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Abstract

In this paper, we explore the impact of investor time-hamiom an optimal downside hedged energy portfolio.
Previous studies have shown that minimum-variance hedgfiegtiveness improves for longer horizons using
variance as the performance metric. This paper invessgatether this result holds for different hedging objec-
tives and effectiveness measures. A wavelet transformgbeajto calculate the optimal heating oil hedge ratio
using a variety of downside objective functions at différéme-horizons. We demonstrate decreased hedging
effectiveness for increased levels of uncertainty at higbeafidence intervals. Moreover, for each of the different
hedging objectives and effectiveness measures studied|seedemonstrate increasing hedging effectiveness at
longer horizons. While small differences in effectivenessfaund across the different hedging objectives, time-
horizon effects are found to dominate confirming the impuréaof considering the hedgers horizon. The findings
suggest that while downside risk measures are useful indhmpatation of an optimal hedge ratio that accounts
for unwanted negative returns, hedging horizon and configlartervals should also be given careful consideration

by the energy hedger.
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1. Introduction

The practise of risk management often involves the use afdgtcontracts to manage the price risk associated
with a given spot market position. The optimal futures hedd® necessary to reduce the risk associated with a
given spot position is commonly determined using variahte® minimum-variance approach (Chen et al., 2003;
Brooks et al., 2002). However, the minimum-variance apghdeeats positive and negative fluctuations equally,
while hedgers may prioritize the reduction of downside deky (Hung & Lee, 2007). Another important hedging
consideration is the horizon over which a hedger wishesdaae risk, with improved effectiveness found for
longer horizons (Ederington, 1979). However, these andragtudies have only considered the impact of the
hedging horizon on the minimum-variance hedge ratio (Famgle, In & Kim (2006)). In this study, we build
on the previous literature by considering the effect of tedding horizon on both the optimal futures hedge ratio
and associated effectiveness for a variety of downsideheéslging objectives.

The primary aim of corporate risk management is to providdegmtion against the possibility of dangerous
tail-risk events (Stulz, 1996). In the context of futured@i@g, a range of alternative downside risk measures have
been proposed to estimate and subsequently limit the imgfdotv probability tail-risk events. Value-at-risk
(VaR) and conditional value-at-risk (CVaR or expected ghtyy are two approaches to measure potential loss of a
portfolio over a given periodand have been applied as risk objectives in a portfolio ation setting (Adam et al.,
2008). In recent research VaR and CVaR have also been adioptese as the hedging risk objective function.
Using VaR and CVaR as the measure of hedge portfolio riskn@K2011) and Harris & Shen (2006) determined
the optimal futures hedge ratio required to minimize therisk of the hedge portfolio. An alternative downside
risk measure often applied in the literature is the semavene, which measures the expected value of deviations
below a target value. The semivariance may also be appliedltulate the optimal hedge ratio necessary to
reduce the semivariance risk of a spot position hedged hydst(Turvey & Nayak, 2003). In this paper, we

move beyond the minimum-variance framework to considerirtiigact of the energy hedging horizon and the

1A thorough review of the different objective functions apglto minimize risk in futures hedging can be found in Chen e{2003).
Recent studies have also examined the impact of investorprefes such as risk aversion on the optimal hedging stréteding significant
variation from risk minimization strategies (Cotter & Han012, 2010).

2Additional details and applications of both VaR and CVaR lsarfiound in Bertsimas et al. (2004); Basak & Shapiro (2001)



investor confidence investor on differing risk objectivadtions including value-at-risk, conditional value-gstkr
and semivariance.

Given the range of alternative risk objective functionsilatde to energy futures hedgers, it is important to
understand their performance for different hedging haorszorhe effectiveness of a standard minimum-variance
energy hedge has been explored using a variety of perfomnaetrics, including variance, semi-variance, VaR
and CVaR. Further, performance of downside objective fonsthas been assessed using a spectrum of perfor-
mance measures (Harris & Shen, 2006). However, previoukestinave only evaluated downside effectiveness
from the perspective of an investor considering a singldidence level. In this study, we expand futures hedging
performance measurement to incorporate a range of conédetezvals at different hedging horizons.

Earlier studies considered data sampled at weekly, fdrtlyignd monthly horizons to demonstrate an increase
in variance reduction effectiveness for hedgers at longeizbns (Benet, 1992; Ederington, 1979). However,
Benet (1992) found a lack of stability in the effectivenessoager horizons out-of-sample, due to the sample
reduction problem. To overcome the problem of reduced ddtager horizons, wavelet multiscaling techniques
have been adoptedApplying a minimum-variance framework, In & Kim (2006) denstrated that S&P index
hedgers achieve greater effectiveness at longer horizéramining a wide range of futures contracts, Lien &
Shrestha (2007) showed both increased hedge ratios araf-eatnple effectiveness in the case of a minimum-
variance hedger for increasing horizon. Finally, Conlon étt€r (2012) applied a minimum-variance framework
to introduce a dynamic time and horizon dependent futurdgéeatio.

This paper makes a number of contributions to the literatiirst, in the case of energy hedging, we demon-
strate a decrease in hedging effectiveness for increasel$ lef risk uncertainty at all hedging horizons. Next,
we explore the impact of different risk objective functiomgh an increase in the optimal heating oil hedge ra-

tio and improved effectiveness at longer horizons foundargiess of the objective function used to minimize

3The wavelet transform has been applied to a range of problerasdnomics and finance, including the characteristics efmational
diversification at differing horizons (Rua & Nunes, 2009 telationship between stock returns and inflation forotsrihorizons Kim & In
(2005) and the determination of the beta of a stock and thecesgheeturns at varying horizons (Gencay et al., 2005). edeer, wavelets
have been applied to separate short-term noise and longremds in crude oil prices (Naccache, 2011; de Souza e Sibla €010). Further
details on wavelet multiscaling can be found in Gencay €28i01).



hedge portfolio risk. While small differences in effectiems are found across the different hedging objectives,
time-horizon effects are found to dominate confirming theamance of considering the hedger’s horizon. The
findings suggest that while downside risk measures are lusetlie computation of an optimal hedge ratio that
accounts for unwanted negative returns, the hedging hoerd confidence intervals should also be given careful
consideration by the hedger.

This remainder of this paper is structured as follows: ®ac# introduces the wavelet multiscaling technique
and outlines the different objective functions examinedsdction 3, the empirical energy data and their properties

are outlined. Section 4 discusses the empirical finding#ewbnclusions are given in section 5.

2. Methodology

In determining the optimal hedge ratio necessary to redoeeisk associated with a given spot position,
market participants need to consider preferences relatikeldging horizon and risk objective. In this section, we
introduce wavelet multiscaling techniques to understhedthaviour of financial time-series at different horizons
and then consider a variety of alternative hedging objedtinctions including the downside metrics value-at-risk,

conditional value-at-risk and semivariance.

2.1. Wavelet Analysis

Here, we provide a brief introduction into the applicatidnwavelet multiscaling techniques to the time-
horizon decomposition of financial time-serfesVavelets can be interpreted as ‘small waves’ with limiteel du
ration and are capable of decomposing a time-series in bothdnd frequency. By incorporating information
from all available data at different horizons, waveletsroeene the problem of reduced data at longer horizons.
Wavelet analysis can be considered a generalization ofdhddt transform, which employs harmonic functions
as a basis, characterized by frequency. While the wavelefsem also uses oscillatory functions, in contrast to
the Fourier transform these decay rapidly to zero. The faofifunctions generated using the wavelet transform

are dilations and transformations of a single function,ttather wavelet, providing self-similarity. This can be

4Readers are referred to In & Kim (2006); Gencay et al. (20B&jcival & Walden (2000) for further technical detail.



distinguished from the windowed Fourier transform, whée frequency, width and position of the window are
all independent. The wavelet transform is particulariytale for financial data, due to the ability to accurately
capture high frequency, high amplitude events such as sikeeturns, to decompose non-stationary data and
also, due to self-similarity properties.

The discrete wavelet transform (DWT) provides an efficienanseof studying the multiresolution properties
of a signal, allowing decomposition into different timerlzons or frequency components (Gencay et al., 2001;
Percival & Walden, 2000). The DWT consists of two basic wavielections, the fathep and mother) wavelets,

given by:

bik (1) =272 (27t — k) 1)

by (1) = 2759 (27t — k) )

wherej = 1,...J inaJ-level decomposition and k is a translation parameter. atief wavelet integrates to one

and reconstructs the longest time-scale component of tiesséhe trend), while the mother wavelet integrates
to zero and is used to describe deviations from the trends fbssible to show that a discrete sigifiéd) can

be decomposed as a sequence of projections onto the fatthen@ther wavelets. In particular, the orthogonal

wavelet series approximates a continuous sigial as

F&) ~ > subse(t) + Y digtbsr(t) + .+ digtbrs(t) 3)
K K K

whereJ is the number of multiresolution levels (stale3 andk ranges froni to the number of coefficients in the
specified level. The coefficients ;,, andd; ;, are the wavelet transform coefficients, whilg, and, ;. are the
approximating wavelet functions, where coefficients frewel j = 1... J are associated with scae/ —!, 27].

In this paper, we apply an extended version of the DWT, the maxi overlap discrete wavelet transform
(MODWT), a variation of the orthogonal discrete wavelet sfmnm (Percival & Walden, 2000). The MODWT

is considered preferable to the DWT as it is asymptoticallyevedficient. This extension helps to overcome two



major drawbacks of the DWT, dyadic length requirements ferdhata and the fact that the DWT is non-shift
invariant. Like the DWT it produces a set of time-dependentelet and scaling coefficients with each basis
vector associated with a locatiorand a unitless scalg = 27! for decomposition level = 1,...,J . It retains
all coefficients at each scale, incorporating additionedtan information discarded by the DWT. This reduces the
tendency for larger errors at lower frequencies, imporitaiour application of calculating optimal futures hedge
ratios using downside risk measures. Further, the MODWT ymes a variance estimate that is asymptotically
more efficient than that of the DWT, providing us with insightd the relationship between time-horizon and
hedging strategy of the investor.

Decomposing a signal using the MODWT ddevels involves the application of a rescaled father wa\@@
to yield a set of smooth coefficients

L;—1
Sjt = Jz: Gjifi—t modN 4)

=0

and a rescaled mother Waveﬂ%t,l to yield a set of detail coefficients

Lj—1
djs = Z Vi1 fi—i modn %)
=0
for all timest = ...,—1,0,1,..., wheref is the original signal to be decomposed (Percival & Wald€(.

The MODWT applies a set of scale-dependent localized diffgrg and averaging operatozkjyt = % and

zZ;j_l = “’2';1 which can be considered as rescaled versions of the origimhke coeﬁicientéjyt are associated with

changes at horizop
Once a signal have been decomposed into constituent herittencoefficients can then be used to calculate the
contribution of each horizon to the overall variability dkttime-series (Percival & Walden, 2000). Specifically,

the wavelet coefficientsifyt andd?,, associated with a particular time-horizg¢rand timet for functions f and

gt

g can be used to calculate a horizon dependent wavelet coeari@ercival & Walden, 2000). An unbiased



estimator of the wavelet covariaricat scaler; = 27~ is given by

N—

1

0Vt (T;) = — g dl.d? 6
M. 3.t%3,

covyg(Ts) td5 ¢ (6)

J t=L;—1

Ju

whereM; = N — L; + 1 is the number of coefficients remaining after discardingaibendary coefficients. The

wavelet variance for functioifi at a particular scale is similarly defined,

[ Nl )
variance(1;) = M, Z {dit} . 7)
t:Lj —1

The wavelet variance and covariance decompose the statidtthe financial time-series at increasingly higher
resolutions, (on a scale-by-scale basis), and allows thration of the signal at different time-horizons. In the
case of the daily data examined in this study, the waveléanee-covariance structure can be found at 2,

2 — 4,4 —8,8 — 16 and16 — 32 day horizons, incorporating both short- and long-run have?

2.2. Hedge Ratios and Downside Risk

In this paper, we compare the hedging effectiveness of a auwibdifferent downside risk objectives to a
minimum-variance hedge at different hedging horizons. uftiag the hedger has a long spot position in the

underlying commodity, the return;,, on the hedge portfolio is given by

rn =1 — hry (8)

wherer, andry are the log returns of the spot and futures prices respéctivee hedge ratid. corresponds to
the quantity of futures contracts that must be short soléneave the risk associated with the hedgers objectives.

Different approaches to the risk objective function inaudlue-at-risk, conditional value-at-risk, semivarianc

5At the boundary of a time-series, the wavelet transform uséscred’ coefficients, potentially introducing a bias te ttata. To alleviate
any bias, the coefficients affected by the boundary are redivoen the calculation of the statistics

SFor ease of exposition, throughout this study we take arageeof each of the above horizons, referring instead3p3, 6, 12 and24
day horizons.



and variance, and are described in turn. We also considesatine vector of measures to assess the performance

of the respective hedge ratios.

2.2.1. Value-at-Risk

Value-at-risk (VaR) has been applied to measure tail-riskss a range of asset classes, (Cabedo & Moya,
2003; Basak & Shapiro, 2001). Recently, VaR has been intedidboth to estimate the optimal futures hedge
ratio, (Chang, 2011; Harris & Shen, 2006), and to deterntinestfectiveness of the hedge portfolio relative to the
spot (Conlon & Cotter, 2012). For a given confidence leyelaR is defined as the maximum expected loss on a

portfolio over a given time-period and given by

VaR(®,,7) = -2, (1 - ), 9)

where®, the cumulative distribution function, is the probabilibat the portfolio returns will be less than a given
value. In order to find the optimal VaR hedging strategy, wghathe historical simulation methodology (Dowd,
2008; Harris & Shen, 2006; Cabedo & Moya, 2003). Using a geiaksh approach, a range of alternative hedge
ratios are tested in order to find the hedge ratio that resuétglobal minimum for the hedge portfolio. Although
the historical simulation VaR may not be a global convex fiomcof the hedge ratio, a global minimum can be
found using a grid search of the parameter space. At a givefidemce level, this approach selects the minimum
historical simulation VaR of the hedge portfolio from a rargf possible hedge ratios.

Given a particular hedge ratio, the hedging effectivenassatso be calculated using the VaR framework. For

a hedge portfolio with hedge ratfg the VaR hedging effectiveness is given by

VCLR.Y (T’h)

HEy,r, =1—
Valy VaR,(rs)

(10)

whereVaR,(r,) andVaR, (r,) are the VaR of the hedge portfolio and spot at confidence tevehe effective-
ness measureé] Ey .., determines the proportion of the original spot VaR thaeimoved by futures hedging

for a given hedge ratio.



2.2.2. Conditional Value-at-Risk
Conditional Value-at-Risk (CVaR) or expected shortfakidownside risk measure applied for both risk man-
agement and asset allocation purposes in finance (Bertginzs 2004). CVaR is a coherent, spectral measure
of financial risk and determines the expected loss of a giwtfglio conditional on the event that the VaR is
exceeded. The CVaR of a portfolio with retumnis given by
TR )

CVaR(®,,7) = T @' (p)dp (11)
- 0

and is a weighted average of returns less than the VaR forem gionfidence interval. Similar to the approach
applied for VaR minimization, the optimal CVaR hedge ratiddund using the historical simulation method. A
range of possible hedge ratios are tested incrementalhgwsigrid search and the hedge ratio with the lowest
portfolio CVaR is selected (see also Harris & Shen (2006)).

The CVaR hedging effectiveness for a hedge portfolio wittiggeratioh can then be found using

CVaR(r1)

B CVaRy(rs) (12)

HEcvar, =1

whereCVaR,(r,) andCVaR,(r,) are the VaR of the hedge portfolio and spot at confidence fevel

2.2.3. Semivariance
While the variance is a two-sided measure that applies eggighivto both negative and positive returns, the
semivariance focuses on downside risk by measuring thahitity of returns below a certain target return (Turvey

& Nayak, 2003). The semivariance is defined as follows

SV(®,,T) = —/T (T —r)2d®(r) (13)

—inf



with the target return given L,  the portfolio return and the distribution of returné.The minimum semivari-
ance futures hedge ratio is found by iteratively calcutatime semivariance for a range of possible hedge ratios
and selecting the ratio corresponding to the smallest seraivce (Eftekhari, 1998).

The semivariance can also be applied as a measure of hedfgiotiveness in the following way,

SV(’I’;,)
SV (rs)

HEsy =1— (14)

whereSV (r,) andSV (r) are the semivariance of the hedge and spot portfolios réselyc

2.2.4. Variance

The final hedge ratio and performance evaluation methodtheamnost commonly applied variance measure.
The minimum-variance hedge ratio can be derived as the slogiicient of spot price changes on futures price
changes, (Ederington, 1979), and is given by

Cou(rs,rys)

By = 22 T1)
"™ Variance(ry)

(15)

whereCou(rs,ry) andVariance(ry) are the covariance between spot and futures returns, anditi@ace of
futures returns respectively.
The variance is a standard two-sided measure of risk in ferxand can be used to calculate the effectiveness

of a given hedge ratio in the following way,

Variance(ry)

HEVariance =1- (16)

Variance(rs)

whereVariance(ry) andVariance(ry) are the variance of the hedge and spot portfolios respéctive

"Throughout this paper we assume a target return of zero, taresie preferences of investors who wish to avoid negagiiens.

10



2.2.5. Horizon dependent hedge ratios

In section 2.1 we described how the wavelet transform allthv@siecomposition of a time-series into a set of
coefficients associated with different time-horizons. afirey each of the time-horizons separately, we can then
use the wavelet coefficients to calculate optimal hedgesassociated with a given horizon using equations (9,
11, 13, 15). For example, in the case of VaR the objectivetfandés minimized for the hedge portfolio at each
time-horizonr,

VaR(®,,y,7) = =@ (1 - 7), 17)

resulting in a set of VaR optimized hedge ratifsRy .z (7, 7). In a similar fashion, we obtain a set of hedge ratios
associated with different time-horizons for the altenatiownside hedging objectives CVaR and semivariance.
In the case of the horizon dependent minimum-variance heatiig using the horizon dependent variance
(equation 7) and covariance (equation 6), we can deterrhméedge ratid,,,v(7) at horizonr using equation
15. The treatment of the horizon dependent minimum-vaedredge ratio is in keeping with the methodology

applied in previous studies (for example, Lien & Shrestt@{; In & Kim (2006)).

3. Dataand Preliminary Analysis

In order to understand empirically the impact of time-honizand the risk objective function for an energy
hedger, we consider the case of a long spot position in teeatirhedged by futures contradsThe associated
futures contract is the New York Harbor No. 2 Heating Oil FatContract traded on the New York Mercantile
Exchange (NYMEX) and daily log returns are found using datanfJanuary 1, 1997 to December 31, 2010, a
total of 3, 506 days. Heating oil is examined as it is a large, active marlet listorical losses of large magnitude
and so constitutes a useful dataset to test downside hedgiagures (Ederington & Lee, 2002; Sadorsky, 2000).

Summary statistics for both the spot and futures contraetgji@en in table 1. Over the time-period studied

both contracts displayed a positive return, with the spsttjmm found to be more volatile. Also, there is evidence

8Additionally, other energy commodities crude oil, natura gamd gasoline were also tested, with similar results obdaiffer brevity,
only heating oil is considered in this study, with additibresults available on request from the authors.

11



for non-normality, with each contract displaying negatsk@wness and excess kurtosis. Large one-day losses
are evident in both contracts, with maximum lossed'@f and21% found. This suggests that downside risk
measures are appropriate in the case of heating oil. AlsdyalR and CVaR for each asset is detailed at a range
of confidence intervals illustrating the potential loss@ser the time-period studied, the correlation between the

spot and futures is found to 072 using original unfiltered data.

[Table 1 about here.]

In order to study the importance of time-horizon on downsidk hedging, we first decompose both spot
and futures returns applying the MODWT (section 2.1). The MODis chosen as it enables us to consider a
time-series of any size and to align the wavelet coefficieiitts the original data. The least asymmetric wavelet,
LAS8, with filter width 8 was chosen for this study as it allowsto meaningfully relate events at different horizons
to those in the original time-series, important when comsid) low-probability events such as those captured by
downside risk. Only wavelet coefficients unaffected by tbarmary are applied in the calculation of the hedge
ratio and associated performance, removing any poterdiahdiary condition problems. Wavelet coefficients are
calculated up to &4-day horizon, as beyond this the number of coefficients irgzhby the boundary reduced
the data available.

In this paper, we apply a horizon-dependent rolling windowlgsis (Conlon & Cotter, 2012). Here, the opti-
mal hedge ratios are calculated at each time-horizon irpkaosing a rolling window ot , 000 days. In order to
capture the performance, the followihg000 days are then used to measure the out-of-sample hedgirogiedfe
ness. Then, the rolling window is moved forward by one daymgthedge ratios and associated effectiveness are

recalculated.

4. Empirical Results

In this section, we present our empirical findings for optitm@ating oil hedge ratios determined using the
various risk objective functions described (section 2.3ble 2 shows the optimal futures hedge ratio for each

objective function at different time-horizons in the caséeating oil. Considering first the minimum-variance

12



hedging objective, the average hedge ratio is found to &#seréor longer hedging horizon, in keeping with previous
findings (Lien & Shrestha, 2007; In & Kim, 2006). In fact, forn@dger with a horizon greater th&ndays,

the optimal hedge ratio is greater than the naive ratio (osigjgesting that the hedging strategy requires that
the hedger sells more than one futures contract for each pbsition held. Next, we consider the case of a
hedger minimising the semivariance of the hedge portf@gs(ming a target return of zero, the hedger wishes to
reduce negative outcomes). Just as in the previous caseptih®al semivariance hedge ratio is found to increase
considerably from short to long horizons. However, hedgiesat shorter horizons are found to differ from those
prescribed by the minimum-variance strategy, suggestdiffexent hedging requirement to reduce downside risk.
Further, the optimal semivariance hedge ratio calculasiiguthe original data is greater than that found for the
shortest wavelet decomposed horizons. This may suggesegtevels of noise in high frequency data, creating
difficulty in measuring the hedge ratio accurately (Benég2).

Hedge ratios calculated using historical simulation Va&aso shown for different confidence level prefer-
ences in table 2. Considering the impact of horizon firstoihtémal hedge ratio is found to have larger magnitude
at longer horizons for all confidence levels. However, thegeabetween short- and long-horizon hedge ratios is
found to be smallest at the lowest confidence level studig® (percentile). Moreover, the range between short-
and long-horizons hedge ratios is smaller for all confiddaeels than that found for variance and semivariance
minimizing objectives. Examining the confidence intery#ig trend in VaR hedge ratios differ according to hori-
zon. At short horizons, the optimal hedge ratio is smalleshigh uncertainty49% confidence level) while at
long horizons hedge ratios are found to be greatest for higienainty. Finally, CVaR optimized hedge ratios
are also detailed in table 2. While the optimal CVaR hedgesatiffer from those found for VaR optimization,
the impact of both horizon and confidence level on hedgeg#ifound to be similar. For all confidence levels,
the optimal CVaR hedge ratio increases monotonically with liorizon. For the shortest horizons, the largest
hedge ratio is found for low confidence interval$%), while at the longest horizons the largest optimal hedge
ratio is at high confidence intervadq%). The implication of these finding for futures hedging is timportance

of considering preferences on both the hedgers horizon anfidence interval in computing both the VaR and

13



CVaR minimizing energy hedge ratios, two findings not praslg addressed in the literature.

[Table 2 about here.]

To understand the importance of hedging horizon on the @ptiveating oil hedge ratio for different hedging
risk objectives, we now consider the out-of-sample hedgieigormance detailed in tables 3 and 4. For each of
the hedge ratios previously calculated, we measure theifgédfectiveness by determining the proportion of
spot variance, semivariance, VaR and CVaR that is removdtketging at each time-horizon. Regardless of the
hedging objective function applied or the performance imeised, hedging effectiveness is found to increase for
longer horizons. While small differences in effectivenagsfaund across the different hedging objectives, these
are found to be dominated by the large performance gaingifatitonger horizons for all objectives.

In table 3a, we examine the variance hedging effectivereahé different heating oil hedge ratios shown in
table 2 using the various objective functions describedjariiess of the underlying hedging objective, variance
hedging effectiveness is found to increase monotonicedi;fshort to long horizons. In particular, at the longest
horizon studied96% — 97% of the variance risk of the spot position is removed for akidiag objectives.
Comparing the hedging objectives, at lower confidence vaterthe VaR and CVaR optimized hedge ratios are
found to reduce the level of variance risk by a greater amthamt the minimum-variance hedge. These findings of
improved hedging effectiveness using the VaR and CVaR tamuobjectives are in keeping with Chang (2011);
Harris & Shen (2006). However, the small performance impnognts achieved for the VaR and CVaR hedging
objectives are dominated by the effectiveness gains ateldmgrizons. Comparing the variance and semivariance
objectives, the minimum-variance hedge ratios are fourrddace the spot variance by more than the minimum-

semivariance ratios across all time-horizons.

[Table 3 about here.]

Next, we measure the effectiveness of the different healiifgedge ratios proposed in table 2 from the point
of view of semivariance reduction, given in table 3b. As desimted in the case of variance reduction, the

semivariance effectiveness is also found to increase fa@dbtime-horizons regardless of the hedging objective.

14



This means that hedgers with long hedging horizon removegaigroportion of negative spot fluctuations than
those with short horizons. It is worth noting that the minimuariance hedge ratios are found to reduce the spot
semivariance by at least the same amount as the semivahadge ratios at all time-horizons. Comparing the
performance across the various hedging objectives anddemti intervals, the horizon dependent minimum-
variance hedge ratios are also found to be at least as gffexgithe VaR and CVaR methods in reducing portfolio
semivariance.

In order to calculate the hedging effectiveness using VaRGVvaR, we apply a range of confidence intervals.
In the case of VaR and CVaR hedge ratios, we measure the lgedfjectiveness using the same confidence
interval applied in calculating the hedge ratio. For corapige purposes, we also measure the VaR and CVaR
performance of the minimum-variance and minimum-semavaré hedge ratios across the range of confidence
intervals studied. Performance, measured first using VaRct®n, is given in table 4a. As previously shown
for variance and semivariance, the VaR effectiveness iaddo increase monotonically for longer horizons,
regardless of the hedging objective or confidence intexaigned. Across the hedging objectives, a heating oil
futures hedger with the longest horizon studied (24 dayspkes on averag&% of tail risk, while only56% is
removed on average at the shortest horizon. An agent wisbirggluce their downside risk, measured using VaR,

will achieve better performance if they hedge for a longeizum.

[Table 4 about here.]

Next, we compare the effectiveness across the various VaRdence intervals studied. The first result to
note is that hedging effectiveness improves as the confidieterval decreases for all hedging objectives. In other
words, as the hedger becomes more concerned about taithéskedging performance they achieve deteriorates.
This result is also robust to using different values of thegweeratio, as can be seen in figure 1(A). Across the wide
range of hedge ratios examined, our findings are unchangadedter effectiveness achieved at low confidence
intervals. This suggests that residual tail risk remaiterdfedging, regardless of the hedging objective followed.

However, as proposed, this residual tail risk can be redtarduedgers with long hedging horizons.

[Figure 1 about here.]
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Considering the VaR performance of the different hedgingailves at the)9% confidence interval, we find
that the variance hedge ratio performs best across theitgagbhorizons. At high levels of uncertainty, the small
guantity of available data to calculate the hedge portfe@® may result in underperformance in comparison
to the variance objective out-of-sample. However, for thigeo confidence intervals studied the VaR hedging
objective is found to outperform other objectives acrogstiajority of horizons. This is in keeping with previous
findings, where the VaR minimization objective was showneuce portfolio VaR by slightly more than other
methods (Chang, 2011; Harris & Shen, 2006).

Finally, we investigate the out-of-sample heating oil iadgerformance for each of the hedging objectives
using the CVaR measure, table 4b. Considering first the tworiffects, we find considerable improvement in
CVaR hedging effectiveness between long and short-hasifmmall hedging objectives and confidence intervals.
For example, at &9% confidence interval27% of spot CVaR is removed on average at the shortest horizon
studied, while at 24 day horizon83% is removed. Given the relatively small differences betweffectiveness
for different hedging objectives, the horizon effects agaia found to dominate. As found in the case of VaR
effectiveness, CVaR performance is also found to improvaatamically for lower confidence intervals. In other
words, hedgers find it more difficult to reduce tail risk whaere is more uncertainty involved. The robustness
of this result is illustrated in figure 1(B), where CVaR effeeness is measured for a variety of hedge ratios.
We show that independent of the hedge ratio applied, befaR@&ffectiveness is achieved for lower confidence
intervals.

Contrasting the CVaR effectiveness achieved by the vabjective functions at different confidence inter-
vals, the minimum-variance hedge is found to have the betinpeance at #9% level. However, for the lower
confidence levels considered the VaR hedge ratio is found@ve the best CVaR effectiveness for the majority
of time-horizons. The outperformance of the VaR hedgingdibje is a result of the small quantities of data
available for calculation of the CVaR hedge ratio, resgliimdecreased out-of-sample performance.

Comparing the various performance metrics detailed, wefdinall hedging objectives that the optimal heating

oil hedge ratio at each horizon achieves the highest levedsfectiveness when measured using variance. On
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the other hand, the lowest effectiveness levels are mahsisieg CVaR, suggesting that all hedging objectives
perform best in terms of reducing two sided variance riskogeed to tail risk. Contrasting the different objective
functions, greater levels of uncertainty are associatetl thie value-at-risk based methods as opposed to the
variance technique due to decreased quantities of awailidth for risk calculation. This effect is highlighted
by the further decrease in effectiveness found at high cenfid intervals for the VaR and CVaR risk objectives
(figure 1).

We now turn our attention to the impact from hedging on thérithistional properties of returns at different
horizons. We consider the impact of each hedging objectivihe skewness and kurtosis of the hedge portfolio
at different horizons. Table 5a presents the change in sd&symeasured as the skewness of the hedge portfolio
minus the skewness of the spot. Considering the case of @&hadgoncerned about horizon, a hedged portfolio
results in a positive change in skewness for all objectik#esvever, at the shortest horizons studied,to 6 days,
we find that the skewness of the hedge portfolio is lower tloauthfe spot. In contrast, at long horizons, hedging

is found to increase the portfolio skewness relative to pue.s

[Table 5 about here.]

The change in kurtosis between the spot and hedged heatipgrtdlios is detailed in table 5b. As found
in previous studies, hedging increases the kurtosis of dreqgtio for all hedging objectives (Harris & Shen,
2006). However, the magnitude of the increase in hedgegiortfurtosis is found to b&me-horizon dependent
with substantially smaller changes in kurtosis found agkmtime-horizons. Contrasting the various hedging
objectives, thé®9% CVaR hedging objective is found to have the smallest chamgertosis across the majority
of wavelet decomposed time-horizons. Also by moving to loe@nfidence intervals, the change in kurtosis is
found to be greater for both the CVaR and VaR objectives. iiSikie earlier findings of decreased tail-risk at lower
confidence intervals, this suggests that the increase todiars due to a higher concentration of returns around
the mean (or peakedness).

In the empirical analysis, we explored and contrasted a eurb alternative futures hedging objectives,

considering optimal heating oil hedge ratios for a varietyhedging preferences. For all objective functions,
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the optimal hedge ratio was found to increase at longer twsiz While small differences in effectiveness were
found between various hedging objectives, large perfooagains were demonstrated moving from short to long
time-horizon regardless of the objective. The results sagthat while downside risk measures are useful in
the computation of the optimal hedge ratio, the hedgingzooriand confidence intervals should also be given
careful consideration by the energy hedger. If the hedgeegerence is in reducing the downside risk of the
portfolio, the confidence interval chosen will have an intpat the performance achieved. Higher confidence
intervals were shown to be associated with lower perforrmaaaesult not detailed in previous studies. Finally,
we demonstrated that the highest levels of effectivenesmaasured using the variance measure, with the lowest

levels of effectiveness found using the CVaR performancasme for all objectives and horizons studied.

5. Conclusions

In this paper, we explored the impact of time-horizon on tpénoal downside hedged portfolio for heating oil
investors. The optimal downside risk hedge ratio was catedlusing a variety of risk metrics, including value-at-
risk, conditional value-at-risk and semivariance. In eaabe, the returns time-series were first decomposed into
the underlying time-horizons using the wavelet transfoiithen, the appropriate downside risk hedge ratio was
calculated at each horizon. For the VaR and CVaR hedgingtivgs, we demonstrated that the optimal hedge
ratio depends on the confidence interval chosen by the hedirthe lowest optimal hedge ratios found at the
highest uncertainty levels. Further, our findings for theotss objective functions support those previously found
for the minimum-variance hedge, with increasing hedgesafbund for longer time-horizons for all objective
functions. In order to minimize downside risk using a fusinedge, an energy hedger with a long time-horizon is
required to sell a greater number of futures contracts thararresponding hedger with a short horizon.

We then proceeded to measure and compare the out-of-saffguitveness of each energy hedging objective
applying a range of performance metrics. Investigatingrigact of uncertainty on the hedging performance, we
found the highest levels of effectiveness for low VaR and R¥anfidence intervals, at all hedging horizons. This
was also shown to be independent of the heating oil hedge applied, suggesting that energy hedgers find it

more difficult to reduce tail risk when there are higher lsvafluncertainty involved.
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Next, we demonstrated that across the range of differemfihg@bjectives and effectiveness measures studied,
hedging effectiveness increases for longer horizons. blene while VaR and CVaR hedge ratios were found to
have better VaR and CVaR effectiveness than the minimumavee objective, these performance gains were
shown to be small relative to those experienced by investitslong horizons. Finally, examining the change in
kurtosis between the hedge and spot portfolios, we foundadlenincrease in excess kurtosis for investors with
longer hedging horizons.

Our results build considerably on previous studies ingesitig different futures hedging risk objectives. The
findings suggest that while downside risk measures are lugsettoe computation of the optimal hedge ratio, the
hedging horizon should also be given careful considerdtyathe hedger. Moreover, if the hedger’s preference isin
reducing the downside risk of the portfolio, the confidemterival chosen will have an impact on the performance

achieved.
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Figure 1:VaR and CVaR hedging effectiveness for different hedgeratios.
In-sample VaR and CVaR hedging effectiveness (proportiaisk reduced) at different confidence intervals for a ranfjeedge ratios. A 1000 day
moving window approach is used, with the hedging effectgsrfor each hedge ratio corresponding to the average atresadows.



Heating Oil

Spot  Futures

Mean (%) 0.04 0.04
Standard Deviation (%) | 2.78 2.46
Skewness -1.53 -0.46
Kurtosis 39.88 7.29
Maximum loss (%) 47.01 20.96
99% VaR (%) 6.35 6.45
95% VaR (%) 3.98 3.75
90% VaR (%) 2.90 2.74
75% VaR (%) 1.44 1.36
99% CVaR (%) 10.18 9.04
95% CVaR (%) 5.88 5.51
90% CVaR (%) 4.64 4.37
75% CVaR (%) 3.10 2.93

(a) Summary Stats

| Spot  Futures
Spot 1.00 0.72
Futures | 0.72 1.00

(b) Spot & Futures Correlation

Table 1:Descriptive statistics and correlation for log returns of crude futures and spot times-series.

Notes: Sample period is Januat997 to December2010. Mean return and standard deviation statistics and onevdhie-at-risk and
conditional value-at-risk are given in percentage termslenhskewness of zero indicates no skewness and a kurto3imdicates no excess
kurtosis is present.
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Semi- Conditional

Horizon Variance | Variance Value-at-Risk Value-at-Risk

99% 95% 90% 75%| 99% 95% 90% 75%
Original 0.82 0.98 0.78 0.92 098 0.96 0.85 0.91 0.95 0.94
1.5 Days 0.73 0.65 0.82 096 092 093 049 080 0.88 0.91
3 Days 0.85 0.82 0.73 094 093 0.98 0.68 0.83 0.88 0.93
6 Days 0.90 0.79 0.77 098 098 098 0.80 091 096 0.97
12 Days 1.04 1.04 1.16 1.02 099 0.98 1.15 1.08 1.03 1.00
24 Days 1.19 1.19 1.05 1.11 1.05 1.03 1.20 1.18 1.13 1.07

Table 2:0ptimal heating oil hedge ratios for different objective functions at various time-horizons, 1997-2010.
Notes: Hedge ratios are calculated at various horizonanimpte using different objective functions. These includeavece, semi-variance, value-at-
risk and conditional value-at-risk minimisation (99%, 95%%®and 75% confidence intervals). A 1000-day moving windowaggh is used, with

average hedge ratios over all windows given in each caseddtaes transformed into different time horizons using theelehfilter (LA8) up to a24
day horizon.
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Semi- Conditional

Horizon Variance | Variance Value-at-Risk Value-at-Risk

99% 95% 90% 75%| 99% 95% 90% 75%
Original 0.81 0.80 0.78 082 081 082 081 082 082 0.82
1.5 Days 0.73 0.70 0.74 074 0.75 0.75 0.59 0.75 0.75 0.75
3 Days 0.84 0.83 0.79 085 0.85 0.84 0.77 0.84 0.84 0.85
6 Days 0.92 0.87 0.86 092 092 092 088 092 092 0.92
12 Days 0.95 0.94 093 095 095 095 093 094 095 0.9
24 Days 0.96 0.96 095 097 097 097 096 096 097 0097

(a) Variance Effectiveness

Semi- Conditional

Horizon Variance | Variance Value-at-Risk Value-at-Risk

99% 95% 90% 75%| 99% 95% 90% 75%
Original 0.68 0.64 0.66 0.67 0.66 0.67] 0.67 0.67 0.67 0.67
1.5 Days 0.58 0.58 058 055 056 057 050 059 057 057
3 Days 0.74 0.74 0.71 073 074 073 070 0.74 0.74 0.74
6 Days 0.88 0.84 0.83 088 088 088 085 0.88 088 0.88
12 Days 0.93 0.92 092 093 093 0.93 0.92 0.93 093 0.93
24 Days 0.96 0.96 094 097 097 096 095 096 096 0.97

(b) Semi-Variance Effectiveness

Table 3:0ut-of-Sample heating oil hedging effectiveness at different horizons 1997-2010.

Notes: Hedge ratios are first calculated at various horizeissmple using different objective functions. These idelvariance, semi-variance, value-at-risk
and conditional value-at-risk minimisation (99%, 95%, 90% &5% confidence intervals). For each objective functios,ghrformance is then measured
out-of-sample using variance and semi-variance effectag(roportion of spot risk removed). A 1000-day moving windgpproach is used, with the first
1000 days used in the calculation of the hedge ratio and tkiell®0 days used to measure effectiveness with averagesibvéndows given in each case.
The data is transformed into different time horizons usingiheelet filter (LA8) up to &4 day horizon.
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Hedging Objective

Horizon Variance Semi-Variance Value-at-Risk Conditional Value-at-Risk

99% 95% 90% 75%| 99% 95% 90% 75%| 99% 95% 90% 75%| 99% 95% 90% 75%
Original 055 063 066 070 053 065 068 0.721 051 0.67 0.71 0.76 0.54 0.67 0.71 0.76
15Days|| 047 056 058 062 043 051 053 056 049 062 066 0.70 034 059 065 0.70
3 Days 054 066 070 074 054 065 068 0.72 050 0.68 0.73 0.771 049 0.65 0.71 0.76
6 Days 066 074 077 080 064 067 069 0.73 0.63 0.75 0.78 0.81 0.64 0.74 0.79 0.82
12Days || 0.73 081 083 0.84 071 079 080 0.83 071 080 082 085 071 079 083 0.86
24Days || 081 079 081 0.81 0.79 0.80 0.82 0.81 074 084 088 090 078 080 0.85 0.89

(a) Value-at-Risk Hedging Effectiveness
Hedging Objective

Horizon Variance Semi-Variance Value-at-Risk Conditional Value-at-Risk

99% 95% 90%  75%| 99% 95% 90% 75%)| 99% 95% 90% 75%| 99% 95% 90% 75%
Original 035 053 058 062 031 053 058 0.63 034 054 0.60 0.66 035 054 0.60 0.66
15Days|| 028 045 050 054 028 043 046 0.50 0.27 0.48 054 0.60 0.24 0.47 0.54 0.60
3 Days 039 057 061 066 039 056 060 064 038 057 063 068 037 056 0.62 0.68
6 Days 0.60 0.68 0.71 0.74 058 063 0.65 0.68 0.57 0.68 0.72 0.75 0.58 0.68 0.72 0.76
12Days || 0.72 0.75 0.78 0.80 070 0.74 0.76 0.79 069 075 0.78 0.80 069 075 078 081
24Days || 0.79 079 080 080 0.78 0.79 080 0.80 075 0.82 0.85 0.87 078 0.79 0.83 0.86

9¢

(b) Conditional Value-at-Risk Hedging Effectiveness

Table 4:0ut-of-Sample heating oil hedging effectiveness at different horizons 1997-2010.

Notes: Hedge ratios were first calculated at various hoszersample using different objective functions. Theseudelvariance, semi-variance, value-at-risk and conditicalae-at-risk minimisation (99%,
95%, 90% and 75% confidence intervals). For each objectivetifan, the performance is then measured out-of-sample using-at-risk and conditional value-at-risk at a range officence intervals. For
the VaR and CVaR objective functions, the effectivenessgrtion of spot risk removed) is measured using the correipgrhedge ratio for that confidence interval. A 1000-day mowindow approach

is used, with the first 1000 days used in the calculation oh#fige ratio and the next 1000 days used to measure effects/eiith averages over all windows given in each case. Theigig@nsformed into
different time horizons using the wavelet filter (LA8) up t@4day horizon.



Hedging Objective

Horizon Variance | Semi-Variance Value-at-Risk Conditional Value-at-Risk
99% 95% 90%  75%| 99% 95% 90%  75%
Original 0.43 0.76 0.27 0.79 1.01 1.04| 0.71 0.61 0.90 0.93
1.5 Days -0.29 -0.21 -0.21 0.06 -0.05 -0.14 -0.24 -0.20 -0.08 -0.08
3 Days -0.39 -0.31 -0.39 -042 -043 -0.42 -0.34 -0.39 -041 -042
6 Days -0.16 -0.16 -0.20 -0.12 -0.11 -0.13 -0.22 -0.11 -0.13 -0.12
12 Days 0.09 0.05 0.04 0.09 0.07 0.07| 0.04 0.09 0.10 0.08
24 Days 0.09 0.10 0.24 0.19 0.32 0.37| 0.09 0.10 0.17 0.30

(a) Change in Skewness
Hedging Objective

Horizon Variance | Semi-Variance Value-at-Risk Conditional Value-at-Risk
99% 95% 90% 75% | 99% 95% 90% 75%
Original 33.75 52.23 26.79 5159 61.06 60.9% 41.34 48.67 56.76 57.32
1.5 Days 18.18 12.66 26.95 44.82 40.67 38.5% 4.86 26.19 37.42 39.51
3 Days 18.23 16.66 7.40 2430 2458 26.89 6.37 15.85 20.10 2455
6 Days 6.85 4.05 3.85 8.89 8.98 8.95| 4.35 7.44 8.59 8.98
12 Days 4.36 3.92 2.18 4.06 451 4.42| 2.25 3.59 4.43 4.74
24 Days 0.02 0.62 3.84 1.98 4.37 5.32| 0.57 0.63 2.20 4.52

(b) Change in Kurtosis

Table 5:Heating oil hedge portfolio change in skewness and kurtosis at different horizons, 1997-2010.

Notes: Hedge ratios were first calculated at various hoszersample using different objective functions. Thesetdelvariance, semi-variance, value-at-risk
and conditional value-at-risk minimisation (99%, 95%, 909d 6% confidence intervals). The change in skewness andskaiitomeasured as the difference
between the skewness and kurtosis of the hedged portfalipared to the unhedged (spot) portfolio. A 1000-day movingdeim approach is used, with the

first 1000 days used in the calculation of the hedge ratio ha@aéxt 1000 days used to assess the distributional prepeiftihe hedge portfolio with averages
over all windows given in each case. The data is transformtediifferent time horizons using the wavelet filter (LA8) upet@4 day horizon.
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