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Regression Model for Proportions with
Probability Masses at Zero and One

Raffaella Calabrese

Abstract In many settings, the variable of interest is a proportion with high con-
centration of data at the boundaries. This paper proposes a regression model for
a fractional variable with nontrivial probability masses at the extremes. In partic-
ular, the dependent variable is assumed to be a mixed random variable, obtained
as the mixture of a Bernoulli and a beta random variables. The extreme values of
zero and one are modelled by a logistic regression model. The values belonging to
the interval (0,1) are assumed beta distributed and their mean and dispersion are
jointly modelled by using two link functions. The regression model here proposed
accommodates skewness and heteroscedastic errors. Finally, an application to loan
recovery process of Italian banks is also provided.

Key-words:
• proportions, mixed random variable, beta regression, skewness, heteroscedasticity.

AMS Subject Classification:
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1 Introduction

Fractional response variables arise in many settings. Examples include the pro-
portion of crude oil converted to gasoline after distillation and fractional [10], the
401(k) plan participation rate [20]. In some cases, the observations at one or both
boundaries occur with a large frequency. For instance, the proportion of a firm’s to-
tal capital accounted for by its debt capital [8] represents a fractional variable with
mass point at zero. Furthermore, there are many applications with high concentra-
tion of data at both the boundaries, e.g. the ability of the patient to perform activities
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measured by Barthel index [16], the rate of voluntary option exercise [7], the pro-
portion of asset allocations and equities [1], the loan recovery rates [6]. Since the
last set of applications is relatively unexplored, the aim of this paper is to propose a
regression model for proportions with mass points at the boundaries.
The main regression models for fractional response variable are briefly analysed.
At first, the linear model is not appropriate to examine how a set of explanatory
variables x influences a fractional response since it does not guarantee that the pre-
dicted values of the dependent variable are restricted to the unit interval. In order
to analyse the determinants x of the conditional mean µ of the fractional response
variable, a widely applied approach is the generalized linear model [18] that con-
siders a strictly monotonic and twice differentiable link function g(·) that maps the
interval (0,1) onto the whole real line and such that g(µ) = x′λ .
By denoting G(·) the inverse of the link function, four functions are commonly used

• the logit function G(x′λ ) =
1

1+ exp(−x′λ )
• the probit function G(x′λ ) = Φ(x′λ )
• the log-log function G(x′λ ) = exp[−exp(−x′λ )]
• the complementary log-log function G(x′λ ) = 1− exp[−exp(−x′λ )].

A widely applied approach that handles data observed on the closed interval [0,1]
(e.g. Bastos [4], Carpenter et al. [7], Grippa et al. [12], Dermine and Neto de Car-
valho [9]) is the model proposed by Papke and Wooldridge [20]. The estimation
procedure of the fractional response model of Papke and Wooldridge is a quasi-
likelihood method that consists of the maximization of the Bernoulli log-likelihood
function

li(λ̂ ) = yilog[G(x′iλ̂ )]+(1− yi)log[1−G(x′iλ̂ )], (1)

for i = 1,2, ...,n, where n is the number of observations. Because equation (1) is a
member of the linear exponential family, the quasi-maximum likelihood estimator
of λ , obtained from the maximization problem

max
λ

n

∑
i=1

li(λ ),

is consistent for λ and
√

n-asymptotically normal, regardless of the distribution of
Yi conditional on xi, provided that

E(Yi|xi) = G(x′iλ ),

with i = 1,2, ...,n.
The censored normal regression model (i.e. the Tobit model) is sometimes used to
address data observed on the closed interval [0,1] (e.g. Agnew et al. [1]). There are
also some problems with this approach. As Maddala [17] observes, a Tobit model is
appropriate to describe censored data in the interval [0,1] but its application to data
defined only in that interval is not easy to justify: observations at the boundaries
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of a fractional variable are a natural consequence of individual choices and not of
any type of censoring. Furthermore, the Tobit model is very stringent in terms of
assumptions, requiring normality and homoscedasticity of the dependent variable,
prior to censoring.
When the dependent variable Y is observed on the interval (0,1) and is beta dis-
tributed, by applying a methodology similar to GLM models, Ferrari and Cribari-
Neto [10] propose the beta regression model. The probability density function of a
beta distribution with parameters p > 0 and q > 0 is

f (y; p,q) =
yp−1(1− y)q−1

B(p,q)
=

Γ (p+q)
Γ (p)Γ (q)

yp−1(1− y)q−1

where y ∈ (0,1), B(·, ·) denotes the beta function and Γ (·) the Gamma function.
Ferrari and Cribari-Neto propose a reparameterization that translates p and q into a
location parameter µ and a dispersion parameter ϕ

E(Y ) =
p

p+q
= µ var(Y ) =

pq
(p+q)2(p+q+1)

=
µ(1−µ)

ϕ +1
, (2)

where ϕ = p+ q. First, Ferrari and Cribari-Neto model only the conditional mean
µ and they consider the precision parameter ϕ = p+ q as a nuisance parameter.
Second, the response variable is restricted to the interval (0,1), neglecting the infor-
mation of the boundaries, analogously to GLM models.
By applying the same regression model to both the values belonging to the interval
(0,1) and to the extreme values of zero and one, it is assumed that the two sets of
data show the same characteristics and follow the same model. A violation of this
assumption is the cause of sample section bias, which Heckman [14] demonstrates is
another type of specification error. For instance, in the application to recovery rates
considered in this paper, many authors (e.g. Friedman and Sandow [11], Grunert
and Weber [13]) hypothesize that the extreme values of the recovery rates show dif-
ferent characteristics from the ones belonging to the interval (0,1), but they can not
verify this statement with an appropriate methodology.
Within this research field, the main aim of this work is to propose a model in order
to model jointly the conditional mean and the conditional dispersion of a proportion
with mass points at zero and one, given some explanatory variables. At first, the
dependent variable is considered as a mixed random variable to represent the high
concentration of data at the boundaries. In particular, the dependent variable is as-
sumed to be a a mixture of a Bernoulli random variable and a beta random variable.
In order to analyze the influences of some explanatory variables on the continuous
part, a regression model is proposed to model jointly the conditional expectation
and the conditional dispersion by using two link functions. The parameters of the
model are estimated by the maximum likelihood method. This model accommodates
skewness, multimodality and heteroscedastic errors. For the discrete part of the de-
pendent variable a logistic regression is applied. Finally, the proposed approach is
applied to a comprehensive database of recovery rates on Italian bank loans.
The present paper is organized as follows. In section 2 the regression for a propor-
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tion with mass points at zero and one is proposed. Successively, section 3 presents
the Bank of Italy’s database, to which the suggested methodology is applied and the
main empirical results are presented. Finally, the last section is devoted to conclu-
sions.

2 The Model and the Estimation

In order to supply accurate estimations for the extreme values of Y , the dependent
variable Y is considered as a mixed random variable, given by the mixture of a
Bernoulli random variable and a beta random variable B

FY (y) =

P{Y = 0} y=0;
P{Y = 0}+[1−P{Y = 0}−P{Y = 1}]FB(y) y∈(0,1)
1 y=1

(3)

where FB denotes the distribution function of the beta random variable B and P{Y =
j} is the probability that the dependent variable Y is equal to j with j = 0,1.
The attention is focused on the beta random variable B considered in the model (3).
As above-mentioned, the beta regression approach, proposed by Ferrari and Cribari-
Neto [10], assumes that the dependent variable is beta distributed. By applying the
same reparameterization proposed by Ferrari and Cribari-Neto, this work models
jointly the conditional mean µ and the precision parameter ϕ , defined in equations
(2).
In particular, let B1,B2, ...,Bd be independent random variables, where each Bi, with
i = 1,2, ...,d, follows the density

f (bi; µi,ϕi)=
bµiϕi−1

i (1−bi)
ϕi−µiϕi−1

B(µiϕi,ϕi −µiϕi)
=

Γ (ϕi)

Γ (µiϕi)Γ (ϕi −µiϕi)
bµiϕi−1(1−bi)

ϕi−µiϕi−1

where bi ∈ (0,1), 1 > µi > 0 and ϕi > 0, with mean and variance given by the
equations (2). To joint model the conditional mean µi and the parameter ϕi with
i = 1,2, ..., p, two different link function g(·) and h(·) are used such that

g(µi) = x′iα h(ϕi) =−w′
iβ , (4)

with i = 1,2, ...,d, where α and β are vectors of respectively k and m unknown
regression parameters, xi and wi are two vectors of observations on respectively k
and m covariates (k+m< d), which are assumed fixed and known. In order to define
the link function h(·), in the second equation of (4), the negative sign is considered
in order to model the dispersion of the dependent variable B.
Furthermore, the conditional mean µ and the parameter ϕ depend on two different
vectors of covariates, x and w respectively. By such characteristic, the model here
proposed can consider some variables in the vector wi that are relevant just for the
parameter ϕi and not for the conditional mean µi. Since 0 < µi < 1 and ϕi > 0 with
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i = 1,2, ...,d, it is supposed that the link function g(·) is the logit function and the
link function h(·) is the log function, it follows that

µi =
1

1+ e−x′iα
ϕi = e−w′

iβ , (5)

with i = 1,2, ...,d. The variance of Bi is a function of µi and ϕi, as given by the
equation (2) and, as a consequence, of the covariate values xi and wi, so such model
accommodates heteroscedastic errors. Moreover, since the beta distribution is flexi-
ble, the skewness and multimodality are also accommodated.
In order to estimate the two vectors α and β of parameters, the maximum likelihood
method is performed. The log-likelihood function is

l(α,β ) =
d

∑
i=1

[
lnΓ (e−w′

iβ )− lnΓ

(
ex′iα−w′

iβ

1+ ex′iα

)
− lnΓ

(
e−w′

iβ

1+ ex′iα

)
+

+

(
ex′iα−w′

iβ

1+ ex′iα
−1

)
ln(bi)+

(
e−w′

iβ

1+ ex′iα
−1

)
ln(1−bi)

]
.

Since the beta distribution is a two parameter full exponential family and the log-
likelihood function satisfies a given condition (Barndorff-Nielsen [3], pp. 151), the
maximum likelihood estimators exist and are unique.
The score functions and the Hessian can be obtained explicitly in terms of the
polygamma function, where the polygamma function of order m is defined as the
(m+1)th derivative of the logarithm of the gamma function Γ (·)

∂ mψ(z)
∂ mz

=
∂ m+1lnΓ (z)

∂ m+1z
.

For m = 0 this function is called digamma function ψ(z) = ∂Γ (z)
Γ (z) . The score func-

tions are obtained (see Appendix) by differentiating the log-likelihood function with
respect to the unknown parameters α and β

∂ l(α ,β )
∂α j

=
d

∑
i=1

xi j
e−x′iα−w′

iβ[
1+ ex′iα

]2

[
−ψ

(
e−w′

iβ

1+ ex′iα

)
+ψ

(
ex′iα−w′

iβ

1+ ex′iα

)
+ log

bi

1−bi

]

∂ l(α ,β )
∂βh

=
d

∑
i=1

−wih
e−w′

iβ

1+ e−x′iα

[(
1+ ex′iα

)
ψ
(

e−w′
iβ
)
− ex′iα ψ

(
ex′iα−w′

iβ

1+ ex′iα

)
+

−ψ

(
e−w′

iβ

1+ ex′iα

)
+ log(bi)+ ex′iα log(1−bi)

]
, (6)

with j = 1,2, ...,k; h = 1,2, ...,m; i = 1,2, ...,d, where bi is a realization of the de-
pendent variable belonging to the interval (0,1).
The Fisher information matrix (see Appendix) is computed in order to obtain the
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asymptotic standard errors of the maximum likelihood estimators of the parameters.
Since the Fisher’s information matrix is not a diagonal matrix, the parameter vectors
α and β are not orthogonal, so their maximum likelihood estimators are dependent
and can not be computed separately.
The maximum likelihood estimators of α and β are obtained by making the score
functions (6) equal to zero and do not have closed-form. Hence, they need to be
obtained by numerically maximizing the log-likelihood function using a nonlinear
optimization algorithm, such as a Newton algorithm or a quasi-Newton algorithm
[19]. The optimization algorithms require the specification of initial values to be
used in iterative scheme.
It is suggested to use as an initial point estimate for α the ordinary least squares es-
timate of this parameter vector obtained from a linear regression of the transformed
response

ϕi =
µi(1−µi)

var(Bi)
−1.

By applying the delta method the following approximation is derived

var[logit(Bi)]≈ var
[

logit(µi)+(Bi −µi)
∂

∂ µi
logit(µi)

]
,

so it is obtained that

var(Bi)≈ var[logit(Bi)]µ2
i (1−µi)

2.

Hence, the following approximation is used

ϕ̂i ≈

∣∣∣∣∣ 1
ê′ ê

d−k µ̂i(1− µ̂i)
−1

∣∣∣∣∣
with µ̂i =

ex′iα̂

1+ ex′iα̂
, where α̂ and ê are, respectively, the ordinary least squares esti-

mate and residual obtained from the linear regression of the transformed responses
logit(yi) on xi. As initial point estimate for β , the ordinary least squares estimate
obtained from a linear regression of the transformed value −ln(ϕ̂i) on wi is used.
After estimating the conditional mean and variance of the beta random variable B,
a great advantage of the regression model proposed in this paper is that, under the
assumption (3), it allows to estimate both the conditional mean and variance of the
dependent variable Y given by

E(Y/x,w) = E(I/x,w)P{(Y = 0)∪ (Y = 1)}+E(B/x)P{0 < Y < 1}

var(Y/x,w) = E(I/x,w)[1−E(I/x,w)]P{(Y = 0)∪ (Y = 1)}
+var(B/x,w)P{0 < Y < 1}+
+[E(I/x,w)−E(B/x,w)]2P{(Y = 0)∪ (Y = 1)}+
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+[E(I/x)−E(B/x,w)]2P{0 < Y < 1}

where I is a Bernoulli random variable whose conditional mean is estimated by the
logistic regression model (see Hosmer and Lemeshow [15]). Finally, the mixture
weights are estimated by the corresponding relative frequencies.

3 An application to recovery rates

The Bank of Italy conducts a comprehensive survey on the loan recovery process
of Italian banks in the years 2000-2001. Its purpose is to gather information on the
main characteristics of the Italian recovery process and procedures, by collecting
information about recovered amounts, recovery costs and timing.
By means of a questionnaire, about 250 banks are surveyed. Since they cover nearly
90% of total domestic assets of 1999, the sample is representative of the Italian re-
covery process. The database comprises 149,378 defaulted borrowers. Data concern
individual loans which are privately held and not listed on the market. In particular,
loans are towards Italian resident defaulted borrowers on the 31/12/1998 and written
off by the end of 1999. The expression proposed by Calabrese and Zenga [5, 6] is
applied to compute the recovery rate and it shows the advantage that the recovery
rate is constrained within the interval [0,1]. The distribution of the Bank of Italy’s
recovery rates is shown in Figure 1.

Recovery Rates

D
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0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Fig. 1 The distribution of the Bank of Italy’s recovery rates.
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The regression model proposed in this work is applied to the Bank of Italy’s
database. Considering the recovery rate as a mixed random variable, the probabili-
ties in (3) are estimated by the corresponding relative frequencies. In addition, the
discrete and the continuous parts of the recovery rate Y are modeled separately. On
the one hand, the logistic regression model is applied on n2 = 45,867 extreme val-
ues of the recovery rates. On the other hand, n1 = 103,511 data exhibit recovery
rates belonging to the interval (0,1) on which the regression model proposed in this
paper is applied. Such methodology allows to analyze the different influences of the
covariates on the boundaries and the continuous part of the recovery rate.
As above-mentioned, some authors (e.g. Friedman and Sandow [11]) hypothesize
that the extreme values of the recovery rates show different characteristics from the
ones belonging to the interval (0,1). In order to verify this statement, the same set
of covariates for x and w are chosen given by six determinants of the the recovery
risk: recovery amount, logarithm of the Exposure At Default (EAD), time in default,
interest on delayed payment, legal costs and amount of collateral or personal guar-
antee.
Table 1 reports the parameter estimates and the p-values in round brackets obtained
by the application of the methodological proposal of this work to 149,378 data of
the Bank of Italy1.

Logistic Regression Regression for Continuous Part
α β

Constant -14.099(0.000) -0.082(0.000) -1.127(0.000)
Recovery amount 26.005(0.000) 0.011(0.000) 0.058(0.000)
Log EAD -0.022(0.009) 0.001(0.016) -0.036(0.068)
Time in default 0.003(0.009) -0.460(0.089) -0.277(0.046)
Interest on delayed payment -1.602(0.191) -0.169(0.230) -0.006 (0.187)
Legal costs -1.605(0.182) 0.009(0.128) -0.006(0.243)
Collateral or personal guarantee -0.057(0.010) 1.035(0.035) -3.897(0.123)

Table 1 Parameter estimates on 149,378 data of the Bank of Italy.

Choosing a level of significance of 0.05, for both the discrete and the continuous
parts of the recovery rate Y , interest on delayed payment and legal costs are not sig-
nificant. Furthermore, Table 1 shows that the recovery amount has a strong influence
on the extreme values of the recovery rates. For the continuous part an expected re-
sult is that as the capitalized recovery amount increases the dispersion also increases.
It is interesting to analyse the influence of EAD on the recovery rates since some
empirical studies lead to different conclusions on this topic: Asarnow and Edwards
[2] find no significant influence of the loan size on LGDs, instead Dermine and Neto
de Carvalho [9], Grippa et al. [12] hit upon that the recovery rates decrease when the
loan size increases. From Table 1, the logarithm of EAD has a different influence on
the means of the extreme values and of the beta random variable.
1 These results are obtained by using the package “LogicReg” and the procedure “optim” with the
method ”Nelder-Mead” of R-program.
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In order to analyse the performance of the regression model proposed in this work,
the predictive accuracy of this approach is compared with the one of the fractional
response model proposed by Papke and Wooldridge [20] and mentioned in section
1. Since some authors (e.g. Bastos [4], Grippa et al. [12], Dermine and Neto de
Carvalho [9]) apply this fractional response model by considering the logit and the
log-log link functions, defined in equations (1) and (1), respectively. Furthermore,
in this article the complementary log-log link function, defined in equation (1), is
considered.
The predictive accuracy of the models is assessed using two performance measures:
the Root Mean Square Error (RMSE) and the Mean Absolute Error are defined as

RMSE =

{
1
n

n

∑
i=1

(yi − ŷi)
2

}1/2

MAE =
1
n

n

∑
i=1

|yi − ŷi|

where yi and ŷi are the actual and the predicted recovery rates on loan i, respectively.
Models with lower RMSE and MAE estimate actual recoveries more accurately.
Since the models may overfit the data, resulting in over-optimistic estimates of the
predictive accuracy, the RMSE and the MAE must be assessed on a sample which
is different from that used in estimating the model parameters. In order to develop
models with a large fraction of the available data and evaluate the predictive accu-
racy with the complete dataset, a 1000-fold cross-validation [21] is implemented.
In this approach, the sample is randomly partitioned into 1000 subsamples of ap-
proximately equal size. Of the 1000 subsamples, a single subsample is retained for
testing the model and the remaining 999 subsamples are used for estimating the
model parameters. The cross-validation is repeated 1000 times with each of the
1000 subsamples used once as test data. The mean of MAE and RMSE from the
1000 folds are reported in Table 2. Moreover, Table 2 shows in round brackets the
relative frequency of times that the error of the fractional response model is higher
than the one of the continuous-discrete model on the 1000 folds.

Error Models
Continuous-discrete Fractional

log-log logistic complementary log-log
MAE 0.2271 0.3124(1) 0.3385(1) 0.3016(1)

RMSE 0.2607 0.3539(0.991) 0.3883(1) 0.3421(0.995)

Table 2 Out-of-sample accuracy measures of different models in 1000-fold cross validation.

By the results reported in Table 2, the model proposed in this paper exhibits the
means of both the MAE and the RMSE lower than the means of the respective er-
rors of all the three fractional response models. Furthermore, on each fold the MAE
of the continuous-discrete model is lower than that of all the other models. Finally,
among the fractional response models the complementary log-log link function ex-
hibits the best accuracy in terms of both the MAE and the RMSE. This result is due
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to the left-skewness of the recovery rate distribution, as a nonparametric distribution
estimation [6] of the Bank of Italy’s data shows.

4 Conclusion remarks

In this work a regression model for a proportion with high concentration of data at
the boundaries is proposed. At first, the dependent variable is assumed to be a mixed
random variable, obtained as the mixture of a Bernoulli random variable and a beta
random variable. A logistic regression model is applied to estimate the parameter of
the Bernoulli random variable. For the continuous part of the dependent variable, a
regression is proposed that accommodates skewness and heteroscedastic errors.
The main advantage of this proposal is that it allows to analyse the different influ-
ences of the same covariates on the boundaries and on the continuous part of the
dependent variable. Moreover, the model proposed in this article allows to estimate
both the mean and the variance of the dependent variable, knowing the covariates.
Afterwards, the regression model here proposed is applied to the Bank of Italy’s
data. An interesting result is the different influence of the Exposure At Default on
the means of the extreme values and of the values belonging to the interval (0,1).
Finally, the model here proposed shows lower out-of-sample accuracy than the one
of the fractional response model for different link functions.
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5 Appendix

In this appendix we obtain the score functions and the Fisher information matrix for
α , β . The notation used here is defined in the section 2. In order to compute the
score functions we consider the following equations

∂ li(α,β )
∂α j

=
∂ li(µi,ϕi)

∂ µi

∂ µi

∂α j

∂ li(α ,β )
∂βh

=
∂ l(µi,ϕi)

∂ϕi

∂ϕi

∂βh
(7)

with j = 1,2, ...,k; h = 1,2, ...,m; i = 1,2, ...,d.
The score function and the Hessian can be obtained explicitly in terms of the
polygamma function, where the polygamma function of order r is defined as the
(r+1)th derivative of the logarithm of the gamma function Γ (·)

∂ rψ(z)
∂ rz

=
∂ r+1lnΓ (z)

∂ r+1z
.

For r = 0 this function is called digamma function ψ(z) =
∂ logΓ (z)

∂ z
=

∂Γ (z)
∂ z

1
Γ (z)

for z > 0.
From equations (5) and (6) we obtain that

∂ li(µi,ϕi)

∂ µi
= −ϕiψ(µiϕi)+ϕiψ(ϕi −µiϕi)+ϕilog

yi

1− yi
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∂ li(µi,ϕi)

∂ϕi
= ψ(ϕi)−µiψ(µiϕi)− (1−µi)ψ(ϕi −µiϕi)+µilog(yi)+(1−µi)log(1− yi)

∂ µi

∂α j
=−

xi je−x′
iα[

1+ e−x′
iα
]2

∂ϕi

∂βh
=−wihe−w′

iβ

with j = 1,2, ...,k; h = 1,2, ...,m; i = 1,2, ...,d. Substituting the former results and
the expressions (5) in equations (7) the score functions (6) are obtained.
The second order partial derivatives of the log-likelihood function with respect to
parameters (µi,ϕi) are

∂ 2li(µi,ϕi)

∂ 2µi
= −ϕ 2

i [ψ ′(µiϕi)−ψ ′(ϕi −µiϕi)]

∂ 2li(µi,ϕi)

∂ 2ϕi
= ψ ′(ϕi)−µ2

i ψ ′(µiϕi)− (1−µi)
2ψ ′(ϕi −µiϕi). (8)

The second order partial derivatives of the parameters µi and ϕi with respect to the
regression parameters α and β are

∂ 2µi

∂α j∂αq
=

xi jxiqe−x′
iα[

1− e−x′
iα
]2

∂ 2ϕi

∂βh∂βu
= wihwiue−w′

iβ (9)

with j,q = 1,2, ...,k; h,u = 1,2, ...,m; i = 1,2, ...,d. The Fisher information is the
negative of the expectation of the second derivatives of the log-likelihood with re-
spect to the regression parameters α and β

−E
(

∂ 2li(α,β )
∂α j∂αq

)
= −E

(
∂ 2li(α,β )
∂ µi∂αq

∂ µi

∂α j
+

∂ li(α,β )
∂ µi

∂ 2µi

∂α j∂αq

)
−E
(

∂ 2li(α,β )
∂βh∂βu

)
= −E

(
∂ 2li(α,β )

∂ϕi∂βu

∂ϕi

∂βh
+

∂ li(α,β )
∂ϕi

∂ 2ϕi

∂βh∂βu

)

−E
(

∂ 2li(α,β )
∂α j∂βh

)
= −E

∂
[

∂ li(α ,β )
∂α j

]
∂βh

 (10)

with j,q = 1,2, ...,k; h,u = 1,2, ...,m; i = 1,2, ...,d. By substituting the results (8)
and (9) in the first two equations of (10) and by computing the derivative of the first
result in (6) with respect to βh (according to the last equation of (10), we obtain the
Fisher information matrix whose elements are

−E
(

∂ 2l(α,β )
∂α j∂αq

)
=

m

∑
i=1

xi jxiqev′iα−2w′
iβ
[
1− ex′iα

]
[
1+ ex′iα

]3

[
ψ ′

(
ex′iα−w′

iβ

1+ ex′iα

)
+ψ ′

(
e−w′

iβ

1+ ex′iα

)]
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−E
(

∂ 2l(α,β )
∂βh∂βu

)
=

m

∑
i=1

wihwuie−w′
iβ

( ex′iα

1+ ex′iα

)2

ψ ′

(
ex′iα−w′

iβ

1+ ex′iα

)
−ψ ′

(
e−w′

iβ
)
+

+
1

1+ ev′iα
ψ ′

(
e−x′iβ

1+ ex′iα

)]

−E
(

∂ 2l(α,β )
∂α j∂βh

)
=

m

∑
i=1

wihxi jex′iα−2w′
iβ[

1+ ex′iα
]2

[
ψ ′

(
e−w′

iβ

1+ ex′iα

)
− ex′iα ψ ′

(
ex′iα−w′

iβ

1+ ex′iα

)]
(11)

with j,q = 1,2, ...,k; h,u = 1,2, ...,m; i = 1,2, ...,d.


