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Estimating bank loans loss given default by
generalized additive models

Raffaella Calabrese

With the implementation of the Basel II accord, the development of accurate loss
given default models is becoming increasingly important. The main objective of
this paper is to propose a new model to estimate Loss Given Default (LGD) for bank
loans by applying generalized additive models. Our proposal allows to represent the
high concentration of LGDs at the boundaries. The model is useful in uncovering
nonlinear covariate effects and in estimating the mean and the variance of LGDs.
The suggested model is applied to a comprehensive survey on loan recovery process
of Italian banks. To model LGD in downturn conditions, we include macroeconomic
variables in the model. Out-of-time validation shows that our model outperforms
popular models like Tobit, decision tree and linear regression models for different
time horizons.

Key words: downturn LGD, generalized additive model, Basel II

1 Introduction

In Basel II framework, banks adopting the advanced Internal-Rating-Based (IRB)
approach are allowed to use their own estimates of Loss Given Default (LGD) ,
which denotes the loss quota in the case of the borrower’s default. LGD is defined
as one minus the recovery rate, which denotes the payback quota of the loan. Basel
II requires that the internal estimates reflect economic downturn conditions (Basel
Committee on Banking Supervision (BCBS), 2004a, paragraph 468). For each ex-
posure, LGD must not be lower than the average long-term loss rate, weighted for
all observed defaults for the type of facility in question. Therefore, LGD may ex-
ceed the weighted average value when credit losses are higher than average, thus
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the downturn LGD is obtained. In the assessment of capital adequacy the downturn
LGD is also useful for stress testing purposes (BCBS, 2004a, paragraph 434).
In this paper we focus on modelling and forecasting LGD for Italian bank loans. We
propose a regression model for LGD prediction by using generalized additive mod-
els (GAM). To our knowledge there is no study applying GAM to LGD prediction.
GAM is a generalization of the linear regression model. It replaces the usual linear
function of some covariates with a sum of unspecified smooth functions, helping us
dicover potential nonlinear shapes of covariate effects.
Data on LGDs typically have a high concentration at total loss and total recovery.
For this reason, we consider nontrivial probability masses at the endpoints of LGD
(Calabrese and Zenga, 2010; Calabrese, 2012). We suggest to model the total re-
covery and the total loss by two logistic additive models. The LGDs bounded to the
(0,1) interval are modeled by a beta random variable. The beta distribution is well
suited to the modeling of LGDs, as it has support [0,1] and, in spite of requiring only
two parameters, is quite flexible. Bruche and Gonzalez-Aguado (2008), Gupton et
al. (1997), Gupton and Stein (2002) similarly assume that LGD is beta distributed.
To predict LGD on the (0,1) interval, we propose the joint beta additive regression
that models jointly the expectation and the dispersion by using two GAMs. The joint
beta additive model accommodates skewness and heteroscedastic errors.
Particular conditions are likely to make the debtor either pay full or not pay at all,
which can be different from the factors that determine the partial payback. This
topic is analysed in many works on recovery risk, e.g. Bellotti and Crook (2012),
Calabrese (2012), Grunert and Weber (2008), Schuermann (2005). The main advan-
tage of our proposal is that it allows to model the different influences of the same
explanatory variables on the total recovery, the total loss and the partial loss. Also
the model suggested by Calabrese (2012) shows this important characteristic and
for this reason both the models supply accurate estimates for the endpoints of the
LGDs.
The previous proposal (Calabrese, 2012) involves the strong assumption about the
linear relationship between the explanatory variable and the predictor. Such assump-
tion may force the fitted relationship away from its natural path at critical points. To
overcome this drawback, a pivotal improvement of the model here suggested is the
capability of estimating the relationship between the explanatory variables and the
predictor, which can not be linear. Analogously to Calabrese (2012), another posi-
tive aspect of our proposal is that it allows to estimate both the mean and the variance
of the LGD.
We compare our proposal with the joint beta regression model (Calabrese, 2012),
the Tobit model (Bellotti and Crook, 2012), the linear regression (Caselli et al.,
2008, Grunert and Weber, 2009) and the decision tree model (Bellotti and Crook,
2012)1 on a comprehensive database of LGDs on Italian bank loans (Banca d’Italia,
2001). This survey is interesting since few analyses of LGDs of bank loans focus on
continental Europe. Moreover, we include macroeconomic variables that enable us
to obtain estimates of LGDs in downturn conditions. Analogously to some results

1 We do not consider the fractional response model proposed by Papke and Wooldridge (1996)
since it shows less accurate estimates of recovery rates in Calabrese’s (2012) analysis.
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in the literature (e.g. Acharya et al., 2007; Altman et al, 2005; Bellotti and Crook,
2012; Caselli et al., 2008; Figlewski et al., 2007), these variables are significant in
predicting LGD.
Our proposal shows the highest out-of-time predictive accuracy in terms of the mean
absolute error and the mean square error for different forecasting periods and for dif-
ferent sample percentages of the extreme values of the LGDs. Finally, it shows the
best performance also when the number of years of data included when building the
model changes.
The present paper is organized as follows. The next section is a brief literature re-
view. Section 3 presents the regression approach here proposed in which the joint
beta additive model is described. In Section 4, the first subsection describes the
dataset of the Bank of Italy and the second shows the covariate effects identified
through the proposed model on these data. In the following subsection, tree deci-
sion, Tobit, linear regression models are compared with those of our proposal on the
Bank of Italy’s data. Finally, the last section contains some concluding remarks.

2 Literature review

The Basel II (BCBS, 2004) allows banks the opportunity to estimate LGD using
their own models via the IRB approach Several studies consider LGDs on corpo-
rate bonds (e.g. Bruche and González-Aguado, 2008; Renault and Scaillet, 2004;
Schuermann, 2003), while some authors deal with bank loans (e.g. Araten et al.,
2004; Asarnow and Edwards, 1995; Calabrese and Zenga, 2010; Caselli et al., 2008;
Chalupka and Kopecsni, 2009; Dermine and Neto de Carvalho, 2006; Emery et al.,
2004; Grippa et al. 2005; Grunert and Weber, 2009). Since loans are private instru-
ments, few data are available. Noticeably, LGDs on corporate bonds and on bank
loans are significantly different (Carty and Lieberman, 1996; Schuermann, 2003).
In recovery risk analysis a pivotal topic is the forecasting of LGDs. In order to
predict LGDs, some authors apply a linear regression model. Caselli et al. (2008)
examine 11,649 distressed loans to households and small and medium size com-
panies from 1990 to 2004. LGD is estimated from cash-flows recovered after the
default event. A similar methodology is applied by Grunert and Weber (2009) on
120 recovery rates of German defaulted companies in the years from 1992 to 2003.
Grunert and Weber (2009) attach great importance to very high or very low recovery
rates, so they investigate whether some factors influence banks receiving the EAD
almost completely or only minimally by using two logistic regression models.
Gupton and Stein (2002) transform the LGDs of 1,800 U.S. defaulted loans, bonds
and preferred stock from beta to normal space. They apply a linear regression model
to the transformed market prices of the assets soon after the default event. Bruche
and González-Aguado (2008) also assume that the recovery rate is beta distributed,
but they extend the static beta distribution assumption by modeling the beta pa-
rameters as functions of systematic risk. Such model is applied to 2,000 defaulted
bonds of US firms from 1974 to 2005. For the bimodal nature of LGD, Bellotti and
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Crook (2012) apply Tobit and a decision tree model to 55,000 credit card accounts
defaulted in UK over the period 199 to 2005.
To estimate the downturn LGD (BCBS, 2004b, 2005), Basel II (BCBS, 2004a, para-
graph 468) suggests that banks have to consider macroeconomic downturn con-
ditions when predicting recovery rates. In particular, the BCBS (2005) states that
banks should use the growth of GDP and the rate of unemployment as factors for
the recovery rate prediction.
The forecasting of LGD for retail credit using macroeconomic variables is relatively
enexplored by literature. The growth rate of GDP is significant in calculating the loss
rate for Altman et al. (2005) on US bonds and for Figlewski et al. (2007) also on US
bonds. The same variable is not significant for Bruche and González-Aguado (2008)
and Acharya et al. (2007). The results agree on the relevance of the unemployment
rate to explain the LGD (Acharya et al., 2007; Bellotti and Crook, 2012; Bruche and
González-Aguado, 2008, Caselli et al., 2008).
Other macroeconomic covariates chosen in the literature to predict the recovery rates
are the interest rate (Bellotti and Crook, 2012; Figlewski et al., 2007), stock market
return (Acharya et al., 2007; Figlewski et al., 2007), investment growth (Bruche and
González-Aguado, 2008; Caselli et al., 2008) and inflation (Figlewski et al., 2007).
The growing empirical evidence shows a negative correlation between default and
LGDs, as shown by Bruche and González-Aguado (2008) and Altman et al. (2005).

3 Prediction models

A pivotal characteristic of the LGD distribution is the high concentration of data at
total recovery and total loss, as shown by Asarnow and Edwards (1995), Bellotti and
Crook (2012), Calabrese and Zenga (2008, 2010), Calabrese (2012), Caselli et al.
(2008), Dermine and Neto de Carvalho (2006), Grunert and Weber (2009), Renault
and Scaillet (2004), Schuermann (2003). Hence, the estimates of total loss and total
recovery are crucially important for banks.
This section analyses the main models proposed to supply accurate estimates for the
endpoints of LGDs.

3.1 Tobit model

Since LGD has a truncated distribution, Bellotti and Crook (2012) suggest to apply
the two-tailed Tobit model (Maddala, 1987, Chapter 6). To model boundary cases,
the latent variable z = x′β + ε is considered, where y = min(1,max(0,z)). To apply
the maximum likelihood method, the conditional distribution of the residual ε is
assumed to be normal N(0,σ2) with variance σ2, so the following log-likelihood
function is obtained
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l(β ,σ) = ∑
0<lgdi<1

log
[

σ
−1

φ

(
lgdi−x′iβ

σ

)]
+ ∑

lgdi=0
log
[

1−Φ

(
x′iβ
σ

)]
+ ∑

lgdi=1
log
[

Φ

(
x′iβ −1

σ

)]
(1)

where φ(·) and Φ(·) denote the probability and cumulative density functions for the
standard normal distribution, respectively.

3.2 Decision tree model

Bellotti and Crook (2012) suggest a decision tree model using two logistic regres-
sion models for total loss and total recovery, i.e. LGD= 1 and LGD= 0 respectively,
as binary classification problems. Then, an Ordinary Least Squares (OLS) regres-
sion is used to model LGD for the group 0 < LGD < 1.
To describe this model, we use the following parametrization

a = P{LGD = 1} b = P{LGD = 0}. (2)

and the cumulative distribution function of LGD proposed by Calabrese and Zenga
(2010)

FLGD(lgd) =

a lgd = 0;
a+[1−a−b]FY (lgd) lgd ∈ (0,1)
1 lgd = 1,

(3)

where Y is a continuous random variable with support (0,1). From the expression
(3), the expected value of LGD is given by

E(LGD) = b̂(â+ b̂)[(1− â− b̂)ŷ] (4)

where â and b̂ are estimated by two logistic regression models and ŷ is computed
from a OLS model inder the assumption that the loss is fractional. Bellotti and Crook
use the expression (4) to forecast LGD.

3.3 Joint beta regression model

Since the beta density function is flexible, Calabrese (2012) proposes to consider
LGD as a mixture of a dummy random variable and a beta random variable. Anal-
ogously Bellotti and Crook (2012), two logistic regression models are used to esti-
mate the parameters a and b defined in the equations (2). To estimate the LGD on
the interval (0,1), the parametrization suggested by Ferrari and Cribari-Neto (2004)
is considered
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E(Y ) = µ var(Y ) =
µ(1−µ)

φ +1
, (5)

This means that the random variable Y has the following density function

f (y; µ,φ) =
yµφ−1(1− y)φ−µφ−1

B(µφ ,φ −µφ)
0 < y < 1 (6)

with 0 < µ < 1 and φ > 0 and where B(·, ·) denotes the beta function .
Generalized Linear Models (McCullagh and Nelder, 1989) model only the mean
µ and they consider the precision parameter φ = p+ q as a nuisance parameter.
Calabrese (2012) models, jointly, the mean µ and the precision parameter φ of the
response beta random variable Y . By choosing the logit and the log functions as link
functions, it follows that

µi =
1

1+ e−v′iη
φi = e−w′iθ ,

with i = 1,2, ...,m, where η and θ are vectors of respectively k and l unknown
regression parameters, vi and wi are the two vectors of observations on respectively
k and l covariates (k+ l < m), which are assumed fixed and known.

3.4 Generalized additive model

Generalized Additive Models (GAMs) are semi-parametric regression type models.
They are parametric, in that they require a parametric distribution assumption for the
dependent variable, and ”semi” in the sense that the modeling of the parameters of
the distribution, as functions of explanatory variables, involve using non-parametric
smoothing functions.
Hastie and Tibshirani (1986) propose GAM. These models assume that the mean
of the dependent variable depends on an additive predictor through a nonlinear link
function. GAM extends the GLM by replacing the linear form x′β with the additive
form ∑

k
i=1 fi(xi). The smooth function fi(·) are estimated on data through iterative

smoothing operations, i.e. backfitting algorithm (Hastie and Tibshirani, 1990, 90-
91).
The main adavantage of GAMs is that they provide a flexible method for identify-
ing nonlinear covariate effects. This means that GAMs can be used to understand
the effect of covariates and suggest parametric transformations of the explanatory
variables.
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4 A new regression model for LGD

Calabrese’s (2012) assumption that LGD is a mixture of a dummy random variable
and a beta random variable is considered. In order to estimate the vectors a and b,
we propose to apply two logistic additive regression models given by

a =
1

1− exp[α +∑
p
j=1 f j(x j)]

, b =
1

1− exp[β +∑
p
j=1 g j(x j)]

, (7)

where f j(·) and g j(·) with j = 1,2, ..., p are arbitrary smooth functions, α and β are
the unknown parametrs and x′ = [x1, ...,xp] is the covariate vector.

4.1 Joint beta additive regression model

By considering the assumption (3), LGD on the interval (0,1) is represented by the
beta random variable Y , with probability density function (6). A relevant disad-
vantage of the joint beta regression model is the strong asumption about the linear
relationship between the explanatory variables and the predictor. We show in the
application of this work that some covariates do not satisfied this assumption. To
overcome this problem, we suggest to replace teh linear predictor with an additive
one.
Following Calabrese (2012), the mean µ and the parameter φ , defined in (5), are
modeled by using two link functions given by the logit and the log functions, re-
spectively. It follows that

µ =
1

1+ e−η+∑
k
i=1 hi(vi)

φ = e−θ+∑
l
j=1 t j(w j), (8)

where η and θ are vectors of respectively k+1 and l+1 unknown parameters, hi(·)
and t j(·) are arbitrary smooth functions, v and w are the two vectors of observations
on respectively k and l covariates.
Furthermore, we point out that the mean µ and the parameter φi depend on two
different vectors of covariates, respectively v and w. Such a characteristic means
that some covariates could be determinant only for one of the two parameters φ

and µ . Furthermore, the variance of Y is a function of µ and φ , as given by the
second equation in (5) and such a model thus accommodates heteroscedastic errors.
Moreover, since the beta distribution is flexible, the skewness is also accommodated.
In order to estimate the parameters η and θ and the functions h1(·),h2(·), ...,hk(·)
and t1(·), t2(·), ..., tl(·), a penalized maximum likelihood method performed. The
log-likelihood function is such that
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l(η ,hi(·),θ , t j(·)) =
m

∑
i=1

[
lnΓ (e−θ+∑

l
j=1 t j(w j))− lnΓ

(
eη+∑

k
i=1 hi(vi)−θ+∑

l
j=1 t j(w j)

1+ eη+∑
k
i=1 hi(vi)

)
+

+

(
e−θ+∑

l
j=1 t j(w j)

1+ eη+∑
k
i=1 hi(vi)

−1

)
ln(1− yi)− lnΓ

(
e−θ+∑

l
j=1 t j(w j)

1+ eη+∑
k
i=1 hi(vi)

)
+

+

(
eη+∑

k
i=1 hi(vi)−θ+∑

l
j=1 t j(w j)

1+ eη+∑
k
i=1 hi(vi)

−1

)
ln(yi)

]
. (9)

The smoothing functions h1(·),h2(·), ...,hk(·) and t1(·), t2(·), ..., tl(·) are estimated
by applying the cubic splines (Hastie and Tibshirani, 1990, chapter 2). Under the
assumption that all the functions ti(·) and h j(·) are twice continuously diffentiable,
we maximize a penalized log-likelihood, given by (9) subject to penalty terms of
the form ∑

l
j=1 λ j

∫
∞

−∞
[t ′′j (q)]

2dq and ∑
k
i=1 ϖi

∫
∞

−∞
[h′′i (q)]

2dq (Hastie and Tibshirani,
1990, 149-151).
We define this approach the Joint Beta Additive Model (JBAM) since the distri-
bution of the dependent variable is assumed to be a beta distribution, analogously
to Ferrari and Cribari-Neto (2004) and Calabrese (2012). Futhermore, similarly to
Calabrese (2012), we model jointly the expectation and the dispersion of the depen-
dent variable but, unlike Calabrese (2012), generalized additive models are used.
The main advantage of JBAMs is the capability of identifying nonlinear covariate
effects on the transformed (by the link functions) mean and variance of LGDs. In
this way, parametric transformation can be suggested to estimate both the mean and
the variance of LGDs.

5 Data

The Bank of Italy conducts a comprehensive survey on the loan recovery process
of Italian banks in the years 2000-2001. Its purpose is to gather information on the
main characteristics of the Italian recovery process and procedures, by collecting
information about recovered amounts, recovery costs and timing.
By means of a questionnaire, about 250 banks are surveyed. Since they cover nearly
90% of total domestic assets of 1999, the sample is representative of the Italian re-
covery process. We consider 134,937 instances for which all the covariate values
are known. We highlight that the data concern individual loans which are privately
held and not listed on the market. In particular, loans are towards Italian resident
defaulted borrowers from 1985 to 1999 and written off by the end of 1999.
The definition of default the Bank of Italy chooses in its survey (Banca d’Italia, 2004
p.II10) is tighter than the one Basel Committee on Banking Supervision (BCBS)
(2004a, paragraph 452) proposes. The difference is the inclusion of transitory non-
performing debts.
To constrain LGD within the interval [0,1], we compute it as one minus the expres-
sion proposed by Calabrese and Zenga (2010) to compute the recovery rate.
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Figure 1 around here

The distribution of the Bank of Italy’s LGDs is shown in Figure 1. The mode of
LGD distribution is the extreme value 1, with 23.43% of the observations. LGD
equal to 0 also shows a high percentage (7.88%). Hence, we obtain a bimodal dis-
tribution analogously to that found in Araten et al. (2004), Asarnow and Edwards
(1995), Caselli et al. (2008), Friedman and Sandow (2003).
The average LGD is 0.6154, the median value is 0.6667 and the standard deviation
is 0.3395. These values show a less efficient Italian recovery process than the one
represented by Caselli et al. (2008) for the period 1990-2004. In fact, in that analysis
the average LGD is 0.54, the median is 0.56 and the standard deviation is 0.43.

5.1 Covariate effects

Calabrese and Zenga (2008) show that the exposure at default and the presence of
collateral or personal guarantee are significant in estimating the recovery rate. For
that reason we consider a dummy variable that represents the presence of collateral
or a personal guarantee (CG) and the logarithm of the exposure at default (ln EAD)
as explanatory variables.
Caselli et al. (2008) show that the LGDs for loans to households and to small and
medium enterprises are statistically different. In order to understand if this charac-
teristic is a determinant of LGD, we introduce a dummy variable2 that is equal to
one when the borrower belongs to a consumer family (CF).
Since internal estimates for the LGD must reflect economic downturn conditions
(BCBS, 2004 paragraph 468), as explained in Section 2, macroeconomic variables
are introduced in the regression model in order to represent the state of the economic
cycle.
Compliant to Basel II (BCBS, 2005) and in line with many empirical studies
(Acharya et al., 2007; Altman et al., 2005; Bellotti and Crook, 2012; Bruche and
González-Aguado, 2008; Caselli et al., 2008; Figlewski et al., 2007), the chosen
macroeconomic variables are the interest on delayed payment (Interest rate), the
unemployment rate (Unemployment rate), the growth of GDP (GDP growth rate)
and the default rate (default rate), all evaluated at the time of default. The source of
the first and the third variables is the Statistical Bulletin of the Bank of Italy, for the
others the International Monetary Fund.
In this analysis we consider 144,966 loans that defaulted between January 1985 and
December 1999 and which are written off within December 1999. We underline that
the size of the sample here considered is significantly higher than the sample size
considered in most of empirical studies in the literature. For example, Bellotti and
Crook (2009) examine over 55,000 credit card accounts in default and Caselli et al.
(2008) consider 11,649 bank loans. We specify that the sample size for Grippa et al.

2 For a dummy variable, it is evident tht only the parameter and not the spline function can be
estimated.
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(2005)’s multivariate analysis is over 22,000 loans. Although Grippa et al. (2005)
consider the same survey of the Bank of Italy (Banca d’Italia, 2001), their sample
size is much lower than the one here analysed since they consider only the loans for
which all data are available.
Analogously to Calabrese (2012), the model here propsoed allows to analyse the
different influences of the same covariates on subsets of LDGs. Calabrese (2012)
analyse the covariate effects on two groups: the endpoints and the value belonging
to the interval (0,1). On the contrary, in this paper the covariate effects are analysed
on three subsets: total, null partial losses. Some authors (e.g. Bellotti and Crook,
2012; Friedman and Sandow, 2003; Grunert and Weber, 2009; Schuermann, 2003)
hypothesize that the extreme values of the recovery rates show different charac-
teristics from the ones belonging to the interval (0,1), but they can not verify this
statement with an appropriate methodology. In order to achieve this aim, the covari-
ate sets x, v and w, considered in the equations (7) and (8), coincide.
Some authors in the literature, e.g. Bellotti and Crook (2012) and Dermine and de
Carvalho (2005), maintain that a good macroeconomic model of LGD should have
training data across the entire business cycle. In fact, the Bank of Italy’s data con-
cern a long recovery period of 14 years, covering the expansion in the 80s and the
recession in the early 90s in Italy.
The covariate effects here analysed are estimated on 134,937 defaults between 1985
and 1998. To measure the severity of multicollinearity we compute the Variance In-
flation Factor (VIF) (Greene, 2000, p.257-258) for each macroeconomic variable in
an ordinary least square regression model. Since VIF values are all lower than 5, the
level of multicollinearity is tolerable.

Table 1 reports3 the parameter estimates of the intercept and the dummy variables
CG (the presence of guarantee) and CF (consumer family).

Table 1 about here

The presence of collateral or personal guarantee strongly affects the mean of re-
covery rates, as shown by Chalupka and Kopecsni (2009), Friedman and Sandow
(2003), Grippa et al. (2005), and the signs of the estimates coincide with expecta-
tions. The dummy variable for the consumer family (CF) shows that the probability
of null loss (or total loss) is higher (or lower) for consumer family. The cause of this
interesting result could be the larger resort to collateral and personal guarantee for
consumer families.
The results on the influence of the EAD on the recovery rates are interesting since
empirical studies lead to contrasting conclusions on this topic: Asarnow and Ed-
wards (1995), Carty and Lieberman (1996) find no significant influence of the loan
size on LGDs, while Dermine and Neto de Carvalho (2006), Grippa et al. (2005)
find that the recovery rates decrease when the loan size increases. Figure 1 shows

3 We obtain these results by using the package R “GAMLSS” (Stasinopoulos and Rigby, 2007) for
the JBAM and the logistic additive model.
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that the effect of the logarithm of the EAD on the mean of internal LGDs is clearly
unlinear. We obtain the same result for the growth rate of GDP and the default rate.
Analogously to Bellotti and Crook (2012), the time with a bank has a strong influ-
ence on the mean of internal LGDs. as Figure 1 shows.

The effect of the interest on delayed payment coincides with expectations, this
could be due to a short-term influence of this macroeconomic variable on LGDs.
Since this influence could be of long-term for the unemployment rate, in Figure 1 we
obtain a incoherent result for the unemployment rate. Similar results are obtained by
Bellotti and Crook (2012) and Calabrese (2012). The correlation between LGD and
PD is a pivotal topic in credit risk analysis (Altman et al., 2005a). The contrasting
results obtained in the literature (Altman et al., 2005a) could be due to the wrong
assumption of a liner relathionsip between the default rate and the LGD.

For semplicity, we report in Figure 1 the covariate effects only on the logit of the
mean of the internal LGDs. By applying the model here proposed, the same analysis
could be developed for the probability of total or null losses and for the dispersion
parameter φ defined in (8).

5.2 Model comparisons

In this subsection we compare the predictive accuracy of some popular models (the
Tobit, the decision tree and the linear regression models) and the model here pro-
posed. The predictive accuracy of each model is assessed using the Mean Square
Error (MSE) and the Mean Absolute Error (MAE). Models with lower MSE and
MAE forecast actual LGDs more accurately. Since the developed models may over-
fit the data, resulting in over-optimistic estimates of the predictive accuracy, the
MSE and the MAE must be assessed on a sample which is different from that used
in estimating the model parameters. Since this work focuses on predictive accuracy,
the models are fitted on data referring to a period of time and the predictive accu-
racy is measured on a subsequent period. The accuracy so evaluated is known as
out-of-time predictive accuracy.
We compare the out-of-time predictive accuracies obtained by the above-mentioned
models4 on the Bank of Italy’s data for different time horizons. The time horizon is
important to consider since a pivotal decision for a bank is to decide when the re-
covery process should be written off. On the one hand, a bank continue its recovery
process with the aim of increasing the recovered amounts. Perhaps the best solution
to choose the right time for written off is to continuously use models with different
forecasting periods of time by comparing their results.
Since the Bank of Italy’s data cover the period from 1985 to 1999, the predictive ac-
curacy within one year is evaluated on defaults that occurred in 1999 and the models
are fitted on loans defaulted from 1985 to 1998. For the forecast within two years
the models are fitted on loans defaulted from 1985 to 1997 and the out-of-time sam-

4 In order to estimate the parameters of the linear regression model the least squares method is
applied.
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ple is given by the defaults from 1998 to 1999. Finally, for the forecast within three
years the models are developed using defaults from 1985 to 1996 and the accuracy
is measured on defaults that occurred from 1997 to 1999.
By the results reported in Table 2 our proposal shows the lower MAE and MSE than
the correspondent errors of all the analysed models for each forecasting horizon.

Table 2 around here

Since data concern defaults written off by the end of 1999, the percentage of null
recoveries in the out-of-time sample decreases as the forecasting horizon increases.
In the out-of-time sample of 1 year the percentage of total loss is 61.91%, for 2 years
is 38.11% and for 3 years is 32.48%. Thie means that our proposal is preferable for
different sample percentages of total and null losses.
We suspect that several actors in the market use only the most recent data when
building LGD prediction models. This is justified by the fact that the most recent
data best reflect the characteristics of the data on which it will be used. But then the
assumption is made that these characteristics change from year to year, and if this is
true the developed model will not be interesting anyway since it will only be appli-
cable on contemporary data. To understand the efficiency of such methodology, we
compare models estimated on different periods of time. The 12-years model is built
on defaults occurred from 1987 to 1998, while the 6-years and the 3-years mod-
els are built on data from 1993 to 1998 and from 1996 to 1998, respectively. The
forecasting horizons of the three models are one-year (data from 1999). The fact
that the 12-years model outperforms the other models on the 1999 data is interest-
ing. This means that even if the characteristics of the data changes, the introduction
of macroeconomic variable allows to include these changes in a LGD model, as
Bellotti and Crook (2012) show. Hence, we can deduce that a financial institution
should build LGD prediction model by using all the available data.

6 Conclusions remarks

Following the incresing use of IRB approach, LGD modeling has become one of
the leading topics in modern finance. In this paper, we propose a new regression
model for LGD. The main advantage of our proposal is that it allows to uncover
nonlinear covariate effects. Another positive aspect is that our proposal allows to
estimate both the mean and the variance of LGD. In particular, banks and financial
institutions would be able to improve their credit recovery measurement on the basis
of our proposal.
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Fig. 1 The distribution of the Bank of Italy’s LGDs.
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JBAM for µ

Variable Estimate Std. Error t value Pr(> |t|)
Intercept 2.557 0.202 12.683 7.824e-37

CF 0.001 0.007 0.067 9.465e-01
CG -0.485 0.015 -31.858 1.396e-221

JBAM for σ

Variable Estimate Std. Error t value Pr(> |t|)
Intercept -1.125 0.187 -6.000 1.978e-09

CF -0.068 0.007 -9.723 2.473e-22
CG -0.036 0.014 -2.588 9.653e-03

Logistic additive regression for zeros
Variable Estimate Std. Error t value Pr(> |t|)
Intercept -14.994 0.811 -18.489 3.139e-76

CF 0.100 0.024 4.114 3.886e-05
CG 0.887 0.047 18.900 1.431e-79

Logistic additive regression for ones
Variable Estimate Std. Error t value Pr(> |t|)
Intercept -2.939 1.566 -1.876 6.059e-02

CF -0.663 0.020 -33.874 1.795e-250
CG -1.051 0.059 -17.763 1.637e-70

Table 1 Parameter estimates on 134,937 defaults occurred in Italy from 1985 to 1998.

FORECASTING HORIZON ERRORS MODELS
JBAM JBM Tobit Linear

1 year MAE 0.2529 0.3543 0.3378 0.3014
MSE 0.1278 0.1563 0.1516 0.1439

2 years MAE 0.3308 0.3681 0.3484 0.4661
MSE 0.1634 0.1898 0.1400 0.3213

3 years MAE 0.3404 0.3928 0.3693 0.5042
MSE 0.1594 0.2101 0.1448 0.3647

Table 2 Forecasting accuracy measures of regression models over different forecasting horizons
on the out-of-time sample.

ESTIMATION PERIOD ERRORS MODELS
JBAM JBM Tobit Linear

12 years MAE 0.2601 0.3596 0.3712 0.3088
MSE 0.1293 0.1566 0.1521 0.1457

6 years MAE 0.2782 0.3610 0.3794 0.3103
MSE 0.1386 0.1685 0.1552 0.1523

3 years MAE 0.2897 0.4151 0.4076 0.3167
MSE 0.1472 0.1753 0.1598 0.1581

Table 3 Forecasting accuracy measures of regression models over different horizons of the sample.


