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Abstract

In this paper, we explore the impact of investor time-horizon on an optimal downside hedged energy portfolio.

Previous studies have shown that minimum-variance hedgingeffectiveness improves for longer horizons using

variance as the performance metric. This paper investigates whether this result holds for different hedging objec-

tives and effectiveness measures. A wavelet transform is applied to calculate the optimal heating oil hedge ratio

using a variety of downside objective functions at different time-horizons. We demonstrate decreased hedging

effectiveness for increased levels of uncertainty at higher confidence intervals. Moreover, for each of the different

hedging objectives and effectiveness measures studied, wealso demonstrate increasing hedging effectiveness at

longer horizons. While small differences in effectiveness are found across the different hedging objectives, time-

horizon effects are found to dominate confirming the importance of considering the hedgers horizon. The findings

suggest that while downside risk measures are useful in the computation of an optimal hedge ratio that accounts

for unwanted negative returns, hedging horizon and confidence intervals should also be given careful consideration

by the energy hedger.
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1. Introduction

The practise of risk management often involves the use of futures contracts to manage the price risk associated

with a given spot market position. The optimal futures hedgeratio necessary to reduce the risk associated with a

given spot position is commonly determined using variants of the minimum-variance approach (Chen et al., 2003;

Brooks et al., 2002). However, the minimum-variance approach treats positive and negative fluctuations equally,

while hedgers may prioritize the reduction of downside riskonly (Hung & Lee, 2007). Another important hedging

consideration is the horizon over which a hedger wishes to reduce risk, with improved effectiveness found for

longer horizons (Ederington, 1979). However, these and other studies have only considered the impact of the

hedging horizon on the minimum-variance hedge ratio (For example, In & Kim (2006)). In this study, we build

on the previous literature by considering the effect of the hedging horizon on both the optimal futures hedge ratio

and associated effectiveness for a variety of downside riskhedging objectives.

The primary aim of corporate risk management is to provide protection against the possibility of dangerous

tail-risk events (Stulz, 1996). In the context of futures hedging, a range of alternative downside risk measures have

been proposed to estimate and subsequently limit the impactof low probability tail-risk events.1 Value-at-risk

(VaR) and conditional value-at-risk (CVaR or expected shortfall) are two approaches to measure potential loss of a

portfolio over a given period2 and have been applied as risk objectives in a portfolio allocation setting (Adam et al.,

2008). In recent research VaR and CVaR have also been adoptedfor use as the hedging risk objective function.

Using VaR and CVaR as the measure of hedge portfolio risk, Chang (2011) and Harris & Shen (2006) determined

the optimal futures hedge ratio required to minimize the tail risk of the hedge portfolio. An alternative downside

risk measure often applied in the literature is the semivariance, which measures the expected value of deviations

below a target value. The semivariance may also be applied tocalculate the optimal hedge ratio necessary to

reduce the semivariance risk of a spot position hedged by futures (Turvey & Nayak, 2003). In this paper, we

move beyond the minimum-variance framework to consider theimpact of the energy hedging horizon and the

1A thorough review of the different objective functions applied to minimize risk in futures hedging can be found in Chen et al. (2003).
Recent studies have also examined the impact of investor preferences such as risk aversion on the optimal hedging strategy,finding significant
variation from risk minimization strategies (Cotter & Hanly,2012, 2010).

2Additional details and applications of both VaR and CVaR canbe found in Bertsimas et al. (2004); Basak & Shapiro (2001)
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investor confidence investor on differing risk objective functions including value-at-risk, conditional value-at-risk

and semivariance.

Given the range of alternative risk objective functions available to energy futures hedgers, it is important to

understand their performance for different hedging horizons. The effectiveness of a standard minimum-variance

energy hedge has been explored using a variety of performance metrics, including variance, semi-variance, VaR

and CVaR. Further, performance of downside objective functions has been assessed using a spectrum of perfor-

mance measures (Harris & Shen, 2006). However, previous studies have only evaluated downside effectiveness

from the perspective of an investor considering a single confidence level. In this study, we expand futures hedging

performance measurement to incorporate a range of confidence intervals at different hedging horizons.

Earlier studies considered data sampled at weekly, fortnightly and monthly horizons to demonstrate an increase

in variance reduction effectiveness for hedgers at longer horizons (Benet, 1992; Ederington, 1979). However,

Benet (1992) found a lack of stability in the effectiveness at longer horizons out-of-sample, due to the sample

reduction problem. To overcome the problem of reduced data at longer horizons, wavelet multiscaling techniques

have been adopted.3 Applying a minimum-variance framework, In & Kim (2006) demonstrated that S&P index

hedgers achieve greater effectiveness at longer horizons.Examining a wide range of futures contracts, Lien &

Shrestha (2007) showed both increased hedge ratios and out-of-sample effectiveness in the case of a minimum-

variance hedger for increasing horizon. Finally, Conlon & Cotter (2012) applied a minimum-variance framework

to introduce a dynamic time and horizon dependent futures hedge ratio.

This paper makes a number of contributions to the literature. First, in the case of energy hedging, we demon-

strate a decrease in hedging effectiveness for increased levels of risk uncertainty at all hedging horizons. Next,

we explore the impact of different risk objective functionswith an increase in the optimal heating oil hedge ra-

tio and improved effectiveness at longer horizons found, regardless of the objective function used to minimize

3The wavelet transform has been applied to a range of problems in economics and finance, including the characteristics of international
diversification at differing horizons (Rua & Nunes, 2009), the relationship between stock returns and inflation for various horizons Kim & In
(2005) and the determination of the beta of a stock and the expected returns at varying horizons (Gençay et al., 2005). Moreover, wavelets
have been applied to separate short-term noise and long termtrends in crude oil prices (Naccache, 2011; de Souza e Silva et al., 2010). Further
details on wavelet multiscaling can be found in Gençay et al.(2001).
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hedge portfolio risk. While small differences in effectiveness are found across the different hedging objectives,

time-horizon effects are found to dominate confirming the importance of considering the hedger’s horizon. The

findings suggest that while downside risk measures are useful in the computation of an optimal hedge ratio that

accounts for unwanted negative returns, the hedging horizon and confidence intervals should also be given careful

consideration by the hedger.

This remainder of this paper is structured as follows: Section 2 introduces the wavelet multiscaling technique

and outlines the different objective functions examined. In section 3, the empirical energy data and their properties

are outlined. Section 4 discusses the empirical findings, while conclusions are given in section 5.

2. Methodology

In determining the optimal hedge ratio necessary to reduce the risk associated with a given spot position,

market participants need to consider preferences related to hedging horizon and risk objective. In this section, we

introduce wavelet multiscaling techniques to understand the behaviour of financial time-series at different horizons

and then consider a variety of alternative hedging objective functions including the downside metrics value-at-risk,

conditional value-at-risk and semivariance.

2.1. Wavelet Analysis

Here, we provide a brief introduction into the application of wavelet multiscaling techniques to the time-

horizon decomposition of financial time-series.4 Wavelets can be interpreted as ‘small waves’ with limited du-

ration and are capable of decomposing a time-series in both time and frequency. By incorporating information

from all available data at different horizons, wavelets overcome the problem of reduced data at longer horizons.

Wavelet analysis can be considered a generalization of the Fourier transform, which employs harmonic functions

as a basis, characterized by frequency. While the wavelet transform also uses oscillatory functions, in contrast to

the Fourier transform these decay rapidly to zero. The family of functions generated using the wavelet transform

are dilations and transformations of a single function, themother wavelet, providing self-similarity. This can be

4Readers are referred to In & Kim (2006); Gençay et al. (2001); Percival & Walden (2000) for further technical detail.
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distinguished from the windowed Fourier transform, where the frequency, width and position of the window are

all independent. The wavelet transform is particularly suitable for financial data, due to the ability to accurately

capture high frequency, high amplitude events such as spikes in returns, to decompose non-stationary data and

also, due to self-similarity properties.

The discrete wavelet transform (DWT) provides an efficient means of studying the multiresolution properties

of a signal, allowing decomposition into different time-horizons or frequency components (Gençay et al., 2001;

Percival & Walden, 2000). The DWT consists of two basic wavelet functions, the fatherφ and motherψ wavelets,

given by:

φj,k (t) = 2−
j
2φ

(

2jt− k
)

(1)

ψj,k (t) = 2−
j
2ψ

(

2jt− k
)

(2)

wherej = 1, . . . J in aJ-level decomposition and k is a translation parameter. The father wavelet integrates to one

and reconstructs the longest time-scale component of the series, (the trend), while the mother wavelet integrates

to zero and is used to describe deviations from the trend. It is possible to show that a discrete signalf(t) can

be decomposed as a sequence of projections onto the father and mother wavelets. In particular, the orthogonal

wavelet series approximates a continuous signalf(t) as

f(t) ≈

∑

k

sJ,kφJ,k(t) +
∑

k

dJ,kψJ,k(t) + . . .+
∑

k

d1,kψ1,k(t) (3)

whereJ is the number of multiresolution levels (orscales) andk ranges from1 to the number of coefficients in the

specified level. The coefficientssJ,k anddj,k are the wavelet transform coefficients, whileφJ,k andψj,k are the

approximating wavelet functions, where coefficients from levelj = 1 . . . J are associated with scale[2j−1, 2j ].

In this paper, we apply an extended version of the DWT, the maximum overlap discrete wavelet transform

(MODWT), a variation of the orthogonal discrete wavelet transform (Percival & Walden, 2000). The MODWT

is considered preferable to the DWT as it is asymptotically more efficient. This extension helps to overcome two
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major drawbacks of the DWT, dyadic length requirements for the data and the fact that the DWT is non-shift

invariant. Like the DWT it produces a set of time-dependent wavelet and scaling coefficients with each basis

vector associated with a locationt and a unitless scaleτj = 2j−1 for decomposition levelj = 1, . . . , J . It retains

all coefficients at each scale, incorporating additional location information discarded by the DWT. This reduces the

tendency for larger errors at lower frequencies, importantin our application of calculating optimal futures hedge

ratios using downside risk measures. Further, the MODWT produces a variance estimate that is asymptotically

more efficient than that of the DWT, providing us with insight into the relationship between time-horizon and

hedging strategy of the investor.

Decomposing a signal using the MODWT toJ levels involves the application of a rescaled father wavelet φ̃j,l

to yield a set of smooth coefficients

s̃j,t =

Lj−1
∑

l=0

φ̃j,lft−l modN (4)

and a rescaled mother waveletψ̃j,l to yield a set of detail coefficients

d̃j,t =

Lj−1
∑

l=0

ψ̃j,lft−l modN (5)

for all timest = . . . ,−1, 0, 1, . . ., wheref is the original signal to be decomposed (Percival & Walden, 2000).

The MODWT applies a set of scale-dependent localized differencing and averaging operators,φ̃j,t =
φj,l

2j and

ψ̃j,l =
ψj,l

2j which can be considered as rescaled versions of the originals. The coefficients̃dj,t are associated with

changes at horizonj.

Once a signal have been decomposed into constituent horizons, the coefficients can then be used to calculate the

contribution of each horizon to the overall variability of the time-series (Percival & Walden, 2000). Specifically,

the wavelet coefficients,dfj,t anddgj,t, associated with a particular time-horizonj and timet for functionsf and

g can be used to calculate a horizon dependent wavelet covariance (Percival & Walden, 2000). An unbiased
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estimator of the wavelet covariance5 at scaleτj = 2j−1 is given by

covfg(τj) =
1

Mj

N−1
∑

t=Lj−1

d
f
j,td

g
j,t (6)

whereMj = N − Lj + 1 is the number of coefficients remaining after discarding theboundary coefficients. The

wavelet variance for functionf at a particular scale is similarly defined,

variancef (τj) =
1

Mj

N−1
∑

t=Lj−1

[

d
f
j,t

]2

. (7)

The wavelet variance and covariance decompose the statistics of the financial time-series at increasingly higher

resolutions, (on a scale-by-scale basis), and allows the exploration of the signal at different time-horizons. In the

case of the daily data examined in this study, the wavelet variance-covariance structure can be found at1 − 2,

2− 4, 4− 8, 8− 16 and16− 32 day horizons, incorporating both short- and long-run horizons.6

2.2. Hedge Ratios and Downside Risk

In this paper, we compare the hedging effectiveness of a number of different downside risk objectives to a

minimum-variance hedge at different hedging horizons. Assuming the hedger has a long spot position in the

underlying commodity, the return,rh, on the hedge portfolio is given by

rh = rs − hrf (8)

wherers andrf are the log returns of the spot and futures prices respectively. The hedge ratioh corresponds to

the quantity of futures contracts that must be short sold to remove the risk associated with the hedgers objectives.

Different approaches to the risk objective function include value-at-risk, conditional value-at-risk, semivariance

5At the boundary of a time-series, the wavelet transform uses ‘mirrored’ coefficients, potentially introducing a bias to the data. To alleviate
any bias, the coefficients affected by the boundary are removed from the calculation of the statistics

6For ease of exposition, throughout this study we take an average of each of the above horizons, referring instead to1.5, 3, 6, 12 and24
day horizons.
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and variance, and are described in turn. We also consider thesame vector of measures to assess the performance

of the respective hedge ratios.

2.2.1. Value-at-Risk

Value-at-risk (VaR) has been applied to measure tail-risk across a range of asset classes, (Cabedo & Moya,

2003; Basak & Shapiro, 2001). Recently, VaR has been introduced both to estimate the optimal futures hedge

ratio, (Chang, 2011; Harris & Shen, 2006), and to determine the effectiveness of the hedge portfolio relative to the

spot (Conlon & Cotter, 2012). For a given confidence level,γ, VaR is defined as the maximum expected loss on a

portfolio over a given time-period and given by

V aR(Φr, γ) = −Φ−1
r (1− γ), (9)

whereΦ, the cumulative distribution function, is the probabilitythat the portfolio returns will be less than a given

value. In order to find the optimal VaR hedging strategy, we apply the historical simulation methodology (Dowd,

2008; Harris & Shen, 2006; Cabedo & Moya, 2003). Using a grid search approach, a range of alternative hedge

ratios are tested in order to find the hedge ratio that resultsin a global minimum for the hedge portfolio. Although

the historical simulation VaR may not be a global convex function of the hedge ratio, a global minimum can be

found using a grid search of the parameter space. At a given confidence level, this approach selects the minimum

historical simulation VaR of the hedge portfolio from a range of possible hedge ratios.

Given a particular hedge ratio, the hedging effectiveness can also be calculated using the VaR framework. For

a hedge portfolio with hedge ratioh, the VaR hedging effectiveness is given by

HEV aRγ
= 1−

V aRγ(rh)

V aRγ(rs)
(10)

whereV aRγ(rh) andV aRγ(rs) are the VaR of the hedge portfolio and spot at confidence levelγ. The effective-

ness measure,HEV aRγ
, determines the proportion of the original spot VaR that is removed by futures hedging

for a given hedge ratio.
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2.2.2. Conditional Value-at-Risk

Conditional Value-at-Risk (CVaR) or expected shortfall isa downside risk measure applied for both risk man-

agement and asset allocation purposes in finance (Bertsimaset al., 2004). CVaR is a coherent, spectral measure

of financial risk and determines the expected loss of a given portfolio conditional on the event that the VaR is

exceeded. The CVaR of a portfolio with returnsr is given by

CV aR(Φr, γ) = −

1

1− γ

∫ 1−γ

0

Φ−1
r (p)dp (11)

and is a weighted average of returns less than the VaR for a given confidence intervalγ. Similar to the approach

applied for VaR minimization, the optimal CVaR hedge ratio is found using the historical simulation method. A

range of possible hedge ratios are tested incrementally using a grid search and the hedge ratio with the lowest

portfolio CVaR is selected (see also Harris & Shen (2006)).

The CVaR hedging effectiveness for a hedge portfolio with hedge ratioh can then be found using

HECV aRγ
= 1−

CV aRγ(rh)

CV aRγ(rs)
(12)

whereCV aRγ(rh) andCV aRγ(rs) are the VaR of the hedge portfolio and spot at confidence levelγ.

2.2.3. Semivariance

While the variance is a two-sided measure that applies equal weight to both negative and positive returns, the

semivariance focuses on downside risk by measuring the variability of returns below a certain target return (Turvey

& Nayak, 2003). The semivariance is defined as follows

SV (Φr, T ) = −

∫ T

− inf

(T − r)2dΦ(r) (13)
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with the target return given byT , r the portfolio return andΦ the distribution of returns.7 The minimum semivari-

ance futures hedge ratio is found by iteratively calculating the semivariance for a range of possible hedge ratios

and selecting the ratio corresponding to the smallest semivariance (Eftekhari, 1998).

The semivariance can also be applied as a measure of hedging effectiveness in the following way,

HESV = 1−
SV (rh)

SV (rs)
(14)

whereSV (rh) andSV (rs) are the semivariance of the hedge and spot portfolios respectively.

2.2.4. Variance

The final hedge ratio and performance evaluation method usesthe most commonly applied variance measure.

The minimum-variance hedge ratio can be derived as the slopecoefficient of spot price changes on futures price

changes, (Ederington, 1979), and is given by

hmv =
Cov(rs, rf )

V ariance(rf )
(15)

whereCov(rs, rf ) andV ariance(rf ) are the covariance between spot and futures returns, and thevariance of

futures returns respectively.

The variance is a standard two-sided measure of risk in finance and can be used to calculate the effectiveness

of a given hedge ratio in the following way,

HEV ariance = 1−
V ariance(rh)

V ariance(rs)
(16)

whereV ariance(rh) andV ariance(rs) are the variance of the hedge and spot portfolios respectively.

7Throughout this paper we assume a target return of zero, to capture the preferences of investors who wish to avoid negativereturns.
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2.2.5. Horizon dependent hedge ratios

In section 2.1 we described how the wavelet transform allowsthe decomposition of a time-series into a set of

coefficients associated with different time-horizons. Treating each of the time-horizons separately, we can then

use the wavelet coefficients to calculate optimal hedge ratios associated with a given horizon using equations (9,

11, 13, 15). For example, in the case of VaR the objective function is minimized for the hedge portfolio at each

time-horizonτ ,

V aR(Φr, γ, τ) = −Φ−1
r(τ)(1− γ), (17)

resulting in a set of VaR optimized hedge ratios,HRV aR(γ, τ). In a similar fashion, we obtain a set of hedge ratios

associated with different time-horizons for the alternative downside hedging objectives CVaR and semivariance.

In the case of the horizon dependent minimum-variance hedgeratio, using the horizon dependent variance

(equation 7) and covariance (equation 6), we can determine the hedge ratiohmv(τ) at horizonτ using equation

15. The treatment of the horizon dependent minimum-variance hedge ratio is in keeping with the methodology

applied in previous studies (for example, Lien & Shrestha (2007); In & Kim (2006)).

3. Data and Preliminary Analysis

In order to understand empirically the impact of time-horizon and the risk objective function for an energy

hedger, we consider the case of a long spot position in heating oil hedged by futures contracts.8 The associated

futures contract is the New York Harbor No. 2 Heating Oil Future Contract traded on the New York Mercantile

Exchange (NYMEX) and daily log returns are found using data from January 1, 1997 to December 31, 2010, a

total of3, 506 days. Heating oil is examined as it is a large, active market with historical losses of large magnitude

and so constitutes a useful dataset to test downside hedgingmeasures (Ederington & Lee, 2002; Sadorsky, 2000).

Summary statistics for both the spot and futures contracts are given in table 1. Over the time-period studied

both contracts displayed a positive return, with the spot position found to be more volatile. Also, there is evidence

8Additionally, other energy commodities crude oil, natural gas and gasoline were also tested, with similar results obtained. For brevity,
only heating oil is considered in this study, with additional results available on request from the authors.
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for non-normality, with each contract displaying negativeskewness and excess kurtosis. Large one-day losses

are evident in both contracts, with maximum losses of47% and21% found. This suggests that downside risk

measures are appropriate in the case of heating oil. Also, the VaR and CVaR for each asset is detailed at a range

of confidence intervals illustrating the potential losses.Over the time-period studied, the correlation between the

spot and futures is found to be0.72 using original unfiltered data.

[Table 1 about here.]

In order to study the importance of time-horizon on downsiderisk hedging, we first decompose both spot

and futures returns applying the MODWT (section 2.1). The MODWT is chosen as it enables us to consider a

time-series of any size and to align the wavelet coefficientswith the original data. The least asymmetric wavelet,

LA8, with filter width 8 was chosen for this study as it allows us to meaningfully relate events at different horizons

to those in the original time-series, important when considering low-probability events such as those captured by

downside risk. Only wavelet coefficients unaffected by the boundary are applied in the calculation of the hedge

ratio and associated performance, removing any potential boundary condition problems. Wavelet coefficients are

calculated up to a24-day horizon, as beyond this the number of coefficients impacted by the boundary reduced

the data available.

In this paper, we apply a horizon-dependent rolling window analysis (Conlon & Cotter, 2012). Here, the opti-

mal hedge ratios are calculated at each time-horizon in-sample using a rolling window of1, 000 days. In order to

capture the performance, the following1, 000 days are then used to measure the out-of-sample hedging effective-

ness. Then, the rolling window is moved forward by one day, where hedge ratios and associated effectiveness are

recalculated.

4. Empirical Results

In this section, we present our empirical findings for optimal heating oil hedge ratios determined using the

various risk objective functions described (section 2.2).Table 2 shows the optimal futures hedge ratio for each

objective function at different time-horizons in the case of heating oil. Considering first the minimum-variance
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hedging objective, the average hedge ratio is found to increase for longer hedging horizon, in keeping with previous

findings (Lien & Shrestha, 2007; In & Kim, 2006). In fact, for ahedger with a horizon greater than6 days,

the optimal hedge ratio is greater than the naive ratio (one), suggesting that the hedging strategy requires that

the hedger sells more than one futures contract for each short position held. Next, we consider the case of a

hedger minimising the semivariance of the hedge portfolio (assuming a target return of zero, the hedger wishes to

reduce negative outcomes). Just as in the previous case, theoptimal semivariance hedge ratio is found to increase

considerably from short to long horizons. However, hedge ratios at shorter horizons are found to differ from those

prescribed by the minimum-variance strategy, suggesting adifferent hedging requirement to reduce downside risk.

Further, the optimal semivariance hedge ratio calculated using the original data is greater than that found for the

shortest wavelet decomposed horizons. This may suggest greater levels of noise in high frequency data, creating

difficulty in measuring the hedge ratio accurately (Benet, 1992).

Hedge ratios calculated using historical simulation VaR are also shown for different confidence level prefer-

ences in table 2. Considering the impact of horizon first, theoptimal hedge ratio is found to have larger magnitude

at longer horizons for all confidence levels. However, the range between short- and long-horizon hedge ratios is

found to be smallest at the lowest confidence level studied (75th percentile). Moreover, the range between short-

and long-horizons hedge ratios is smaller for all confidencelevels than that found for variance and semivariance

minimizing objectives. Examining the confidence intervals, the trend in VaR hedge ratios differ according to hori-

zon. At short horizons, the optimal hedge ratio is smallest for high uncertainty (99% confidence level) while at

long horizons hedge ratios are found to be greatest for high uncertainty. Finally, CVaR optimized hedge ratios

are also detailed in table 2. While the optimal CVaR hedge ratios differ from those found for VaR optimization,

the impact of both horizon and confidence level on hedge ratios is found to be similar. For all confidence levels,

the optimal CVaR hedge ratio increases monotonically with the horizon. For the shortest horizons, the largest

hedge ratio is found for low confidence intervals (75%), while at the longest horizons the largest optimal hedge

ratio is at high confidence interval (99%). The implication of these finding for futures hedging is theimportance

of considering preferences on both the hedgers horizon and confidence interval in computing both the VaR and

13



CVaR minimizing energy hedge ratios, two findings not previously addressed in the literature.

[Table 2 about here.]

To understand the importance of hedging horizon on the optimal heating oil hedge ratio for different hedging

risk objectives, we now consider the out-of-sample hedgingperformance detailed in tables 3 and 4. For each of

the hedge ratios previously calculated, we measure the hedging effectiveness by determining the proportion of

spot variance, semivariance, VaR and CVaR that is removed byhedging at each time-horizon. Regardless of the

hedging objective function applied or the performance metric used, hedging effectiveness is found to increase for

longer horizons. While small differences in effectiveness are found across the different hedging objectives, these

are found to be dominated by the large performance gains found at longer horizons for all objectives.

In table 3a, we examine the variance hedging effectiveness for the different heating oil hedge ratios shown in

table 2 using the various objective functions described. Regardless of the underlying hedging objective, variance

hedging effectiveness is found to increase monotonically from short to long horizons. In particular, at the longest

horizon studied,96% − 97% of the variance risk of the spot position is removed for all hedging objectives.

Comparing the hedging objectives, at lower confidence intervals the VaR and CVaR optimized hedge ratios are

found to reduce the level of variance risk by a greater amountthan the minimum-variance hedge. These findings of

improved hedging effectiveness using the VaR and CVaR reduction objectives are in keeping with Chang (2011);

Harris & Shen (2006). However, the small performance improvements achieved for the VaR and CVaR hedging

objectives are dominated by the effectiveness gains at longer horizons. Comparing the variance and semivariance

objectives, the minimum-variance hedge ratios are found toreduce the spot variance by more than the minimum-

semivariance ratios across all time-horizons.

[Table 3 about here.]

Next, we measure the effectiveness of the different heatingoil hedge ratios proposed in table 2 from the point

of view of semivariance reduction, given in table 3b. As demonstrated in the case of variance reduction, the

semivariance effectiveness is also found to increase for longer time-horizons regardless of the hedging objective.
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This means that hedgers with long hedging horizon remove a larger proportion of negative spot fluctuations than

those with short horizons. It is worth noting that the minimum-variance hedge ratios are found to reduce the spot

semivariance by at least the same amount as the semivariancehedge ratios at all time-horizons. Comparing the

performance across the various hedging objectives and confidence intervals, the horizon dependent minimum-

variance hedge ratios are also found to be at least as effective as the VaR and CVaR methods in reducing portfolio

semivariance.

In order to calculate the hedging effectiveness using VaR and CVaR, we apply a range of confidence intervals.

In the case of VaR and CVaR hedge ratios, we measure the hedging effectiveness using the same confidence

interval applied in calculating the hedge ratio. For comparative purposes, we also measure the VaR and CVaR

performance of the minimum-variance and minimum-semivariance hedge ratios across the range of confidence

intervals studied. Performance, measured first using VaR reduction, is given in table 4a. As previously shown

for variance and semivariance, the VaR effectiveness is found to increase monotonically for longer horizons,

regardless of the hedging objective or confidence interval examined. Across the hedging objectives, a heating oil

futures hedger with the longest horizon studied (24 days) removes on average82% of tail risk, while only56% is

removed on average at the shortest horizon. An agent wishingto reduce their downside risk, measured using VaR,

will achieve better performance if they hedge for a longer horizon.

[Table 4 about here.]

Next, we compare the effectiveness across the various VaR confidence intervals studied. The first result to

note is that hedging effectiveness improves as the confidence interval decreases for all hedging objectives. In other

words, as the hedger becomes more concerned about tail-risk, the hedging performance they achieve deteriorates.

This result is also robust to using different values of the hedge ratio, as can be seen in figure 1(A). Across the wide

range of hedge ratios examined, our findings are unchanged with better effectiveness achieved at low confidence

intervals. This suggests that residual tail risk remains after hedging, regardless of the hedging objective followed.

However, as proposed, this residual tail risk can be reducedfor hedgers with long hedging horizons.

[Figure 1 about here.]
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Considering the VaR performance of the different hedging objectives at the99% confidence interval, we find

that the variance hedge ratio performs best across the majority of horizons. At high levels of uncertainty, the small

quantity of available data to calculate the hedge portfolioVaR may result in underperformance in comparison

to the variance objective out-of-sample. However, for the other confidence intervals studied the VaR hedging

objective is found to outperform other objectives across the majority of horizons. This is in keeping with previous

findings, where the VaR minimization objective was shown to reduce portfolio VaR by slightly more than other

methods (Chang, 2011; Harris & Shen, 2006).

Finally, we investigate the out-of-sample heating oil hedging performance for each of the hedging objectives

using the CVaR measure, table 4b. Considering first the horizon effects, we find considerable improvement in

CVaR hedging effectiveness between long and short-horizons for all hedging objectives and confidence intervals.

For example, at a99% confidence interval,27% of spot CVaR is removed on average at the shortest horizon

studied, while at a24 day horizon83% is removed. Given the relatively small differences betweeneffectiveness

for different hedging objectives, the horizon effects are again found to dominate. As found in the case of VaR

effectiveness, CVaR performance is also found to improve monotonically for lower confidence intervals. In other

words, hedgers find it more difficult to reduce tail risk when there is more uncertainty involved. The robustness

of this result is illustrated in figure 1(B), where CVaR effectiveness is measured for a variety of hedge ratios.

We show that independent of the hedge ratio applied, better CVaR effectiveness is achieved for lower confidence

intervals.

Contrasting the CVaR effectiveness achieved by the variousobjective functions at different confidence inter-

vals, the minimum-variance hedge is found to have the best performance at a99% level. However, for the lower

confidence levels considered the VaR hedge ratio is found to have the best CVaR effectiveness for the majority

of time-horizons. The outperformance of the VaR hedging objective is a result of the small quantities of data

available for calculation of the CVaR hedge ratio, resulting in decreased out-of-sample performance.

Comparing the various performance metrics detailed, we findfor all hedging objectives that the optimal heating

oil hedge ratio at each horizon achieves the highest levels of effectiveness when measured using variance. On
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the other hand, the lowest effectiveness levels are measured using CVaR, suggesting that all hedging objectives

perform best in terms of reducing two sided variance risk as opposed to tail risk. Contrasting the different objective

functions, greater levels of uncertainty are associated with the value-at-risk based methods as opposed to the

variance technique due to decreased quantities of available data for risk calculation. This effect is highlighted

by the further decrease in effectiveness found at high confidence intervals for the VaR and CVaR risk objectives

(figure 1).

We now turn our attention to the impact from hedging on the distributional properties of returns at different

horizons. We consider the impact of each hedging objective on the skewness and kurtosis of the hedge portfolio

at different horizons. Table 5a presents the change in skewness, measured as the skewness of the hedge portfolio

minus the skewness of the spot. Considering the case of a hedger unconcerned about horizon, a hedged portfolio

results in a positive change in skewness for all objectives.However, at the shortest horizons studied,1.5 to 6 days,

we find that the skewness of the hedge portfolio is lower than for the spot. In contrast, at long horizons, hedging

is found to increase the portfolio skewness relative to the spot.

[Table 5 about here.]

The change in kurtosis between the spot and hedged heating oil portfolios is detailed in table 5b. As found

in previous studies, hedging increases the kurtosis of the portfolio for all hedging objectives (Harris & Shen,

2006). However, the magnitude of the increase in hedge portfolio kurtosis is found to betime-horizon dependent,

with substantially smaller changes in kurtosis found at longer time-horizons. Contrasting the various hedging

objectives, the99% CVaR hedging objective is found to have the smallest change in kurtosis across the majority

of wavelet decomposed time-horizons. Also by moving to lower confidence intervals, the change in kurtosis is

found to be greater for both the CVaR and VaR objectives. Given the earlier findings of decreased tail-risk at lower

confidence intervals, this suggests that the increase in kurtosis is due to a higher concentration of returns around

the mean (or peakedness).

In the empirical analysis, we explored and contrasted a number of alternative futures hedging objectives,

considering optimal heating oil hedge ratios for a variety of hedging preferences. For all objective functions,
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the optimal hedge ratio was found to increase at longer horizons. While small differences in effectiveness were

found between various hedging objectives, large performance gains were demonstrated moving from short to long

time-horizon regardless of the objective. The results suggest that while downside risk measures are useful in

the computation of the optimal hedge ratio, the hedging horizon and confidence intervals should also be given

careful consideration by the energy hedger. If the hedger’spreference is in reducing the downside risk of the

portfolio, the confidence interval chosen will have an impact on the performance achieved. Higher confidence

intervals were shown to be associated with lower performance, a result not detailed in previous studies. Finally,

we demonstrated that the highest levels of effectiveness are measured using the variance measure, with the lowest

levels of effectiveness found using the CVaR performance measure for all objectives and horizons studied.

5. Conclusions

In this paper, we explored the impact of time-horizon on the optimal downside hedged portfolio for heating oil

investors. The optimal downside risk hedge ratio was calculated using a variety of risk metrics, including value-at-

risk, conditional value-at-risk and semivariance. In eachcase, the returns time-series were first decomposed into

the underlying time-horizons using the wavelet transform.Then, the appropriate downside risk hedge ratio was

calculated at each horizon. For the VaR and CVaR hedging objectives, we demonstrated that the optimal hedge

ratio depends on the confidence interval chosen by the hedger, with the lowest optimal hedge ratios found at the

highest uncertainty levels. Further, our findings for the various objective functions support those previously found

for the minimum-variance hedge, with increasing hedge ratios found for longer time-horizons for all objective

functions. In order to minimize downside risk using a futures hedge, an energy hedger with a long time-horizon is

required to sell a greater number of futures contracts than the corresponding hedger with a short horizon.

We then proceeded to measure and compare the out-of-sample effectiveness of each energy hedging objective

applying a range of performance metrics. Investigating theimpact of uncertainty on the hedging performance, we

found the highest levels of effectiveness for low VaR and CVaR confidence intervals, at all hedging horizons. This

was also shown to be independent of the heating oil hedge ratio applied, suggesting that energy hedgers find it

more difficult to reduce tail risk when there are higher levels of uncertainty involved.
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Next, we demonstrated that across the range of different hedging objectives and effectiveness measures studied,

hedging effectiveness increases for longer horizons. Moreover, while VaR and CVaR hedge ratios were found to

have better VaR and CVaR effectiveness than the minimum-variance objective, these performance gains were

shown to be small relative to those experienced by investorswith long horizons. Finally, examining the change in

kurtosis between the hedge and spot portfolios, we found a smaller increase in excess kurtosis for investors with

longer hedging horizons.

Our results build considerably on previous studies investigating different futures hedging risk objectives. The

findings suggest that while downside risk measures are useful in the computation of the optimal hedge ratio, the

hedging horizon should also be given careful considerationby the hedger. Moreover, if the hedger’s preference is in

reducing the downside risk of the portfolio, the confidence interval chosen will have an impact on the performance

achieved.
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(A) VaR Hedging Effectiveness at Different Confidence Intervals
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(B) CVaR Hedging Effectiveness at Different Confidence Intervals
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Figure 1:VaR and CVaR hedging effectiveness for different hedge ratios.
In-sample VaR and CVaR hedging effectiveness (proportion of risk reduced) at different confidence intervals for a rangeof hedge ratios. A 1000 day
moving window approach is used, with the hedging effectiveness for each hedge ratio corresponding to the average acrossall windows.
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Heating Oil
Spot Futures

Mean (%) 0.04 0.04
Standard Deviation (%) 2.78 2.46

Skewness -1.53 -0.46
Kurtosis 39.88 7.29

Maximum loss (%) 47.01 20.96
99% VaR (%) 6.35 6.45
95% VaR (%) 3.98 3.75
90% VaR (%) 2.90 2.74
75% VaR (%) 1.44 1.36

99% CVaR (%) 10.18 9.04
95% CVaR (%) 5.88 5.51
90% CVaR (%) 4.64 4.37
75% CVaR (%) 3.10 2.93

(a) Summary Stats

Spot Futures
Spot 1.00 0.72

Futures 0.72 1.00

(b) Spot & Futures Correlation

Table 1:Descriptive statistics and correlation for log returns of crude futures and spot times-series.
Notes: Sample period is January1997 to December2010. Mean return and standard deviation statistics and one-dayvalue-at-risk and
conditional value-at-risk are given in percentage terms, while a skewness of zero indicates no skewness and a kurtosis of3 indicates no excess
kurtosis is present.
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Semi- Conditional
Horizon Variance Variance Value-at-Risk Value-at-Risk

99% 95% 90% 75% 99% 95% 90% 75%
Original 0.82 0.98 0.78 0.92 0.98 0.96 0.85 0.91 0.95 0.94
1.5 Days 0.73 0.65 0.82 0.96 0.92 0.93 0.49 0.80 0.88 0.91
3 Days 0.85 0.82 0.73 0.94 0.93 0.98 0.68 0.83 0.88 0.93
6 Days 0.90 0.79 0.77 0.98 0.98 0.98 0.80 0.91 0.96 0.97
12 Days 1.04 1.04 1.16 1.02 0.99 0.98 1.15 1.08 1.03 1.00
24 Days 1.19 1.19 1.05 1.11 1.05 1.03 1.20 1.18 1.13 1.07

Table 2:Optimal heating oil hedge ratios for different objective functions at various time-horizons, 1997-2010.
Notes: Hedge ratios are calculated at various horizons in-sample using different objective functions. These include variance, semi-variance, value-at-
risk and conditional value-at-risk minimisation (99%, 95%, 90% and 75% confidence intervals). A 1000-day moving window approach is used, with
average hedge ratios over all windows given in each case. Thedata is transformed into different time horizons using the wavelet filter (LA8) up to a24
day horizon.
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Semi- Conditional
Horizon Variance Variance Value-at-Risk Value-at-Risk

99% 95% 90% 75% 99% 95% 90% 75%
Original 0.81 0.80 0.78 0.82 0.81 0.82 0.81 0.82 0.82 0.82
1.5 Days 0.73 0.70 0.74 0.74 0.75 0.75 0.59 0.75 0.75 0.75
3 Days 0.84 0.83 0.79 0.85 0.85 0.84 0.77 0.84 0.84 0.85
6 Days 0.92 0.87 0.86 0.92 0.92 0.92 0.88 0.92 0.92 0.92
12 Days 0.95 0.94 0.93 0.95 0.95 0.95 0.93 0.94 0.95 0.95
24 Days 0.96 0.96 0.95 0.97 0.97 0.97 0.96 0.96 0.97 0.97

(a) Variance Effectiveness

Semi- Conditional
Horizon Variance Variance Value-at-Risk Value-at-Risk

99% 95% 90% 75% 99% 95% 90% 75%
Original 0.68 0.64 0.66 0.67 0.66 0.67 0.67 0.67 0.67 0.67
1.5 Days 0.58 0.58 0.58 0.55 0.56 0.57 0.50 0.59 0.57 0.57
3 Days 0.74 0.74 0.71 0.73 0.74 0.73 0.70 0.74 0.74 0.74
6 Days 0.88 0.84 0.83 0.88 0.88 0.88 0.85 0.88 0.88 0.88
12 Days 0.93 0.92 0.92 0.93 0.93 0.93 0.92 0.93 0.93 0.93
24 Days 0.96 0.96 0.94 0.97 0.97 0.96 0.95 0.96 0.96 0.97

(b) Semi-Variance Effectiveness

Table 3:Out-of-Sample heating oil hedging effectiveness at different horizons 1997-2010.
Notes: Hedge ratios are first calculated at various horizonsin-sample using different objective functions. These include variance, semi-variance, value-at-risk
and conditional value-at-risk minimisation (99%, 95%, 90% and 75% confidence intervals). For each objective function, the performance is then measured
out-of-sample using variance and semi-variance effectiveness (proportion of spot risk removed). A 1000-day moving windowapproach is used, with the first
1000 days used in the calculation of the hedge ratio and the next 1000 days used to measure effectiveness with averages overall windows given in each case.
The data is transformed into different time horizons using thewavelet filter (LA8) up to a24 day horizon.
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Hedging Objective
Horizon Variance Semi-Variance Value-at-Risk Conditional Value-at-Risk

99% 95% 90% 75% 99% 95% 90% 75% 99% 95% 90% 75% 99% 95% 90% 75%
Original 0.55 0.63 0.66 0.70 0.53 0.65 0.68 0.72 0.51 0.67 0.71 0.76 0.54 0.67 0.71 0.76
1.5 Days 0.47 0.56 0.58 0.62 0.43 0.51 0.53 0.56 0.49 0.62 0.66 0.70 0.34 0.59 0.65 0.70
3 Days 0.54 0.66 0.70 0.74 0.54 0.65 0.68 0.72 0.50 0.68 0.73 0.77 0.49 0.65 0.71 0.76
6 Days 0.66 0.74 0.77 0.80 0.64 0.67 0.69 0.73 0.63 0.75 0.78 0.81 0.64 0.74 0.79 0.82
12 Days 0.73 0.81 0.83 0.84 0.71 0.79 0.80 0.83 0.71 0.80 0.82 0.85 0.71 0.79 0.83 0.86
24 Days 0.81 0.79 0.81 0.81 0.79 0.80 0.82 0.81 0.74 0.84 0.88 0.90 0.78 0.80 0.85 0.89

(a) Value-at-Risk Hedging Effectiveness
Hedging Objective

Horizon Variance Semi-Variance Value-at-Risk Conditional Value-at-Risk
99% 95% 90% 75% 99% 95% 90% 75% 99% 95% 90% 75% 99% 95% 90% 75%

Original 0.35 0.53 0.58 0.62 0.31 0.53 0.58 0.63 0.34 0.54 0.60 0.66 0.35 0.54 0.60 0.66
1.5 Days 0.28 0.45 0.50 0.54 0.28 0.43 0.46 0.50 0.27 0.48 0.54 0.60 0.24 0.47 0.54 0.60
3 Days 0.39 0.57 0.61 0.66 0.39 0.56 0.60 0.64 0.38 0.57 0.63 0.68 0.37 0.56 0.62 0.68
6 Days 0.60 0.68 0.71 0.74 0.58 0.63 0.65 0.68 0.57 0.68 0.72 0.75 0.58 0.68 0.72 0.76
12 Days 0.72 0.75 0.78 0.80 0.70 0.74 0.76 0.79 0.69 0.75 0.78 0.80 0.69 0.75 0.78 0.81
24 Days 0.79 0.79 0.80 0.80 0.78 0.79 0.80 0.80 0.75 0.82 0.85 0.87 0.78 0.79 0.83 0.86

(b) Conditional Value-at-Risk Hedging Effectiveness

Table 4:Out-of-Sample heating oil hedging effectiveness at different horizons 1997-2010.
Notes: Hedge ratios were first calculated at various horizons in-sample using different objective functions. These include variance, semi-variance, value-at-risk and conditional value-at-risk minimisation (99%,
95%, 90% and 75% confidence intervals). For each objective function, the performance is then measured out-of-sample using value-at-risk and conditional value-at-risk at a range of confidence intervals. For
the VaR and CVaR objective functions, the effectiveness (proportion of spot risk removed) is measured using the corresponding hedge ratio for that confidence interval. A 1000-day moving window approach
is used, with the first 1000 days used in the calculation of thehedge ratio and the next 1000 days used to measure effectiveness with averages over all windows given in each case. The datais transformed into
different time horizons using the wavelet filter (LA8) up to a24 day horizon.
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Hedging Objective
Horizon Variance Semi-Variance Value-at-Risk Conditional Value-at-Risk

99% 95% 90% 75% 99% 95% 90% 75%
Original 0.43 0.76 0.27 0.79 1.01 1.04 0.71 0.61 0.90 0.93
1.5 Days -0.29 -0.21 -0.21 0.06 -0.05 -0.16 -0.24 -0.20 -0.08 -0.08
3 Days -0.39 -0.31 -0.39 -0.42 -0.43 -0.42 -0.34 -0.39 -0.41 -0.42
6 Days -0.16 -0.16 -0.20 -0.12 -0.11 -0.13 -0.22 -0.11 -0.13 -0.12
12 Days 0.09 0.05 0.04 0.09 0.07 0.07 0.04 0.09 0.10 0.08
24 Days 0.09 0.10 0.24 0.19 0.32 0.37 0.09 0.10 0.17 0.30

(a) Change in Skewness
Hedging Objective

Horizon Variance Semi-Variance Value-at-Risk Conditional Value-at-Risk
99% 95% 90% 75% 99% 95% 90% 75%

Original 33.75 52.23 26.79 51.59 61.06 60.95 41.34 48.67 56.76 57.32
1.5 Days 18.18 12.66 26.95 44.82 40.67 38.55 4.86 26.19 37.42 39.51
3 Days 18.23 16.66 7.40 24.30 24.58 26.89 6.37 15.85 20.10 24.55
6 Days 6.85 4.05 3.85 8.89 8.98 8.95 4.35 7.44 8.59 8.98
12 Days 4.36 3.92 2.18 4.06 4.51 4.42 2.25 3.59 4.43 4.74
24 Days 0.02 0.62 3.84 1.98 4.37 5.32 0.57 0.63 2.20 4.52

(b) Change in Kurtosis

Table 5:Heating oil hedge portfolio change in skewness and kurtosis at different horizons, 1997-2010.
Notes: Hedge ratios were first calculated at various horizons in-sample using different objective functions. These include variance, semi-variance, value-at-risk
and conditional value-at-risk minimisation (99%, 95%, 90% and 75% confidence intervals). The change in skewness and kurtosis is measured as the difference
between the skewness and kurtosis of the hedged portfolio compared to the unhedged (spot) portfolio. A 1000-day moving window approach is used, with the
first 1000 days used in the calculation of the hedge ratio and the next 1000 days used to assess the distributional properties of the hedge portfolio with averages
over all windows given in each case. The data is transformed into different time horizons using the wavelet filter (LA8) up toa24 day horizon.
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