), and the weaker the slope of the respective curve for Fn(·) is

close to 1, implying the default probability estimate being close to 0 for high scores,

the distribution functions of S Fd(·) and Fn(·) differ more and the discriminatory

power of the underlying score variable S is better. For the assessment of credit

model performance, a synthetic index of the discriminatory power for all possible

cut-offs is known as Area Under the Curve (AUC) (see Kraznowski and Hand, 2009).

From Figure 1, it is intuitively clear that the area between the axis of abscissa

and the ROC curve can be considered a measure of discriminatory power

AUC =

∫ 1

0

ROC(u)du.

It takes values in the [0.5,1] interval where the two bounds correspond to models

with zero and full discriminatory power, respectively. By normalizing the AUC

index
AUC − 0.5

0.5
= G the Gini index G is obtained.

Since the AUC does not incorporate the costs of misclassification errors, the

minimum of the Probability-Weighted (PW) loss function is used (Hand and Henley,

1997; Hand and Vinciotti, 2003)

min
s
{C(FN)p[1− Fd(s)] + (1− p)C(FD)Fn(s)} s ∈ R (2.1)

where p is the default probability and C(FN) and C(FD) are the costs correspond-

ing to Type I error for FN 1 − Fd(s) and Type II error for FD Fn(s), respectively.

High values of the minimum of the PW loss function correspond to lower classifier
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performance. The optimal cut-off s∗ that minimizes the PW loss function coincides

with the one that maximizes the expected profit (Beling et al, 2005; Crook et al.,

2007; Oliver and Wells, 2001; Oliver and Thomas, 2009).

Since the minimum of the PW loss function is dependent on the sample default

probability, banks and regulators cannot apply this assessment for monitoring credit

scoring over time and across credit portfolios when the default probability changes.

Moreover, since default is a rare event (Calabrese and Osmetti, 2011), the important

costs C(FN) for banks are multiplied by a too small value p, this could imply the

underestimation of the losses for FN.

The classifier performance measure proposed in the next section aims at over-

coming this disadvantage.

3 New classifier performance assessments

3.1 The curve of Misclassification Error Loss (MEL) and

the area under the MEL curve

0.0 0.2 0.4 0.6 0.8 1.0

Scoring model
Random model
Perfect model

Fn(s)

M
E

L(
s)

Figure 2: The Misclassification Error Loss (MEL) Curve.

The first aim of this section is to propose a curve that does not depend on the

default probability (a sample characteristic) but depends on the misclassification
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error costs. In terms of the conditional cumulative distributions of scores, the curve

of Misclassification Error Loss (MEL) is proposed, defined as

MEL(u) =
C(FN)

C(FD)
[1− Fd(s)] + Fn(s) = k[1− Fd(s)] + Fn(s) s ∈ R (3.1)

where k is the ratio C(FN)/C(FD) of the costs of misclassification errors. We point

out that the costs C(FN) are often much higher than C(FD) since the first depends

on the loss given default and the workout fees on default, by contrast the latter

depends on the interest spread. This means that the costs ratio k = C(FN)/C(FD)

is usually higher than 1.

Unlike the PW loss function (2.1), Type I and II errors are not weighted by the

probabilities p and 1 − p, since it would imply the underestimation of the loss for

Type I error when p is too small. As above-mentioned, the measurements of the dis-

criminatory power of scoring models should be independent from the characteristic

of the credit portfolio, such as the proportion of defaulters.

From Figure 2, we highlight that all the MEL curves pass through the points

(0, k) and (1, 1). In particular, the MEL curve of the random model, with zero

discriminatory power, is given by the dotted line that joins the points (0, k) and

(1, 1). By contrast, the MEL curve of the perfect credit model is given by two

dotted lines, the first joining the points (0, k) and (0,0), the second joining the

points (0,0) and (1, k). Any other model with some predictive power is given by a

curve positioned between the two extreme cases.

In the case that the MEL curve of a particular model lies uniformly above the

MEL curve of a competing model, the latter exhibits superior discriminatory power

for all possible cut-off points. In analytic terms, this relationship is defined as

follows.

Definition 3.1. The credit scoring model S1 MEL dominates the scoring model S2

whenever MEL1(s) > MEL2(s) ∀s ∈ R.

In the case that the two curves intersect, it is not clear which model shows the

higher discriminatory power.

Proposition 3.1. The ROC dominance is equivalent to the MEL dominance.
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Proof. At first we prove that if the scoring model S1 ROC dominates the scoring

model S2 then S1 MEL dominates S2. From the definition 2.1 we deduce that

F 1
d (s) > F 2

d (s) ∀ s ∈ R. (3.2)

The condition (3.2) can be written also as

1− F 1
d (s) < 1− F 2

d (s) ∀ s ∈ R. (3.3)

By multiplying both sides of the inequality (3.3) for the costs ratio k and by summing

up the probability Fn(s) which takes the same value for both scoring models S1 and

S2, it is obtained

k{1− F 1
d [F

−1
n (u)]}+ F 1

n(s) < k{1− F 2
d [F

−1
n (u)]}+ F 2

n(s) ∀ s ∈ R. (3.4)

Analogously, we can prove that if the scoring model S1 MEL dominates the scoring

model S2. that the scoring model S1 MEL dominates the scoring model S2.

The previous result is coherent with the one obtained by Beling et al. (2005)

that the ROC dominance is equivalent to the expected-profit dominance.

Proposition 3.2. The slope of the MEL curve is

∂CC[Fn(s)]

∂Fn(s)
= −k

fd(s)

fn(s)
+ 1. (3.5)

Proof. The following results are useful in order to compute the slope of the MEL

curve. From the equation

1 =
∂Fn(s)

∂Fn(s)
=

∂Fn(s)

∂s

∂s

∂Fn(s)
= fn(s)

∂s

∂Fn(s)

we get the result
∂s

∂Fn(s)
=

1

fn(s)
. (3.6)

By applying the equation (3.6), we derive

∂Fd(s)

∂Fn(s)
=

∂Fd(s)

∂s

∂s

∂Fn(s)
= fd(s)

∂s

∂Fn(s)
=

fd(s)

fn(s)
. (3.7)

By considering the equation (3.7), we obtain

∂CC[Fn(s)]

∂Fn(s)
= −k

∂Fd(s)

∂Fn(s)
+ 1 = −k

fd(s)

fn(s)
+ 1.
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By setting the slope (3.5) of the MEL curve equal to zero, the score s at which

the MEL curve reaches its minimum satisfies the following equation

fd(s)

fn(s)
=

C(FD)

C(FN)
.

In order to understand the behaviour of the MEL curve, it is useful that Tasche

(2006) proves that the score variable S is optimal in a test-theoretic sense if and

only if the likelihood ratio
fd(s)

fn(s)
is monotonous. If high scores indicate high credit-

worthiness, the score density function for defaulters fd(s) is small for high scores and

large for low scores and the score density function for non-defaulters fn(s) is large

for high scores and small for low scores. This means that the likelihood ratio
fd(s)

fn(s)
is decreasingly monotonous. From this result and the equation (3.5) it is deduced

that the MEL curve is decreasing for scores lower than the one at which the MEL

curve has the minimum and it is increasing for scores higher, as Figure 3 shows.

Figure 2 shows that the area between the MEL curve and the dotted line of the

perfect model that joins the points (0, k) and (1, 1) represents a classifier performance

measure. The relationship between the AUC and the area under the MEL curve is

shown by the following proposition.

Proposition 3.3. The normalized area under the MEL curve is equal to the Gini

index G.

Proof. The area under the MEL curve is∫ Fn(s)

0

MEL[Fn(s)]dFn(s) =

∫ 1

0

MEL[Fn(s)]dFn(s)−
∫ 1

Fn(s)

MEL[Fn(s)]dFn(s).

(3.8)

We compute the two integrals on the left side of the equation (3.8)∫ 1

0

MEL[Fn(s)]dFn(s) =

∫ 1

0

{k[1−Fd(s)]+Fn(s)+Fn(s)}]dFn(s) = k−kAUC+0.5

(3.9)∫ M

Fn(s)

EL[Fn(s)]dFn(s) = 0.5 (3.10)

By substituting the results (3.9) and (3.10) in the equation (3.8), the following result

is obtained ∫ Fn(s)

0

MEL[Fn(s)]dFn(s) = k − k AUC. (3.11)
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By normalizing the area under the MEL curve the Gini index G is obtained

k − k AUC

0.5 k
= 2− AUC = G

3.2 The minimum of the MEL curve

A coherent classifier performance measure with the MEL curve that is not dependent

on the sample characteristics and considers the misclassification costs of Type I and

II errors is the minimum of the MEL curve

min
s

{k[1− Fd(s)] + Fn(s)} = max
s

[kFd(s)− Fn(s)] . (3.12)

Proposition 3.4. The probability density function of the minimum of the MEL

curve is

fS(s) =



m(1+s)
k

[
1
k

(
(s)2

2
+ s+ 1

2

)]m−1

−1 ≤ s < 0;

m
k

[
1+2s
2k

]m−1
0 ≤ s < k − 1;

m(−s+k)
k

[
1
k

(
− (s)2

2
+ ks+ −k2+2k

2

)]m−1

k − 1 ≤ s < k;

0 otherwise

(3.13)

where m is the number of the points at which the differences kFd(s) − Fn(s) are

calculated.

Proof. Let Fd(S) = U and Fn(S) = V . Therefore, U and V are two continuous uni-

form random variables with support [0,1]. We consider the following transformation T = V,

Z = kU − V

We compute the joint density function

fTZ(t, z) = |J |fV U

(
t,
z + v

k

)
=

1

k
I(0,1)(t)I(0,1)(

z + v

k
) (3.14)
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where J is the Jacobian of the transformation and U and V are independent random

variables.

To find the marginal density function of Z we integrate out t

fZ(z) =

∫ ∞

−∞
fTZ(t, z)dt =



1+z
k

−1 ≤ z < 0;

1
k

0 ≤ z < k − 1;

−z+k
k

k − 1 ≤ z < k.

(3.15)

In the previous result we consider k ≥ 1 since k is equal to the ratio
C(FD)

C(FN)
of misclassification error costs. From the probability density function (3.15) we

compute the cumulative distribution function of Z

FZ(z) =



1
k

(
z2

2
+ z + 1

2

)
−1 ≤ z < 0;

1+2z
2k

0 ≤ z < k − 1;

1
k

(
− z2

2
+ kz + −k2+2k

2

)
k − 1 ≤ z < k;

1 z ≥ k.

(3.16)

The probability density function of the maximum of Z is (Herbert and Nagaraja,

2003)

fmax{Z}(z) = m[FZ(z)]
m−1fZ(z) (3.17)

where m is the number of the points at which the differences kFd(s) − Fn(s) are

calculated. By substituting the equations (3.15) and (3.16) in the equation (3.17),

we obtain the expression (3.13).

When k = 1, the expression (3.12) is the Kolmogorov-Smirnov statistic (Gibbons,

1971) for testing H0 : Fd(s) = Fn(s) vs H1 : Fd(s) > Fn(s). Kraznowski and

Hand (2009) consider the Kolmogorov-Smirnov statistic for the maximum vertical

distance for ROC curve.
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4 Simulation results

Based on our knowledge, few simulations (e.g. Satchell and Xia, 2007; Stein and

Jordao, 2003; Stein, 2005) are performed in the literature on the accuracy of credit

scoring models. We generate 1,000 samples of credit scores of both defaulters and

non-defaulters from two random variables and we denote these as samples 1. Then,

we generate 1,000 samples of credit scores from the same parametric model but

with different parameters in order to change the classifier performance of the scoring

model. We denote this second set of samples as samples 2. Both the minima of the

PW loss function (2.1) and of the MEL curve (3.12) are computed on the simulated

samples 1 and 2. The value of a given measure evaluated on the samples 1 are

compared with those of the same measure evaluated on the samples 2. Hence, we

compute the proportions
♯{CPM1 > CPM2}

1, 000
(4.1)

for each pair of samples, where CPM1 and CPM2 are the same Classifier Perfor-

mance Measure (CPM) evaluated on the sample 1 and 2, respectively. These values

are reported in Table 2.

Similarly to Satchell and Xia (2007), we consider two different sample sizes (500

and 1000) and two different default proportions (0.05 and 0.01). The default prob-

ability of 0.05 is chosen since it represents the default percentage for Italian SMEs

(Cerved Group, 2011) examined in the following section. The ratio of misclassifica-

tion error costs is considered equal to 2 in the following simulations.

Analogously to Satchell and Xia (2007), the first parametric model for credit

scores is given by the normal distribution N(µ, σ2) with expectation µ and variance

σ2. At first, the score of defaulters and non-defaulters are simulated from the normal

distributionsND(0, 1) andNN(1, 1). In order to increase the classifier performance of

the scoring model, the mean of the distribution of non-defaulters for the sample 2 is

increased. Therefore, we simulate the defaulters’ scores from the normal distribution

ND(0, 1) and the non-defaulters’ scores from N(1.1, 1).

Much empirical evidence shows asymmetric distributions of the scores for de-

faulters and non-defaulters (e.g. Christodoulakis and Satchell, 2006), even the score
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sample ND(0,1);NN(1,1) SND(0,2,-0.5); SNN(0,2,0.5)

sizes PD ND(0,1);NN(1.1,1) SND(0,2,-0.5); SNN(0.1,2,0.5)

500 .05 1 0.552

500 .01 0.571 0.467

1000 .05 1 0.635

1000 .01 0.747 0.228

Table 2: The results of Monte Carlo simulations on 1,000 samples where N(µ, σ2) in-

dicates the normal random variable with expectation µ and variance σ2; SN(ξ, ω, α)

indicates the skewed normal random variable where ξ is the location parameter

(ξ ∈ R), ω is the scale parameter (ω ∈ R+) and α is the shape parameter (α ∈ R+).

distributions in the empirical evidence of this paper show these characteristics. For

this reason, Christodoulakis and Satchell (2006) analyze the theoretical character-

istics of the ROC curve when the credit scores follow a skew normal distribution.

Hence, we generate the scores also from two skew normal random variables (Azza-

lini, 1985) SN(ξ, ω, α) where ξ is the location parameter (ξ ∈ R), ω is the scale

parameter (ω ∈ R+) and α is the shape parameter (α ∈ R+). In particular, we gen-

erate the defaulters’ scores from the skew normal distribution SND(0, 2,−0.5) and

the non-defaulters’ scores from SNN(0, 2,−0.5). By increasing the distance between

the expectations of the scores SD and SND we increase the classifier performance of

the scoring model, so we simulated the score samples from skew normal distributions

SND(0, 2,−0.5) and SND(0.1, 2, 0.5).

Since the proportions (4.1) computed by applying the minimum of the MEL

curve are equal to one for all the pairs of simulated samples, we do not report these

values in Table 2. This means that the minimum of the MEL curve always shows

the same ordering of the classifier performances of the scoring models.

From Table 2 we can deduce that our proposal is preferable to the minimum

of PW loss for most of the couples of generated samples. When the proportion

of defaulters is 0.05 and we simulate from normal distributions, both the methods

show similar performance. Compliant with the expectations, by decreasing the
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proportion of defaulters the minimum of the PW loss shows inadequate performance.

Similarly, the results for the skew normal distributions show worse performance of

the minimum of the PW loss when the proportion of defaulters is low (0.01). It is

important to underline that when the score distributions are skewed, the minimum

of the PW loss shows inadequate performance even when the proportion of defaulters

is 0.05. We obtain the same result in the following section. We can thus conclude

that our proposal is robust for different numbers of defaulters.

5 Empirical evidence

SMEs play a very important role in the economic system of many countries and

particularly in Italy (about 90% of Italian firms are SMEs (Vozzella, Gabbi 2010)).

Furthermore, Basel II (BCBS, 2004) establishes that banks should develop credit

risk models specifically addressed to SMEs. Only a few studies consider SMEs (e.g.

Altman and Sabato, 2007; Altman et al. 2010; Ciampini and Gordini, 2008; Vozzella

and Gabbi, 2010) since the gathering of SMEs data is quite difficult.

Data used in our analysis comes from AIDA-Bureau van Dijk, a large Italian

financial and balance sheet information provider. We consider Italian defaulted and

non-defaulted SMEs over the years 2005 − 2009. In particular, since the default

probability is one-year forecasted, the covariates concern the period of time 2004−

2008. The database contains accounting data of approximately 210,000 Italian firms

with total assets below 10 million euros (Vozzella and Gabbi, 2010). From the sample

we exclude the firms without the necessary information on the covariates.

We consider a default occurred when a specific firm enters a bankruptcy pro-

cedure as defined by the Italian law (Altman and Sabato, 2007). In accordance

with Altman and Sabato (2007) we apply a choice-based or endogenous stratified

sampling on this dataset. In this sampling scheme, data are stratified by the values

of the response variable. We randomly draw the observations within each stratum

defined by the two categories of the dependent variable (1=default, 0=non-default)

and we consider all the defaulted firms. Then, we select a random sample of non-

defaulted firms over the same year of defaults in order to obtain a percentage of
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Figure 3: Plots on data on Italian SMEs (165 defaults and 3,300 non-defaults) over

the years 2005− 2009.

defaults in our sample as close as possible to the default percentage (5 %) for Italian

SMEs (Cerved Group, 2011).

We apply the logistic regression model (McCullagh and Nelder, 1989) and the

Generalized Extreme Value (GEV) regression model proposed by Calabrese and

Osmetti (2011) to forecast the probability of default.

In order to model the default event, we choose the independent variables that

represent the financial and economic characteristics of firms according to the re-

cent literature (Vozzella and Gabbi, 2010; Ciampi and Gordini, 2008; Altman and

Sabato, 2007). These covariates cover the most relevant aspects of firm’s opera-

tions: leverage, liquidity and profitability. By applying the GEV model, 7 variables

are significant at the level of 5% for the PD forecast: Solvency ratio (the ratio of a

company’s income over the firm’s total debt obligations); Return on investment (the

ratio of the returns of a company’s investments over the costs of the investment);

Turnover per employee (the ratio of sales divided by the number of employees);

Added value per employee (the enhancement added to a product or service by a

company divided by the number of employees); Cash flow (the amount of cash gen-

erated and used by a company in a given period); Bank loans over turnover (short

and long term debts with banks over sales volume net of all discounts and sales
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taxes); Total personnel costs over added value (the ratio of a company’s labor costs

divided by the enhancement added to a product or service by a company).

Since the developed models may overfit the data, resulting in over-optimistic

estimates of the predictive accuracy, the validation is applied on a sample (3,465

SMEs), called out-of-sample sample, which is different from that used in estimating

the model parameters (31,600 SMEs). The out-of-sample is randomly drawn.

Since the GEV model is proposed to classify correctly the defaulters (Calabrese

and Osmetti, 2011), the (global) classifier performance of the GEV model is worse

than the one of the logistic model for every cut-off, as both the ROC and the MEL

curve show in Figure 3. This result is also shown by the AUC that is equal to 0.615

for the GEV model and 0.708 for the logistic model.

Models Minimum of the MEL curve Minimum of the PW loss

GEV method 0.9976 0.0935

logistic method 0.9304 0.0998

Table 3: The minima of the MEL curve and of the PW loss function for the logistic

and the GEV models on 3,115 Italian SMEs.

We compute the minima of the MEL curve and of the PW loss curve by consid-

ering a ratio of misclassification error costs equal to 2 and we report these values in

Table 3. Even if the difference between the AUCs for the two models is high, the

minimum of the PW loss function shows incorrectly that the classifier performance

of the GEV model is better than the one of the logistic regression model.

6 Conclusions

In this work we overcome some main problems of the validation of scoring models.

At first, we propose the MEL curve to represent the discriminatory power of rating

models whose shape depends on the ratio of the misclassification error costs. Our

proof shows that the ROC dominance is equivalent to the MEL dominance. More-

over, we derive that the normalized area under the MEL curve is the Gini index.

19



In coherence with the MEL representation, we suggest a measure to evaluate the

classifier performance that is not affected by the number of defaults in the portfo-

lio. We derive also the probability density function of the suggested discriminatory

power index. Monte Carlo simulations show that our proposal is definitely prefer-

able to the minimum of the weighted-probability loss for skewed score distributions.

Finally, the same result is obtained by an empirical analysis on Italian SMEs.

This work is important since we suggest classifier performance assessments that

allows to monitor credit scoring models for different numbers of defaulters. Since

simulation studies on the validation of rating models concern only symmetric credit

score distributions, another innovative aspect of this model is that the Monte Carlo

simulations are performed by drawing from skewed distributions of the credit scores.

Finally, a further relevant contribution of this paper is the application of the method-

ological proposals to data on Italian SMEs.
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