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Abstract

This analysis of the Pólya urn scheme focuses on proving two new important
results, two new important results. First, the correlation structure between
draws of a Pólya urn scheme is uniform. Second, fixing the number of draws
and the composition of the urn, a convex stochastic ordering is induced by
the number of balls replaced into the urn.
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1. Introduction

Urn models have been among the most popular probabilistic schemes and
have been used to represent some form of contagion (see Johnson et al., 1997;
Feller, 1968). The Pólya urn (Eggenberger and Pólya, 1923) has been orig-
inally applied to problems dealing with the spread of a contagious disease
(see Johnson and Kotz, 1977; Marshall and Olkin, 1993). Later the model
has been applied to a variety of different areas, examples of applications in-
clude modeling population growth (Blackwell and Kendall, 1964), sequential
clinical trials, biology, industry and finance (Johnson and Kotz, 1977).

The aim of this paper is to prove two important results concerning the
Pólya urn scheme. The first one is given by the uniform correlation structure
between draws. The second one is the convex stochastic ordering induced by
the number of balls replaced in the urn, fixing the number of draws and the
composition of the urn.
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This paper is organized as follows. The next section describes the key
features of a Pólya urn scheme. Section 3 proves that the Pólya urn scheme
is characterized by the uniform correlation structure. Finally, the subsequent
section analyses the convex stochastic ordering in the Pólya urn scheme.

2. Pólya urn model

Urn models representing some form of contagion can be constructed in an
unlimited variety of ways. The development of these methods stems largely
from the Pólya-Eggenberger model (Eggenberger and Pólya, 1923). In this
scheme an urn contains b black balls and r red balls. A ball is drawn at
random and then replaced, together with s balls of the same color. The
procedure is repeated n times.

Let X be the random variable that represents the number of drawn black
balls. The number of the possible sequences of the results of n draws with
k drawn black balls and n − k red drawn balls is given by the binomial
coefficient of n over k. For this reason and because each sequence presents
the same probability, the following equation is obtained

P{X = k} =

(
n
k

)
b(b+ s)...[b+ (k − 1)s]r(r + s)...[r + (n− k − 1)s]

(b+ r)(b+ r + s)...[b+ r + (n− 1)s]
(2.1)

with k = 0, 1, ..., n.
Many equations express the probability distribution of the random vari-

able X in a more compact way. By considering the ascendant factorial

x[r] = x(x+ 1)...(x+ r − 1),

Johnson and Kotz (1977, pp. 178), for example, define α = b/s and β = r/s,
obtaining

P{X = k} =

(
n
k

)
α[k]β[n−k]

(α + β)[n]
. (2.2)

3. The uniform correlation structure

In the Pólya scheme the probability of drawing a black ball remains con-
stant to b/(b + r) from draw to draw (Johnson and Kotz, 1977). It follows
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that the random variable X could be represented as the sum of n binary
random variables identically distributed X =

∑n
i=1Ai with

Ai =


1

b

b+ r

0
r

b+ r

∀ i = 1, 2, ..., n. (3.1)

Theorem 3.1. In the Pólya urn model the linear correlation coefficient be-
tween every pair of draws remains constant to s/(b+ r + s).

Proof. Since the n binary random variables (3.1) are identically distributed,
the linear correlation coefficient between two draws is

r(Ai, Au) =
(b+ r)2P{(Ai = 1) ∩ (Au = 1)} − b2

br
(3.2)

for i, u = 1, 2, ..., n and i 6= u.
To compute the probability P{(Ai = 1) ∩ (Au = 1)} in the expression

(3.2), the u-th draw is considered as the (i+t)-th draw with 1 ≤ t ≤ n−i. By
applying the theorem of total probability and by considering the probability
function (2.2), the following equation is obtained

P{(Ai = 1) ∩ (Au = 1)} = P{(Ai = 1) ∩ (Ai+t = 1)}

=
i+t∑
k=2

(
i+ t− 2
k − 2

)
α[k]β[i+t−k]

(α + β)[i+t]

=
α(α + 1)

(α + β)[i+t]
(α + β + 2)[i+t−2]

=
b

b+ r

b+ s

b+ r + s
.

(3.3)

In the equations (3.3), the change of variable z = k−2 is made and Newton’s
binomial series (Riordan, 1980, pp. 9) is applied.

By substituting the result (3.3) in the expression (3.2), the linear cor-

relation coefficient is r(Ai, Au) =
s

b+ r + s
for all i, u = 1, 2, ..., n, with

i 6= u.
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4. Convex stochastic ordering

It is considered the following stochastic ordering between the cumulative
distribution functions of random variables with the same expectation.

Definition 4.1 (Strictly convex ordering). Let X and Y be two random
variables such that1

E[φ(X)] > E[φ(Y )] for all convex functions φ : R→ R (4.1)

provided the expectations exist. Then X is said be strictly bigger than Y in
the convex ordering (denoted as X �cx Y ).

Convex functions are functions that take on their (relatively) larger values
over regions of the form (−∞, a)∪ (b,∞) for a < b. Therefore, if (4.1) holds,
X is more likely to take “extreme” values than Y , it follows that X is “more
variable” than Y .

The following theorem provides another characterization of the convex
ordering.

Theorem 4.1. Let X and Y be two random variables such that E(X) =
E(Y ). Then X �cx Y if and only if∫ u

−∞
FX(t)dt ≥

∫ u

−∞
FY (t)dt ∀u ∈ R (4.2)

where the inequality is strictly satisfied for at least one point x ∈ R.

Proof. See Shaked and Shanthikumar (2007), pp. 111.

If the random variables X and Y represent the number of drawn black
balls in the Pólya urn scheme, the following theorems show the application
of the convex stochastic ordering to the Pólya urn scheme.

Theorem 4.2. Let X and Y be two random variables that represent the
number of times a black ball is drawn in n draws in two Pólya schemes with
respectively s and s∗ numbers of the balls that are replaced into the urn with
s > s∗.

1It is sufficient to consider only functions φ that are convex on the union of the supports
of X and Y .

4



The ratio
P{Y = k}
P{X = k}

is a strictly monotone increasing function of k

• for 0 ≤ k < n
b

b+ r
+

r

b+ r
if s > 0 and s∗ > 0

• for max
(

0, n+
r

s∗

)
≤ k < n

b

b+ r
+

r

b+ r
if s > 0 and s∗ < 0

or if s < 0 and s∗ < 0.

(4.3)

and it is a strictly monotone decreasing function of k

• for n ≥ k > n
b

b+ r
+

r

b+ r
if s > 0 and s∗ > 0

• for min

(
n,− b

s∗

)
≥ k > n

b

b+ r
+

r

b+ r

if s > 0 and s∗ < 0 or if s < 0 and s∗ < 0.

(4.4)

If n
b

b+ r
+

r

b+ r
is an integer number, it results

P{Y = k}
P{X = k}

=
P{Y = k − 1}
P{X = k − 1}

for k = n
b

b+ r
+

r

b+ r
.

Proof. Proving that the ratio
P{Y = k}
P{X = k}

is a strictly monotone decreasing

function of k for k < n
b

b+ r
+

r

b+ r
is equivalent to proving that

P{Y = k}
P{X = k}

>
P{Y = k − 1}
P{X = k − 1}

for k < n
b

b+ r
+

r

b+ r
. (4.5)

In turn, equation (4.5) is equivalent to the following condition

P{Y = k}
P{Y = k − 1}

>
P{X = k}

P{X = k − 1}
for k < n

b

b+ r
+

r

b+ r
.

From the expression (2.1) the following result is deduced

P{X = k}
P{X = k − 1}

=

(
n
k

)
(

n
k − 1

) b+ (k − 1)s

r + (n− k)s
.
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By applying the previous result, the following ratio is computed

P{Y = k}
P{Y = k − 1}

P{X = k − 1}
P{X = k}

=
b+ (k − 1)s∗

r + (n− k)s∗
r + (n− k)s

b+ (k − 1)s
. (4.6)

Knowing that s > s∗, in order that the probabilities in the equation (4.6) are
non-null, the analysis is constrained to the following intervals

• 0 < k < n if s > 0 and s∗ > 0;

• max
(

0, n+
r

s∗

)
< k < min

(
n,− b

s∗

)
if s > 0 and s∗ < 0 or if s < 0 and s∗ < 0.

Determining for which values of k P{Y = k}/P{X = k} is a strictly mono-
tone increasing function of k is equivalent to determining for which values of
k the ratio (4.6) is higher than one. This means that

b+ (k − 1)s∗

r + (n− k)s∗
>
b+ (k − 1)s

r + (n− k)s
. (4.7)

In the above-mentioned intervals the denominators of inequality (4.7) are
always positive, hence

s[b(n− k)− r(k − 1)] > s∗[b(n− k)− r(k − 1)].

Since s > s∗, it is obtained

k < n
b

b+ r
+

r

b+ r
.

This means that P{Y = k}/P{X = k} is a strictly monotone increasing
function of k in the intervals (4.3).

Similarly, it is proven that P{Y = k}/P{X = k} is a strictly monotone
decreasing function of k in the intervals (4.4).

Finally, if n
b

b+ r
+

r

b+ r
is an integer number, the ratio (4.6) is equal to

one for k = n
b

b+ r
+

r

b+ r
.

It is important to note that n
b

b+ r
is the expectation of both the random

variables X and Y .
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Lemma 4.3. 2 Let X and Y be two discrete non-negative random variables
with the same support D = {0, 1, ..., n}. If the following condition is satisfied

FX(k) 6= FY (k) for k ∈ I ⊆ D

and the expectations of X and Y coincide E(X) = E(Y ), then the function
P{X = k} − P{Y = k} have at least two changes of sign on the set D.

Proof. Knowing that∑
k∈D

P{X = k} =
∑
k∈D

P{Y = k} = 1,

and since FX(k) 6= FY (k) for k ∈ I ⊆ D, then a point k0 exists in which
the function P{X = k} − P{Y = k} has a change of sign.

It is assumed that the function P{X = k} − P{Y = k} has only one
change of sign on the set D. Under this assumption, it results that

P{X = k} − P{Y = k} ≥ 0 for k ≤ k0

P{X = k} − P{Y = k} ≤ 0 for k > k0.

This means that

(k − k0)[P{X = k} − P{Y = k}] ≤ 0 ∀k ∈ D

and at least one point k ∈ D satisfies the following condition

(k − k0)[P{X = k} − P{Y = k}] < 0. (4.8)

From the inequality (4.8) it can be deduced that

n∑
k=0

(k − k0)[P{X = k} − P{Y = k}] = E(X)− E(Y ) < 0.

This result is in contrast with the assumption that the expectations coincide
E(X) = E(Y ).
Conversely, if the following condition is satisfied

P{X = k} − P{Y = k} ≤ 0 for k ≤ k0

P{X = k} − P{Y = k} ≥ 0 for k > k0,

2For a generalization of this lemma see Denuit and Lefévre (1997).
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the following will likewise be true

n∑
k=0

(k − k0)[P{X = k} − P{Y = k}] = E(X)− E(Y ) > 0.

Moreover, this result is in contrast with the assumption that the expectations
E(X) = E(Y ) coincide.
Then, it can be deduced that the function P{X = k} − P{Y = k} has at
least two changes of sign.

The previous result allows to prove the following theorem.

Theorem 4.4. Let X and Y be two random variables that represent the
number of times a black ball is drawn in n draws in two Pólya schemes with
respectively s and s∗ numbers of the balls that are replaced into the urn with
s > s∗. The function P{X = k} − P{Y = k} has two changes of sign and
the sign sequence is +, −, + in the following sets

• 0 ≤ k ≤ n if s > 0 and s∗ > 0 or if s > 0 and s∗ < 0;

• max
(

0, n+
r

s

)
≤ k ≤ min

(
n,−b

s

)
if s < 0 and s∗ < 0.

Proof. First, the case in which the random variables’ supports are different
is considered. Since s > s∗, this condition is satisfied only if s > 0 and s∗ < 0
or s < 0 and s∗ < 0. In both the cases the support of the random variable
Y is included or coincides with the support of the random variable X. This
means that P{X = k} − P{Y = k} > 0 in the following intervals

• for 0 ≤ k < max
(

0, n+
r

s∗

)
and min

(
n,− b

s∗

)
< k ≤ n

if s > 0 and s∗ < 0;

• for max
(

0, n+
r

s

)
≤ k < max

(
0, n+

r

s∗

)
and

min

(
n,− b

s∗

)
< k ≤ min

(
n,−b

s

)
if s < 0 and s∗ < 0.
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The supports of the random variables X and Y are denoted by, respectively,
D1 and D2. Since ∑

k∈D1

P{X = k} =
∑
k∈D2

P{Y = k} = 1,

the following condition P{X = k} − P{Y = k} < 0 must be satisfied for
some values of k ∈ D1 ∩D2.
From the lemma (), only one interval I exists such that

P{Y = k}
P{X = k}

> 1 for k ∈ I ⊆
[
max

(
0, n+

r

s∗

)
,min

(
n,− b

s∗

)]
. (4.9)

The condition (4.9) coincides with the following condition

P{X = k}−P{Y = k} < 0 for k ∈ I ⊆
[
max

(
0, n+

r

s∗

)
,min

(
n,− b

s∗

)]
.

This means that the function P{X = k} − P{Y = k} has two changes of
sign on the support D1 with the sign sequence +,−,+.

Second, the case in which the random variables’ supports coincide D =
{0, 1, . . . , n}, is considered. Since E(X) = E(Y ) and s 6= s∗, from the proba-
bility function (2.1) it can be deduced that FX(k) 6= FY (k) for k ∈ B ⊆ D.
This means that the assumptions of lemma (4) are satisfied. From this lemma
the function P{X = k} − P{Y = k} has at least two changes of sign on the
set D.

From the lemma (4.2), the function P{X = k} − P{Y = k} has two
changes of sign on the set D at the points k0, k1 ∈ D. Moreover, it results

P{Y = k}
P{X = k}

≤ 1 for k ≤ k0 and k ≥ k1,

with 0 ≤ k0 < n
b

b+ r
+

r

b+ r
and n ≥ k1 > n

b

b+ r
+

r

b+ r
.

Since
n∑

k=0

P{X = k} =
n∑

k=0

P{Y = k} = 1, (4.10)

at least one point k ∈ D exists such that

P{Y = k}
P{X = k}

> 1 for k0 < k < k1.
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This means that

P{X = k} − P{Y = k} ≥ 0 for k ≤ k0 and k ≥ k1

P{X = k} − P{Y = k} < 0 for k0 < k < k1.
(4.11)

From the lemma (4.2) or from the condition (4.10) it results that the first
inequality in (4.11) must be satisfied with strict inequality for at least one
point k ∈ D.

From the theorems (4.1) and (4.4) and by knowing that the random variables
X and Y have the same expectations, it can be deduced that X is strictly
bigger than Y in the convex ordering.
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