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Abstract 

 

This study develops a multi-factor framework where not only market risk is 

considered but also potential changes in the investment opportunity set. Although 

previous studies find no clear evidence about a positive and significant relation 

between return and risk, favourable evidence can be obtained if a non-linear 

relation is pursued. The positive and significant risk-return trade-off is essentially 

observed during low volatility periods. However, this relationship is not obtained 

during periods of high volatility. Also, different patterns for the risk premium 

dynamics in low and high volatility periods are obtained both in prices of risk and 

market risk dynamics.  
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1. Introduction 

The relation between expected return and risk has motivated many studies in the 

financial literature. Most recent asset pricing models are based on this 

fundamental trade-off, so understanding the dynamics of this relation is a key issue 

in finance. One of the first studies establishing a theoretical relation between 

expected return and risk is the Sharpe (1964) and Lintner (1965) CAPM. These 

authors propose a positive linear relationship between the expected return of any 

asset and its covariance with the market portfolio. Later, Merton (1973) proposed 

an extension of this model, adding a second risk factor in the relationship that may 

improve the static CAPM. The market risk premium in the ICAPM is proportional to 

its conditional variance and the conditional covariance with the investment 

opportunity set (hedging component).  

The empirical literature on the ICAPM has tested the implications of this model in 

two dimensions. Papers such as Shanken (1990), Brennan et al. (2004) Ang et al. 

(2006), Lo and Wang (2006), and Petkova (2008) focus on the cross-sections of 

excess stock returns. Most of these works include additional factors other than 

market returns to provide an improved description of the dispersion in excess 

portfolio returns in the cross-section. Other related studies on the ICAPM with a 

focus on the time-series aggregate risk-return trade-off can be found in papers 

such as Scruggs (1998), Whitelaw (2000), Brandt and Kang (2004), Ghysels et al. 

(2005) and Guo et al (2009). These papers try to unmask a fundamental 

relationship between return and risk in financial data using different time-series 

analysis techniques. 

This study aims to shed light on the empirical validation of the risk-return trade-

off following the time-series dimension of the second set of studies. There are 

many studies analyzing this relationship empirically, but their results are 

controversial. Campbell (1987), Glosten et al. (1993), Whitelaw (1994) and Brandt 

and Kang (2004) find a negative relation between these variables1, while other 

authors, such as Ghysels et al. (2005), Leon et al. (2007), Guo and Whitelaw (2006), 

Ludvigson and Ng (2007) and Lundblad (2007), find a positive trade-off. There are 

                                                 
1 See Abel (1988) and Backus and Gregory (1992) for theoretical models that support a negative risk-return relation. 



3 
 

others studies, such as Baillie and De Gennaro (1990) and Campbell and Hentschel 

(1992), that find non-significant estimates for this risk-return trade-off.  

Several assumptions are necessary for the theoretical model to empirically analyze 

the aggregated risk-return trade-off in the time-series dimension. The most 

common is to consider constant prices of risk (Goyal and Santa-Clara 2003, Bali et 

al 2005). It is also necessary to assume specific dynamics for the sources of risk in 

the model. Finally, the empirical model is established in a discrete time economy 

instead of the continuous time economy used in the equilibrium model of the 

theoretical approach. Most of the empirical papers studying the risk-return trade-

off use one or more of these assumptions.  

Although a large body of literature focuses on this empirical validation, only a few 

studies use multi-factor models that consider a stochastic investment opportunity 

set (use of a hedge component). One of the most common simplifications when 

empirically analyzing this risk-return relationship is the consideration of a 

constant set of investment opportunities (Glosten et al 1993, Lundblad 2007), or 

alternatively, independent and identically distributed returns. This assumption 

implies that the market risk premium only depends on its conditional variance and 

could be validated using single rather than multi-factor models.  

The great controversy in the empirical validation of the risk-return trade-off is due 

to the disappointing results obtained about the sign and significance of this 

relation. There is no consensus about whether these results are due to: (1) wrong 

specifications of conditional volatility and the dynamics of risk factors (Guo and 

Neely (2008), Leon et al. (2007)); (2) misspecifications of the empirical models 

caused by the omission of the hedge component (Scruggs (1998)); (3) or both.  

The empirical technique most used in the literature to show this trade-off is the 

GARCH-M framework. This methodology assumes a linear relation between return 

and risk. There are other approaches to empirically analyzing the risk-return 

trade-off. However, most of them use different econometric techniques to validate 

a linear relationship between return and risk based on Merton’s ICAPM model. For 

instance, Ghysels et al. (2005) use the MIDAS regression, Ludvigson and Ng (2007) 

use factor analysis with macroeconomic variables and Bali and Engle (2010) use a 
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temporal and cross-sectional analysis for a wide range of portfolios comprising the 

whole market.  

In this paper, we use another econometric approach based on the equilibrium 

model of Whitelaw (2000) in which we consider a non-linear relationship between 

return and risk. Generally, theoretical models do no restrict the risk-return 

relation to be linear or monotonic (Rossi and Timmerman (2010), Campbell and 

Cochrane (1999), Whitelaw (1994), Harvey (2001)). It is shown in this paper that 

the relationship between the expected return and volatility follows a non-linear 

rather than linear pattern, as stated in the ICAPM model.  

We use a Regime Switching GARCH (RS-GARCH) approach that allows us obtain 

favorable evidence for a positive and significant risk–return trade-off. We present 

a multi-factor model (assuming a stochastic set of investment opportunities) 

where both the prices and sources of risk are state-dependent. We consider non-

linear relationships between return and risk following the papers of Mayfield 

(2004) and Whitelaw (2000). 

Using monthly excess market return data from 1953 to 2013, we find a positive 

and statistically significant relationship between return and risk during low-

volatility states. The evidence for this relationship during high-volatility states is 

less clear and is not significant when we assume a linear risk-return trade-off. This 

result may give an answer to the risk-return puzzle. Given the evidence in this 

paper, we show that the consideration of different states in the market allows us to 

unmask this fundamental trade-off. The results show that there are periods in low-

volatility states when a positive and significant relationship between return and 

risk exists, supporting the theoretical model. However, there are other periods in 

high-volatility states when this trade-off is not observed or is even negative. Thus, 

the assumption of a linear risk-return trade-off may fail to uncover this 

fundamental relationship because this trade-off depends on the state of the 

market.2  

The results in this paper also present differences in the patterns followed by both 

prices of risk and conditional volatilities in the different states. One interesting 

                                                 
2 To illustrate, the use of a timeframe with many periods corresponding to low-volatility states would result in a 
positive and significant risk-return trade-off. However, if, in the chosen timeframe, there were a high number of high-
volatility states, they would result in a negative and significant trade-off. Non-significant estimations for the relation 
between return and risk would likely be found in samples with a similar number of high and low-volatility periods. 
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result is that the magnitude of the market price of risk is lower during high-

volatility states. These results suggest a pro-cyclical behavior in the investor risk-

appetite, which depends on the volatility regime (high/low volatility). During low-

volatility states, investors ask for a higher price for a ‘unit’ of risk than during high-

volatility states. Additionally, the dynamics of conditional volatilities show greater 

persistence during high-volatility regimes with non-stationary dynamics during 

periods of financial turmoil. 

Although the previous results seem to go against the spirit of theoretical models, 

the same results are obtained in several papers using alternative methodologies. 

Evidence for lower prices of risk during high-volatility periods can be found in 

Bliss and Panigirtzoglou (2004). These authors use a utility function to adjust the 

risk-neutral probability distribution function embedded in options. They are able 

to obtain measures of the risk aversion implied in options, and they find that the 

degree of relative risk aversion is lower during periods of high volatility. Regarding 

the state-dependent relationship between return and risk, Rossi and Timmerman 

(2010) use a flexible econometric approach that shows a non-monotonic relation 

between conditional volatility and expected market returns (at low-medium levels 

of volatility, a positive risk-return trade-off is observed, but this relation becomes 

inverted at high levels of volatility). 

Our goal in this paper is not to question the use of theoretical models in 

representing empirical features of the market. In fact, we want to highlight that the 

ICAPM is still alive and that the fundamental relationship between return and risk 

can be observed in the markets. However, this is only true for certain periods that 

correspond with low-volatility states. In contrast, in periods of instability and 

financial turmoil, the observed trade-off between return and risk follows other 

patterns.  

In this paper, the risk-return relation is tested using different proxies for the 

market portfolio (including the CRSP Value-Weighted NYSE-AMEX index and the 

SP500 index) and using datasets similar to those of previous studies (Scruggs, 

1998 and Scruggs and Glabadanidis, 2003). The robust evidence obtained in all 

cases supports our main conclusions and highlights the potential perils of making 

linear assumptions when modeling state-dependent markets.  
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The rest of the paper is organized as follows. Section 2 provides a description of 

the data. Section 3 develops the empirical framework used in the paper. Section 4 

presents the main empirical results, followed by robustness results in Section 5. 

Section 6 analyses the evidence after controlling for high volatility observations, 

and Section 7 concludes. 

2. Data Description 

This study uses 724 monthly excess market returns from the US market, including 

observations from March 1953 to June 2013. The application of our models is 

constructed around the availability of data on Government Bonds from the Federal 

Reserve Bank of St. Louis, which starts in 1953. This dataset is large and similar in 

size to other studies such as Scruggs (1998) or Scruggs and Glabadanidis (2003). 

Although there are slight differences in the parameter estimates using different 

data frequencies (monthly, weekly or daily), there is no particular reason why the 

conclusions in this study should be affected by the choice of data frequency (see, 

e.g., De Santis and Imhoroglu 1997).  

We compute excess market returns as the difference in the total returns of the 

CRSP Value-Weighted NYSE-AMEX index minus the risk-free rate. Following 

Scruggs (1998) and Mayfield (2004), the yield of the 1-month T-bill is used as the 

proxy for the risk-free rate. The chosen proxy for the hedging component against 

changes in the investment opportunity set is the total returns for a set of constant-

maturity US Government Bonds (similar to Bali and Engle (2009, 2010)): 5-, 10-, 

and 20-year Treasury bonds and an equally averaged portfolio containing these 

three bonds. The Centre for Research in Security Prices (CRSP) database is used to 

obtain the market portfolio return data. The Federal Reserve Bank of St. Louis 

provides the data corresponding to the yields on the risk-free rate and the yields 

on the proxies used as the intertemporal hedging component. To compute the total 

return on a constant maturity bond from the bond yield, we add two components: 

the promised coupon at the start of the year and the price change due to interest 

rate changes (see Morningstar® Bond Return Calculation Methodology (2013) for 

details).  
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Figure 1 plots the returns for the excess market returns, the risk-free rate and the 

excess returns for the alternative investment possibilities. Table 1 shows the main 

summary statistics for excess returns in the market portfolio and the 

intertemporal hedging alternatives and their correlations. 

[INSERT FIGURE 1] 

 [INSERT TABLE 1] 

The results show that any of the selected series could be considered a proxy 

reflecting the alternative investment set available to investors. We observe a very 

small correlation between any of the hedging component variables and the excess 

market returns. Nevertheless, due to the lack of consensus in the literature about 

the best proxy representing the alternative investment set (Scruggs and 

Glabadanidis 2003, Guo and Whitelaw (2006), Bali 2008), this study uses all of 

these different assets presenting different characteristics (in their terms and 

maturities), allowing us to bolster the robustness of our study. 

The excess monthly market returns have a mean of 0.567% and a standard 

deviation of 4.21%. Excess market returns present evidence of negative skewness 

and leptokurtosis. These results, together with the Jarque-Bera test, suggest that 

the excess market returns follow non-normal distributions with evidence of fat 

tails. The excess bond returns for the different alternatives chosen vary from 

0.123% in the 5-year Government Bond to 0.172% in the 20-year Government 

bond and a standard deviation of 1.271% in the 5-year bond to 2.415% in the 20-

year bond (the longer the bond maturity, the larger the mean and standard 

deviation).  

Furthermore, all series exhibit conditional heteroskedasticity (serial 

autocorrelation in squared returns), and there is evidence of volatility clustering 

from the time-series plots. With these serial correlation patterns, the use of GARCH 

models to represent the dynamics of conditional second moments, which has large 

support in the previous literature, is understandable.3  

 

                                                 
3 Although there is also some serial autocorrelation in the series levels, we do not consider the inclusion of any 
structure in the mean equation because GARCH modeling eliminates any serial correlation in the standardized 
residuals. Standardized residual results are available on request. 
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3. Empirical Methodology 

We now present the empirical models used in the study. One of the main building 

blocks of this paper is the assumption of state-dependent prices of risk and state-

dependent conditional volatilities. This modeling implies a non-linear relationship 

between return and risk following the equilibrium model in Whitelaw (2000). We 

assume bivariate GARCH dynamics for conditional volatilities, more specifically, 

the BEKK model of Baba et al (1990). The main advantage of this model is that it 

guarantees that the covariance matrix will be positive definite by construction 

(quadratic form). State-independent multi-factor models that establish a linear 

relation between return and risk are presented in Section 3.1. In Section 3.2, state-

dependent multi-factor models are introduced. These models establish a non-

linear risk-return trade-off through a regime-switching process both in the risk 

premium and conditional volatilities. 

 

 

3.1. State-independent multi-factor model 

We present a multi-factor model derived from Merton’s (1973) ICAPM model. The 

market risk premium in the theoretical Merton model is defined as:  

 ( ) 2

, , ,
WW WB

t W t W t WB t

W W

J W J
E R

J J
σ σ

− −
= +
   
   
   

                                           (1) 

where J is the utility function (subscripts representing partial derivatives), W is the 

wealth level, B is a variable that describes the state of investment opportunities in 

the economy, ( ),t W tE R is the expected excess return on aggregate wealth, 
2

,W tσ  and 

,WB tσ  are, respectively, the conditional variance and the conditional covariance of 

the excess returns with the investment opportunity set, and WW

W

J W

J

 
 
 

, WB

W

J

J

 
 
 

are the 

prices of the risk factors. 

Using this model, we empirically test the aggregated (linear) risk-return trade-off 

in the time-series dimension. The ‘general’ model allows time-varying conditional 

second moments, but the price of risk coefficients for market risk WW

W

J W

J

 
 
 

 and 
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intertemporal component risk WB

W

J

J

 
 
 

are constant over time (Scruggs and 

Glabadanidis 2003). Thus, given the theoretical framework and the assumptions 

taken, the empirical model relating excess market returns with the risk factors is 

stated as follows: 

 
2

, 10 11 , 12 , ,

2
, 20 21 , 22 , ,

m t m t mb t m t

b t mb t b t b t

r

r

λ λ σ λ σ ε

λ λ σ λ σ ε

= + + +

= + + +
                                                      (2) 

where rm,t and rb,t are the excess market returns on the market portfolio and the 

alternative investment set, respectively; ijλ for i=1,2 and j=0,1,2 are the parameters 

to be estimated, which represent the different prices of risk; and 2

,m tσ , 2

,b tσ , ,mb tσ   

represent the conditional second moments (market variance, intertemporal 

hedging component variance and covariance between market portfolio and 

hedging component) or risk factors. A ‘restricted’ version of this model is also 

estimated, where the alternative investment set is time invariant ( 21 22 0λ λ= = ) 

(similar to Scruggs 1998). 

As explained above, it is necessary to make an assumption about the dynamics of 

the volatilities (risk factors) in order to empirically validate the theoretical ICAPM 

model. To analyze bivariate relationships, one of the most widely used models in 

the literature is the BEKK model of Baba et al. (1990). This model sets the 

following covariance equation:   

 
2

, , ' ' ' '
1 1 12

, ,

m t mb t
t t t t

mb t b t

H CC A A B H B
σ σ

ε ε
σ σ − − −

 
= = + +  
 

                                    (3) 

where C is a lower triangular 2x2 matrix of constants, A and B are 2x2 diagonal 

matrices of parameters4, 1tε − is a Tx2 vector of innovations and 1tH − is the lagged 

covariance matrix. 

The model is estimated by the maximization of the Quasi-Maximum Likelihood 

function, assuming that the innovations follow a normal bivariate distribution:

( )~ 0,t tN Hε . 

                                                 
4 Diagonal BEKK models are more parsimonious than full models and they perform well in representing the 
dynamics of variances and covariances (Bauwens et al 2006). 
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( ) ( ) ( ) ( )
1

1 ' 12

1

1
ln , ; , ; 2 exp

2

T

t t t t t t t t
t

L f r where f r H Hθ θ θ π ε ε−− −

=

 = Ω Ω = −    
 

∑
               (4) 

where | Ht | represents the determinant of the covariance matrix, Ωt is the 

information set up to t and θ is the vector of unknown parameters.  

 

3.2. Regime-switching multi-factor model 

We now introduce a different multi-factor model where both the prices of risk and 

the conditional second moments are dependent on the state of the market. In this 

case, we propose two states5. The consideration of regime-switching in the 

empirical relation allows us obtain state-dependent estimations for the risk prices 

and conditional second moments. This implies a non-linear and state-dependent 

relation between expected return and risk following the general equilibrium model 

developed in Whitelaw (2000). Here, the study on the existence of a fundamental 

trade-off between return and risk is conditioned within each regime (defined by 

the levels of volatility in the market). This modeling gives us the chance to analyze 

a different and more complex shape of the risk-return relation beyond the simple 

linear one stated in the theoretical ICAPM model.  

With these assumptions, the mean equation specification in this model is defined 

as: 

 
2

, , 10, 11, , , 12, , , , ,

2
, , 20, 21, , , 22, , , , ,

t t t t t t t

t t t t t t t

m t s s s m t s s mb t s m t s

b t s s s mb t s s b t s b t s

r

r

λ λ σ λ σ ε

λ λ σ λ σ ε

= + + +

= + + +
                                              (5)       

where rm,t,st and rb,t,st are state-dependent (on the latent variable st=1,2) excess 

market and hedging component returns, respectively; , tij sλ  for i=1,2 and j=0,1,2 are 

state-dependent parameters; 2

, , tm t sσ , 2

, , tb t sσ  and , , tmb t sσ are the state-dependent 

conditional second moments; and , , tm t sε  and , , tb t sε are the state-dependent 

innovations.  

                                                 
5 Previous studies considering three states (e.g., Sarno and Valente 2000) when modeling stock and futures time-
series show that the third state only reflects odd jumps in the return series. The explanatory power of this third state 
has been found to be low.  
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It is assumed that the state-dependent conditional second moments follow GARCH 

bivariate dynamics (more specifically, a BEKK model). That is, there are as many 

covariance matrices as states.  

The state-dependent covariance matrices are: 

 
2

, , , , ' ' ' '
, 1 1 12

, , , ,

t t

t t t t t t t

t t

m t s mb t s

t s s s s t t s s t s

mb t s b t s

H C C A A B H B
σ σ

ε ε
σ σ − − −

 
=   = + +
 
 

                        (6) 

where (for st=1,2) Ast and Bst are 2x2 diagonal matrices of parameters, and Cst are 

2x2 lower triangular matrices of constants. 

Shifts from one regime to another are governed by a hidden variable that follows a 

first-order Markov process with probability transition matrix P  (Hamilton 1989). 

 
( ) ( )

( ) ( )
1 1

1 1

Pr 1 1 Pr 1 2 (1 )

Pr 2 1 (1 ) Pr 2 2

t t t t

t t t t

s s p s s q
P

s s p s s q

− −

− −

 = = = = = = −
 =
 = = = − = = = 

       (7) 

where p and q are the probabilities of being in states 1 and 2 if in the previous 

period the process was in states 1 and 2, respectively. 

Due to this state-dependence and the recursive nature of GARCH models, the 

construction and estimation of the maximum likelihood function would be 

intractable unless independent estimates for innovations and covariances were 

obtained. To solve this problem, we use a recombinative method similar to that 

used in Gray (1996). This method allows us obtain state-independent estimations 

for the covariance matrix and the innovations by weighting the state-dependent 

covariance matrix and innovations with the ex-ante probability of being in each 

state. 

The ex-ante probabilities (the probabilities of being in each state in period t using 

the information set at t-1) are given by (8) and (9): 

( ) ( ) ( ) ( )1 1 1 1 11 ; * 1 ; 1 2 ;t t t t t tP s p P s q P sθ θ θ− − − − −= Ω = = Ω + − = Ω                                     (8)       

( ) ( )1 12 ; 1 1 ;t t t tP s P sθ θ− −= Ω = − = Ω ,                                    (9)      

where 
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 ( ) ( ) ( )
( ) ( )

1

2

1
1

; , ;
;

; , ;

t t t t t

t t

t t t t t
k

P s k f r s k
P s k

P s k f r s k

θ θ
θ

θ θ

−

−
=

= Ω = Ω
= Ω =

= Ω = Ω∑
                                                   (10)      

and k=1, 2 are the filtered probabilities (the probabilities of being in each state in 

period t with the information set up to t). 

Assuming state-dependent innovations following a normal bivariate distribution 

( ), ,~ 0,
t tt s t sN Hε , the vector of unknown parameters θ  is estimated by maximizing 

the following maximum-likelihood function: 

( ) ( ) ( ) ( ) ( )
2 1

1 ' 12

1 1

1
ln ; , ; , ; 2 exp

2

T

t t t t t t t t t t
t k

L P s k f r where f r H Hθ θ θ θ π ε ε−− −

= =

   = = Ω Ω Ω = −  
  

∑ ∑
     (11)

 

where the state-dependent likelihood function is weighted by the ex-ante 

probability of being in each state. 

In this state-dependent model, we cannot make a direct interpretation of the 

magnitude of the risk-aversion coefficient for the representative investor. Unlike 

the single-regime multi-factor model presented here, the coefficient accompanying 

the market risk factor cannot be viewed as investor risk aversion but as the market 

price of risk (see Merton 1973, Whitelaw, 2000). However, we can make 

approximations for the risk aversion in terms of the sign of this price of risk and 

the relative comparisons of this price across states. 

Implementing these two types of models, linear and non-linear, allows us re-

examine the patterns followed by the risk-return relation in the US market and to 

shed light on the empirical controversy about its sign and significance. Detailed 

estimates and discussions of these results are provided in the next section. 

4.- Empirical Results 

We turn to the empirical results for the models proposed in the previous section. 

We estimate these models with the different proxies used for the intertemporal 

hedging component. Model I (both linear and state-dependent) use the 5-year T-

bond as a proxy for the intertemporal hedging component. A similar approach is 

taken for model II with the 10-year T-bond, model III with the 20-year T-bond and 

model IV with the equally weighted bond portfolio. 
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Section 4.1 shows and discusses the results for the linear models (without regime-

switching), both in the general and restricted cases. Section 4.2 explains the results 

for the non-linear multi-factor models (general and restricted), including regime 

switching, and their implications for trying to unmask the aggregated risk-return 

trade-off in the markets. 

 

4.1.- Multi-factor model estimations 

The estimated models are those introduced in section 3.1. We estimate a restricted 

version of the models where we assume constant risk premiums for the hedge 

component, i.e., λ21 = λ22 = 0. In the general version of the model, we estimate all 

parameters freely. The estimated parameters for the mean equation are presented 

in Table 2.A. 

[INSERT TABLE 2]
 

Most of the parameters in the mean equation for this multi-factor model are non-

significant. The coefficients that reflect the market price of risk (λ11) are positive 

but non-significant in all cases considered. Similar results are obtained for the 

hedging component risk factor (λ12). This means our model fails to detect a 

significant relation between return and risk if it is assumed to be linear in the 

whole sample. This result is similar to other studies for the risk-return relation 

(Baillie and di Gennaro. 1990; Campbell and Hentschel, 1992), which also find a 

non-significant relationship when using similar linear models.  

Table 2.B shows the parameter estimates for the variance equation. These 

parameters define the dynamics and patterns followed by the conditional second 

moments. The bivariate GARCH specification is a good fit and properly captures 

the conditional second moment dynamics6. Significance in the parameters 

representing shocks in volatility (a11, a22) and persistence of past variance (b11, b22) 

is observed for both risk factors (market risk and the investment opportunity set 

component). The persistence level in the two sources of risk—market risk (b11) 

and hedging component (b22)—is relatively high using multi-factor models, with 

values close to 1. This high persistence level suggests the presence of several 

                                                 
6 Diagnostics tests are not reported for brevity but are available on request. 
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regimes in the volatility process, in agreement with Lameroux and Lastrapes 

(1990). These authors state that persistence in variance may be overstated 

because of the existence, and failure to take account of, regime changes in the 

model. 

Thus, ignoring these regime shifts could lead to inefficiency in the volatility 

estimates and, consequently, in the risk factors. Regime-Switching (RS)-GARCH 

models allow us to both consider different states of the volatility process, as we 

explain in the next sub-section, and to overcome this limitation. More importantly, 

this type of model allows us to analyze more complex shapes of the empirical risk-

return trade-off that cannot be detected by simpler linear models. 

 

 

4.2-  Regime-Switching multi-factor model estimation 

We show estimates for the state-dependent models presented in Section 3.2. These 

models exhibit state-dependent prices of risk and conditional second moments. 

Table 3 describes the estimates for the state-dependent mean equation in all cases 

considered. As we explain below in Figure 3, we can associate states 1 and 2 with 

low and high-volatility periods, respectively.  

[INSERT TABLE 3] 

Panel A of Table 3 shows the mean equation results for low-volatility periods 

(state 1). Positive and significant estimates for the market price of risk in low-

volatility states (λ11,s=1) are obtained in all cases considered (for all proxies used as 

the intertemporal hedging component both in the general and restricted versions 

of the model). However, the magnitude of the estimated coefficients of these prices 

of risk depends on the model. Additionally, the results for the intercept are non-

significant in most cases, following theoretical intuition. The original equilibrium 

framework does not include an intercept term, but empirical models include it to 

test for potential model misspecification. The non-significance of this term 

provides more support for the equilibrium model in these low-volatility states. A 

positive and significant influence of the covariance between the risk premium and 

the hedging component (λ12,s=1) on the market risk premium is also observed in 
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some specifications. The evolution of this covariance does not exhibit a clear 

positive or negative influence on the total risk premium demanded (see Figure 2). 

The estimated product of the price of risk times the covariance between excess 

market return and the hedging component ( )12 , , 1tmb t sλ σ =  implies that the total risk 

premium required by the investor ( )2
11 , , 1 12 , , 1t tm t s mb t sλ σ λ σ= =+

 
will be slightly lower than 

the market risk premium when this covariance is negative. However, when the 

covariance is positive, the premium associated with the hedging component will 

lead to higher values of the total risk premium. 

[INSERT FIGURE 2] 

Panel B of Table 3 shows the mean equation results obtained for state 2. There is 

no clear pattern for this regime. There is no significant relation between the 

expected return and risk in high-volatility states (λ11,s=2) for most of the cases. 

However, in other cases, there is a negative risk-return trade-off at extremely high 

levels of volatility. This finding supports that of Rossi and Timmerman (2010). At 

low levels of conditional volatility, there is a positive trade-off between expected 

returns and risk, but this relationship becomes inverted at extremely high levels of 

volatility. 

Moreover, the price of risk coefficients in state 1 (corresponding to low-volatility 

states) are higher than those corresponding to state 2 (high-volatility states). 

Unlike the linear multi-factor models in section 4.1, we cannot directly associate 

the coefficients in this model with risk-aversion coefficients (see Merton 1973). 

However, we can define the willingness of investors to bear risk in a given 

environment. This concept depends upon both the degree to which investors 

dislike uncertainty and the level of uncertainty. In this way, we can illustrate the 

difference between the risks perceived by the agents at a given point in time by 

risk aversion itself. Our estimated price of risk measures how much an investor 

would pay for one ‘unit of risk’ under a certain environment. Thus, if the price of 

risk is taken together with the quantity of risk inherent in the market, one is 

calculating the expected return to compensate investors for trading in the market, 

the well-known risk premium (we discuss this issue further in section 5.2).  

Although we cannot use the parameters as risk aversion coefficients in our state-

dependent multi-factor models, we can establish certain relationships with our 
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findings. Prices of risk reflect the amount an investor would pay for a ‘unit of 

additional risk’. Intuition tells us that a risk-averse investor would ask for a higher 

price of risk for the same amount of risk than a risk-loving investor. Therefore, we 

can draw a direct positive relation between the price of risk and risk aversion in 

our specification. If, then, we obtain higher price of risk estimates in our model, we 

can associate it with increases in risk aversion levels in the market. On the other 

hand, when we obtain lower price of risk, we can associate it with decreases in risk 

aversion levels in the market. 

The previous discussion suggests that there is a lower risk aversion level in high-

volatility states. This finding is inconsistent with the spirit of linear theoretical 

models, which suggests that higher volatility should be compensated with higher 

returns. One potential explanation for this result could be the different risk 

aversion profiles for investors in each state (Bliss and Panigirtzoglou, 2004). Using 

options on the S&P100 and the S&P500, Bliss and Panigirtzoglou (2004) find that 

risk aversion is higher during periods of low volatility. These authors do not give 

an explanation for this result; they simply recommend developing theoretical 

models to capture these effects. Given our results, we would concur that during 

calm (low-volatility) periods, more risk-averse investors trade in markets. 

However, in high-volatility periods, only the less risk-averse investors remain in 

the market because they are the only investors interested in assuming such risk 

levels, thereby decreasing the price of risk demanded during these periods. This 

interpretation is in line with recent papers such as Salvador at el. (2014) and 

Ghysels et al (2013). These papers document that the Merton model holds over 

samples excluding financial crises, considering these periods as “flight-to-quality” 

regimes. The separation of the traditional risk-return relation from financial crises 

leads to fundamental changes in the relation.  

Furthermore, other related papers, such as Kim and Lee (2008), have reported 

similar evidence to ours in obtaining a significant risk-return trade-off during 

boom periods that is less clear during crisis periods. In this study, we do not define 

the states of the economy depending on the business cycle (boom/crisis), but we 

use volatility regimes. However, one would expect a link between volatility 

regimes and business cycles, which we will discuss in more detail later. Low-

volatility states would correspond to boom periods, while the less-common high-
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volatility states would be associated with crisis periods (Lundblad, 2007). The 

procyclical risk-aversion (investors show more risk-aversion during boom periods 

than during crisis periods) documented in Kim and Lee (2008) is replicated in our 

approach using volatility regimes, where investors show more risk-aversion 

during low-volatility periods than during high-volatility periods.  

Table 4 shows the estimations for the state-dependent variance equations. Again, 

significant estimates are obtained for the parameters accompanying the shock 

impact (a11, a22) and persistence (b11, b22) in the volatility formation in both risk 

factors. 

[INSERT TABLE 4] 

Furthermore, volatility formation depends on the regime considered in this 

framework. For low-volatility regimes, a lower influence of the lagged variance 

(matrix B1) is observed, even compared to the non-switching case (with values 

lower than unity in all cases). Moreover, in these states, there is usually a higher 

impact of shocks (matrix A1) in volatility formation. In this case, the volatility 

observed at a period t in a low-volatility state is determined less by the variance 

observed in the previous period than by the shock occurring in period t.  

However, there is a decrease of the shock influence on volatility formation in high-

volatility regimes (a11,st=2, a22,st=2). There is also an increase in the volatility 

persistence in these high-volatility states (b11,st=2, b22,st=2), with values higher than 

unity in most cases. Although volatility dynamics seem non-stationary during these 

highly volatile periods, the whole variance process remains stationary (Abramson 

and Cohen, 2007). What these results suggest is that the volatility process in the 

markets during periods of market turmoil could be explosive and may not 

necessarily revert to an equilibrium point. However, the whole process remains 

stationary because the volatility process will eventually return to the low-volatility 

state. 

Thus, linear GARCH models could lead to overestimates of volatility persistence in 

low-volatility periods and underestimates of volatility persistence in high-volatility 

periods. This result can also affect the estimation of risk factors and, hence, the 

identification of a risk-return trade-off.
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In addition, the non-linear multi-factor model allows us associate the different 

states that follow the volatility process with low- (state 1) and high-volatility (state 

2) market periods. For instance, in the averaged portfolio case, the median of the 

estimated variances and covariances (scaled by 104) for state 1 are
 

2

, 1
ˆ

tm sσ = = 8.5023, 

2

, 1
ˆ

tb sσ =  = 1.6089 and , 1
ˆ

tmb sσ =  = -0.0347, while the medians of the series in state 2 are 

2

, 2
ˆ

tm sσ = = 19.8916, 2

, 2
ˆ

tb sσ =  = 2.6144 and , 2
ˆ

tmb sσ =  = -0.1215. These results (jointly with 

Figure 3) allow us to associate the states defined in the non-linear model with low- 

(state 1) and high-volatility states (state 2). 

Figure 3 shows the smooth probabilities7 of being in state 1 (low volatility) during 

the sample period jointly with recessionary periods, as defined by the National 

Bureau of Economic Research (NBER). 

[INSERT FIGURE 3] 

Although there are continuous changes in regime during the sample period, we can 

draw some inferences. Usually, recession periods documented by the NBER 

coincide with periods governed by high-volatility states, but this is not always the 

case. Thus, although we cannot establish a direct relationship between high 

volatility and business cycles, they appear to be positively related (Lustig and 

Venderhal, 2012). Despite these continuous changes in regime, low-volatility 

regimes are more prevalent during the sample period. The number of monthly 

periods where the volatility process is in a low-volatility state (probability of being 

in a low-volatility state is higher than 0.5) is between 520 and 560 (depending on 

the proxy for the hedging component), corresponding to 71%-77% of the total 

sample. Thus, for approximately three-quarters of the sample, we do observe a 

positive and significant relationship between return and risk, but this relation is 

not observed a quarter of the time. However, if we make no distinction between 

regimes and we consider a linear relation across the whole sample period, this 

one-quarter of the time the relation is not observed blurs the evidence for the 

whole sample, leading to a conclusion of a non-significant trade-off. 

                                                 
7
 The smooth probability is defined as the probability of being in each state considering the entire information set. 
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The results obtained regarding the significance of the risk-return trade-off in both 

types of multi-factor models lead us to believe that the lack of empirical evidence 

in previous studies could be due to the assumption of a linear risk-return trade-off. 

Non-linear assumptions lead to favorable evidence for the risk-return trade-off in 

low-volatility states, but we cannot obtain favorable evidence when a linear trade-

off is assumed. The consideration of the intertemporal component in the risk-

return relation is of second-order relevance. We also obtain a significant impact of 

the intertemporal component in the risk-return relation, similar to Whitelaw 

(2000), but what truly unmasks the aggregated risk-return trade-off is the 

distinction across regimes. 

5.- Robustness tests 

5.1.- Alternative market portfolios 

Let us reassess our previous evidence by considering different alternatives to the 

market portfolio. In addition to the CRSP Value-Weighted NYSE-AMEX index, Bali 

and Engle (2010) use other popular US stock indices to reflect market returns. 

Given the sample period in this paper (March 1953-June 2013), we choose the 

SP500 index8. To obtain the excess market returns, we compute the monthly 

logarithmic returns of the index (obtained from Bloomberg), and we subtract the 

risk-free rate.  

 [INSERT TABLE 5] 

Panel A of Table 5 shows the results for the mean equation assuming a linear 

relationship between return and risk, where the equally weighted bond portfolio is 

considered the alternative investment set9. Similar to the results for the CRSP 

portfolio, the parameter identifying the relationship between market returns and 

risk is non-significant in all cases. The influence of the covariance between market 

returns and the alternative investment set is also non-significant. These results 

support the previous findings, where linear models are unable to identify the 

theoretical positive relationship between returns and risk. 

                                                 
8 Other indexes are available and not used. For example, for the NYSE index, the sample period available is shorter 
(January 1966-June 2013) because it was first introduced in December 1965. Also, the price-weighting construction 
of the DJIA index results discourages our use of it as a proxy for the market portfolio.  
9 We also estimate the models using the other alternatives for the hedging component and find similar results. Results 
are available on request. 
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The results for the mean equation in the regime-switching case are displayed in 

panel B of Table 5. Some findings here are worth mentioning. Again, we find a 

positive and significant relationship between return and risk during low-volatility 

states, supporting the favorable evidence obtained earlier for low-volatility 

periods. The effect of the covariance between the market portfolio and alternative 

investments tends to be negative for the SP500 index. For high-volatility states, the 

relation between return and risk is also significant, but in the case of the SP500, 

the relation becomes negative, suggesting an inverted trade-off during these 

periods.   

This analysis again shows the importance of distinguishing between regimes and 

relaxing the linear assumption when providing evidence for a risk-return trade-off 

in financial markets. Regardless of which market portfolio is chosen, the empirical 

models are unable to detect a significant linear relationship between these two 

variables, but this trade-off does exist when a less restrictive non-linear 

framework is adopted. 

 

5.2.- Risk premium evolution 

As a further analysis, this section describes the evolution of the risk premium 

demanded by investors in the US, distinguishing between which proportions of the 

risk premium correspond to each risk factor, namely, the market risk and the 

hedging component. We compute the premium associated with market risk as the 

product of the price of risk by idiosyncratic risk 2

11 ,m tλ σ  for linear multi-factor 

models (and similarly for the hedging component premium). For the non-linear 

case, this risk premium is obtained using the state-dependent market risk 

premium weighted by the smooth probability of being in each state 

( ) 2

11, 1 , , 11 ;
t tt T s m t sP s θ λ σ= == Ω +  ( ) 2

11, 2 , , 22 ;
t tt T s m t sP s θ λ σ= == Ω (and similarly for the hedging 

component premium). The total risk premium is computed as the sum of the two 

factor premiums. 
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For brevity, we only show results corresponding to the equally weighted bond 

portfolio as the alternative investment case.10 Figure 4.A describes the market risk 

premium for the different alternatives of the market portfolio. 

[INSERT FIGURE 4] 

The market risk premium series share similar patterns for the sample period for 

all portfolios considered. For instance, there is a common rise in the market risk 

premium that coincides with high-volatility periods. There are several peaks that 

also coincide with recessionary periods, such as December 1969-Novemeber 1970 

and November 1973-March 1975. A peak is also observed following the Asian 

crisis in 1987 and the turbulent period between 1998 and 2002 that ended with 

the bursting of the dot-com bubble. Finally, there is a common increase in the 

premium during the last financial crisis (2007-2009).  

The median of the monthly risk premium series shows that over the past 60 years, 

the risk premium in the US has remained at approximately 3.5% to 4% per 

annum,11 depending on the model and portfolio used. This estimate is very similar 

to other studies on US data (e.g., Bali (2008)). Furthermore, the total risk premium 

is essentially composed of the risk associated with the market. The percentage of 

the total risk premium corresponding to the hedging component is relatively small 

for both models.
 

To detect differences in the risk premium between the two proposed model types 

(linear and non-linear), Figure 4.B plots its evolution in each portfolio for both 

models12. A similar evolution of the total risk premium is observed in both the 

linear and non-linear models. It appears that during peaks of volatility, the non-

linear models provide higher estimates of the premium; the rest of the time, they 

seem to provide lower estimates. These results suggest that during low-volatility 

periods, linear models tend to overestimate the premium, and during high-

volatility periods they tend to underestimate it.  

 

                                                 
10

 The dynamics of the evolution of the risk premium in the rest of the cases are very similar. Results are available on 
request. 
11 The descriptive statistics for the risk premiums are not shown but are available from the authors upon request. 
12 For brevity, only the figures for the average portfolio as an alternative investment in the general model are shown. 
The dynamics of the differences in the risk premium evolution in the rest of the cases are very similar. Results are 
available on request. 
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5.3.- Datasets used in previous papers 

This section repeats our analysis for the datasets used in two well-known papers 

analyzing the risk-return trade-off. The papers of Scruggs (1998) and Scruggs and 

Glabadanidis (2003) represent two of the best-known references for the use of 

multi-factor models in trying to provide evidence in the time-series for Merton’s 

theoretical model. Scruggs (1998) finds favorable evidence for a partial relation 

between the market risk premium and conditional market variance. He uses a 

bivariate model comprising the CRSP Value-Weighted NYSE-AMEX portfolio as the 

proxy for market returns (rm,t ) and long-term government bond returns (more 

specifically, the Ibboston Associates long-term U.S. Treasury bond total return 

index) as the hedging component factor (rb,t ) in a sample period from March 1950 

to December 1994. A few years later, Scruggs and Glabadanidis (2003) tested 

whether the intertemporal variation in stock and bond premia can be explained by 

time-varying covariances with priced risk factors. Considering again the CRSP 

Value-Weighted NYSE-AMEX portfolio as market returns (rm,t ) and the Ibboston 

Associates long-term U.S. Treasury bond total return index as the second factor (rb,t 

) in the models for January 1953 to December 1997, they use several bivariate 

models that relax the assumption of constant correlation in Scruggs (1998). 

However, they were unable to obtain favorable evidence for these types of models. 

[INSERT TABLE 6] 

Table 6 shows the results obtained for our empirical specifications using the same 

datasets as those in Scruggs (1998) and Scruggs and Glabadanidis (2003). If we 

analyze the results when using linear models (panel A), they are very similar to 

those of the datasets used in previous sections. We fail to identify a significant 

relation among these variables (even the covariances present no significance in 

any case). 

Again, the evidence obtained using non-linear models is more favorable. We do 

obtain positive and significant estimations during low-volatility periods (panel B) 

in all cases as well as a robust negative effect of the covariance between market 

and bond returns for all cases. This implies that the market risk premia are 

positively related with the market variance but are reduced by the covariance 

between market and bond returns.   
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The results for high-volatility periods are also robust in all cases. Similar to some 

of the earlier specifications, it appears that the risk-return trade-off becomes 

inverted for high levels of volatility. In all cases, we obtain a highly negative and 

significant parameter. Additionally, going against the results for low-volatility 

states, the impact of the covariance in the market risk premium during periods of 

high volatility is positive. This implies that the market risk premia are negatively 

related to the market variance but are increased by the covariance between 

market and bond returns. 

These results add further evidence regarding the perils of making linear 

assumptions when analyzing the risk-return trade-off in financial markets. The 

empirical evidence appears to support the theoretical model during low-volatility 

states, but the results do not hold for high levels of volatility.  

6.- Do high-volatility regimes distort evidence on the risk-return trade-off? 

Thus far, we have reported commonality in the results regardless of the dataset 

used or the model specification applied. We detect a significant positive risk-return 

trade-off under non-linear specifications during low-volatility states that we 

cannot find during high-volatility states or when we assume a simpler linear 

model. Thus, we suspect that during low-volatility periods, this trade-off does 

exist, but during high-volatility periods this relation is different, and aggregating 

these two different periods may distort the evidence in the entire sample. In this 

last section, we check whether we are able to detect a linear relationship between 

return and risk if we control for the observations associated with the high-

volatility regimes.  

We use different alternatives for the market portfolio (CRSP and SP500) and the 

equally weighted bond portfolio for the alternative investment set. We also use the 

datasets as in Scruggs (1998) and Scruggs and Glabadanidis (2003). From the 

original single-regime models in equation (2), we add two dummies to the 

equation of excess market returns (in levels and multiplying the market variance). 

These new dummies take the value 1 when the market is in periods of high 

volatility13 and the value 0 the rest of the time. We discriminate between high and 

                                                 
13 To be conservative, we only use high volatility observations that present a probability above 75%.  
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low volatility observations given the filtered probabilities estimated in sections 4.2 

and 5.3. 

The observations corresponding to a high-volatility state represent only a small 

percentage of the whole sample: only approximately 20% of the observations in 

the Scruggs (1998) and Scruggs and Glabadanidis (2003) datasets and even less 

(approximately 15% of observations) in the CRSP and SP500 portfolios. 

Once we have the new dummies controlling for observations “within a high-

volatility state,” we run our proposed linear models described in Equations 2-4 

(plus the two dummies) to test whether the existence of unusual observations 

corresponding to high-volatility states could have blurred previous evidence. 

[INSERT TABLE 7] 

Table 7 shows the results for this analysis. We can see that in all cases (CRSP, 

SP500, Scruggs (1998) and Scruggs and Glabadanidis (2003)), the non-significant 

estimations for the risk-return trade-off obtained previously using linear models 

turn out to be significant after controlling for the observations in high-volatility 

states. This suggests that the relationship between return and risk does exist 

during low-volatility states. However, the existence of periods of turmoil and 

financial instability may have masked this relationship in the time series 

dimension. Our results suggest a more complex relationship between risk and 

return than the linear relationship specified in the theoretical model. The negative 

and significant values for the dummy variables also reflect the inverted risk-return 

trade-off during high-volatility periods obtained in previous sections. 

We also find non-significant estimates for the hedge component variable in the 

CRSP and SP500 indices when we control for high volatility observations. 

However, when we use datasets similar to those of Scruggs (1998) and Scruggs 

and Glabadanidis (2003), there is a negative and significant influence of the 

covariance on the market risk premium. 

Thus, distinguishing among different patterns followed by risk premia and 

variances during periods of financial instability may help explain the puzzle of the 

risk-return trade-off. The evidence obtained supporting this claim in the US market 

is favorable for most cases. We suggest that this instability of the risk-return trade-
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off during high-volatility states has been a cause of the controversial results 

reported in previous studies.  

7.- Conclusion 

This paper empirically analyzes the risk-return trade-off for the US market under a 

multifactor framework using several types of US government bonds as alternative 

investment sets. We propose two different empirical models considering bivariate 

GARCH specifications that allow us identify linear and non-linear relationships 

between return and risk. The non-linear specification is obtained using a Regime-

Switching model that allows us associate the different states with volatility 

regimes (low and high volatility). 

Our main result shows that only a positive and significant risk-return trade-off is 

obtained in the non-linear case and only in the states governed by low volatility. 

However, we cannot find favorable evidence for the risk-return relation in the 

linear framework, and it is mixed during high-volatility states. Our results also 

support the findings of previous papers that document pro-cyclical behavior in the 

risk appetite of financial markets, i.e., during low-volatility states the market price 

of risk is higher than during high-volatility periods. The existence of periods where 

a positive and significant risk-return trade-off is not observed could lead to non-

significant estimates for this relation for the entire sample. This result highlights 

the perils of using linear assumptions when analyzing the aggregated trade-off 

between return and risk and the inability of linear empirical models to capture a 

significant risk-return relationship, which exists most of the time. 

Acknowledgements 

The authors acknowledge the support of Science Foundation Ireland under Grant 

Number 08/SRC/FM1389 and the Irish Research Council under Grant Number 

GOIPD/2014/80. One of the authors also appreciates financial support from 

Ministerio de Educación y Ciencia project ECO2011-27227 and UJI project 

P1·1B2012-07. We appreciate comments from Michael Brennan, Thomas Conlon 

and Matthew Spiegel. 



26 
 

References 

Abel, A. (1988), stock prices under time-varying risk, Journal of Monetary Economics 22, 375-
393. 

Abramson, A. and I. Cohen (2007), ‘On the stationarity of Markov-Switching GARCH 
processes’, Econometric Theory, 23 (3), 485-500. 

Ang, A., R. Hodrick, Y. Xing and X. Zh-ang (2006). ‘The cross-secton of volatility and 
expected returns’, Journal of Finance 61, 259-300. 

Baba, Y., R. Engle, D. Kraft and K. Kroner (1990), ‘Multivariate simultaneous generalized 
ARCH’, Unpublished Working Paper, (University of California at San Diego). 

Backus, D. And A. Gregory (1992), ‘Theoretical relationships between risk premiums and 
conditional variances, Journal of Business and Economic Statistics, 11,177-185. 

Baillie, R. and R. De Gennaro (1990), ‘Stock returns and volatility’, Journal of Financial and 
Quantitative Analysis, 25 (2), 203-214. 

Bali, T. (2008), ‘The intertemporal relation between expected returns and risk’, Journal of 
Financial Economics,87 (1), 101-131. 

Bali, T., N. Cakici, X. Yan and Z. Zhang (2005), ‘Does idiosyncratic risk really matter?’ Journal 
of Finance, 60 (2), 905–929. 

Bali, T., and R. Engle, (2009) ‘A cross-sectional investigation of the conditional ICAPM’, 
Working Paper, (Baruch College, CUNY, and New York University). 

------ ------ (2010), ‘The ICAPM with Dynamic Conditional Correlations’, Journal of Monetary 
Economics, 57 (4), 377-390. 

Bauwens, L.C., S. Laurent and J.V.K. Rombouts (2006), ‘Multivariate GARCH models: a 
survey’ Journal of Applied Econometrics, 21, 79-109. 

Bliss, R. R.  and N. Panigirtzoglou (2004) Option-implied risk aversion estimates. The Journal 
of Finance, 59, 407-446. 

Brandt M. W., and Q. Kang (2004), On the relationship between the conditional mean and 
volatility of stock returns: A latent VAR approach. Journal of Financial Economics, 72, 
217-257. 

Brennan, M., A. Wang and Y. Xia (2004). Estimation and test of a simple model of 
intertemporal capital asset pricing, Journal of Finance 59, 1743-1775. 

Campbell, J.Y. (1987), ‘Stock returns and the term structure’, Journal of Financial Economics, 
18 (2), 373-399. 

Campbell, J.Y. and L. Hentschel (1992), ‘No news is good news: An asymmetric model of 
changing volatility in stock returns’, Journal of Financial Economics, 31(3), 281-318. 

Campbell J. Y. and J. Cochrane (1999), ‘Force of Habit: A Consumption-Based Explanation of 
Aggregate Stock Market Behavior’, Journal of Political Economy,107 (2), 205-251. 

De Santis, G. and S. Imrohoroglu (1997), ‘Stock market and volatility in emerging markets’. 
Journal of International Money and Finance 15 (6), 561–579. 

Ghysels, E., P. Santa-Clara, and R. Valkanov (2005), ‘There is a risk–return trade-off after all’, 
Journal of Financial Economics,76 (3), 509–548. 



27 
 

Ghysels, E., A. Plazzi and R. Valkanov (2013). The risk-return relationship and financial crises. 
Discusion Paper, University of North Carolina, University of Lugano and Universiy of 
California San Diego. 

Glosten, L., R. Jagannathan and D. Runkle (1993), ‘On the relation between the expected value 
and the variance of the nominal excess return on stocks’, Journal of Finance, 48 (5), 
1779-1801. 

Goyal, A., and P. Santa-Clara (2003), ‘Idiosyncratic risk matters!’ Journal of Finance, 58 (3), 
975–1008. 

Gray, S. F. (1996), ‘Modelling the conditional distribution of interest rates as a regime-
switching process’, Journal of Financial Economics 42, 27-62. 

Guo, H., and C. Neely (2008), ‘Investigating the intertemporal risk-return relation in the 
international stock markets with the component GARCH model’, Economics letters, 99 
(2), 371-374. 

Guo, H., R. Savickas, Z. Wang and J. Yang (2009). ‘Is the value premium a proxy for time-
varying investment opportunities? Some time-series evidence’, Journal of Financial and 
Quantitative Analysis 44, 133-154. 

Guo H., and R. Whitelaw (2006), ‘Uncovering the risk-return relation in the Stock Market’, 
Journal of Finance,61 (3), 1433-1463. 

Hamilton, J. (1989), ‘A new approach to the economic analysis of nonstationarity time series 
and business cycle’, Econometrica, 57 (2), 357-384 

Harvey, C. (2001), ‘The specification of conditional expectations’, Journal of Empirical 
Finance, 8, 573–637. 

Kim, S. W. and B. S. Lee (2008), ‘Stock Returns, Asymmetric Volatility,Risk Aversion, and 
Business Cycle: Some New Evidence’, Economic Inquiry, 46 (2), 131-148. 

Lameroux, C.G. and W. D. Lastrapes (1990), ‘Persistence in variance, structural change, and the 
GARCH model’. Journal of Business & Economic Statistics, 8(2),  225-234. 

Leon, A., J. Nave, and G. Rubio (2007), ‘The relationship between risk and expected return in 
Europe’, Journal of Banking and Finance, 31 (2), 495-512. 

Lintner, J. (1965), ‘The Valuation of Risk Assets and Selection of Risky Investments in Stock 
Portfolios and Capital Budgets’, Review of Economics and Statistics, 47(1), 13-37. 

Lo, A. and J. Wang (2006), ‘Trading volume: implications for an intertemporal capital asset 
pricing model’, Journal of Finance 61, 2805-2840. 

Ludvigson, S.C., and S. Ng, (2007), ‘The empirical risk-return relation: a factor analysis 
approach’, Journal of Financial Economics, 83(1), 171–222. 

Lundblad, C. (2007), ‘The risk-return trade-off in the long run: 1836-2003’, Journal of Financial 
Economics’, 85(1), 123-150. 

Lustig, H. and Verdelhan, A. (2012), ‘Business cycle variation in the risk-return trade-off’, 
Journal of Monetary Economics 59(S), S35-S49. 

Mayfield, S. (2004), ‘Estimating the market risk premium’, Journal of Financial Economics, 73 
(3), 867–887 

Merton, R. (1973), ‘An intertemporal asset pricing model’, Econometrica, 41 (5), 867-888. 



28 
 

Morningstar ® Bond Return Methodology Paper, Morningstar Methodology Paper, June 2013, 
available at: 
http://www.ibbotson.com/US/documents/MethodologyDocuments/MethodologyPapers/Bo
ndReturnCalculationMethodology.pdf 

Petkova, R. (2006), ‘Do the Fama-French factors proxy for innovations in predicitive 
variables?’, Journal of Finance 61, 581-612. 

Rossi, A. And A. Timmermann (2010). What is the shape of the risk-return relation? 
http://ssrn.com/abstract=1364750 

Salvador, E., C. Floros and V. Arago (2014). ‘Re-examining the risk-return relationship in 
Europe: linear or non-linear trade-off?’ , Journal of Empirical Finance 28, 60-77. 

Sarno, L., and G. Valente, (2000), ‘The cost of carry model and regime shifts in stock index 
futures markets; An empirical investigation’, The Journal of Futures Markets, 20 (7), 
603–624. 

Scruggs, J. (1998), ‘Resolving the puzzling intertemporal relation between the market risk 
premium and conditional market variance: A two-factor approach’, Journal of Finance, 53 
(2), 575–603. 

Scruggs, J., and P. Glabadanidis (2003), ‘Risk premia and the dynamic covariance between 
stock and bond returns’, Journal of Financial and Quantitative Analysis, 38 (2), 295–316. 

Shanken, J., (1990), ‘Intertemporal asset pricing: an empirical investigation’, Journal of 
Econometrics 45, 99-120. 

Sharpe, W. (1964), ‘Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of 
Risk’, Journal of Finance, 19 (3), 425-442. 

Whitelaw, R. (1994): Time variations and covariations in the expectation and volatility of stock 
market returns, The Journal of Finance 49,515-541. 

Whitelaw, R. (2000), ‘Stock market risk and return: an equilibrium approach’, Review of 
Financial Studies, 13 (3), 521–547. 

  



29 
 

Table 1 
Summary statistics for excess market returns and intertemporal hedging proxies 

The table shows summary statistics and correlations of excess monthly returns for the market portfolio 
(rm,t) and the alternative investment sets (rb,t). The proxy for the market portfolio is the Center for 
Research in Security Prices (CRSP) value-weighted portfolio and the risk-free rate is the yield on the one-
month Treasury bill. The proxies for the alternative opportunity set are the total returns (computed as 
Morningstar ®) for the 5, 10 and 20 year constant maturity US Government Bonds and an equally 
weighted portfolio using these 3 bonds. Panel A shows the mean, standard deviation, skewness, kurtosis 
for each series. It also shows the Jarque-Bera test for normality and the Ljung-Box test for serial 
autocorrelation in levels and squares using 6 lags (t-stats in parenthesis). *** , **  and * represent 
significance at 1%, 5% and 10% levels. The mean and standard deviation of each monthly series are 
expressed in percentage points. Panel B shows the correlations between the excess market returns and the 
different choices for the alternative investment set. The sample period includes observations from 1953 to 
2013 and the returns are expressed as decimals. 
 

Panel A.- Summary statistics  
 (rm,t) (rb,t) 

 
Excess 
market 
return  

Excess return 
5-year T-bond 

Excess return 
10-year T-

bond 

Excess 
return 

20-year T-
bond 

Excess return 
equally-
weighted 
portfolio 

Mean (x100) 0.5672 0.1231 0.1495 0.1725 0.1492 
Std. Deviation 

(x100) 
4.2130 1.2713 1.8409 2.4154 1.5781 

Skewness -0.4956 0.3615 0.4914 0.5904 0.6242 

Kurtosis 5.0823 7.3289 6.8442 7.8485 6.9770 

J-B 160.0143*** 
(0.0000) 

579.4733*** 
(0.0000) 

473.6377*** 
(0.0000) 

749.1486*** 
(0.0000) 

522.6930*** 
(0.0000) 

L-B (6) 26.5058 
(0.1492) 

134.5243*** 
(0.0000) 

104.8266*** 
(0.0000) 

85.0971*** 
(0.0000) 

195.9049*** 
(0.0000) 

L-B2 (6) 53.7536*** 

(0.0000) 
433.4219*** 

(0.0000) 
180.9236*** 

(0.0000) 
85.8342*** 

(0.0000) 
170.9475*** 

(0.0000) 

Panel B.- Correlations  

 
Excess 
market 
return 

Excess return 
5-year T-bond 

Excess return 
10-year T-

bond 

Excess 
return 

20-year T-
bond 

Excess return 
equally-
weighted 
portfolio 

Excess market 
return 

1 -0.0660 -0.0606 -0.0390 -0.0013 
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Table 2.  
Panel A Mean equation estimates for multi-factor models 

The table shows the estimates of the risk-return trade-off using the independent multi-factor model in 
Equation 2. Two versions of the model are estimated: R refers to the Restricted version of the model in 
Equation 2 where λ21 = λ22 = 0 (Scruggs, 1998) and G to the General model where all parameters are 
freely estimated.  Excess monthly returns are used in the estimation of the model. The proxy for the 
excess market returns (rm,t) is the CRSP Value-Weighted portfolio minus the risk-free rate. Each column 
illustrates the results from the estimation of the model using one of the choices for the (rb,t) alternative 
investment set. In model I the excess returns of the 5-year US Government Bond is used. In model II the 
excess returns of the 10-year US Government Bond is used. In model III the excess returns of the 20-year 
US Government Bond is used. In model IV the excess returns of an equally weighted portfolio containing 
these three bonds is used. The coefficients and corresponding t-statistics (in parenthesis) are shown for 
the full sample period (March 1953-June 2013). The t-statistics are computed using Bollerslev-
Wooldridge standard errors ( *** , **  and * represents statistical significance at 1%, 5% and 10% levels).  
 
 

 

2
, 10 11 , 12 , ,

2
, 20 21 , 22 , ,

m t m t mb t m t

b t bm t b t b t

r

r

λ λ σ λ σ ε

λ λ σ λ σ ε

= + + +

= + + +  

 Model I Model II Model III Model IV 

10λ
 

R -0.0034 
(-0.5245) 

-0.0083 
(-0.8738) 

-0.0074 
(-0.8692) 

-0.0068 
(-0.8487) 

G -0.0020 
(-0.3255)

 

-0.0093 
(-0.8325) 

-0.0113 
(-0.7580) 

-0.0100 
(-0.9397) 

11λ
 

R 5.8829 
(1.5985) 

8.5568 
(1.5533) 

7.7873 
(1.5883) 

7.5177 
(1.6205) 

G 5.1010 
(1.4604) 

9.1769 
(1.4207) 

11.4738 
(1.1258) 

9.4884 
(1.5454) 

12λ
 

R -0.0992 
(-0.0088)

 

-0.4122 
(-0.0510)

 

0.2648 
(0.0447)

 

-0.1917 
(-0.0238)

 
G -0.0819 

(-0.0071)
 

-0.6355 
(-0.0761)

 

1.9528 
(0.3155)

 

0.7758 
(0.0966)

 

20λ
 

R 3.38e-04 
(1.1448) 

3.38e-04 
(0.9070)

 

1.81 e-04 
(0.3565)

 

2.28 e-04 
(0.6847)

 
G -2.19 e-04 

(-0.6094)
 

-3.54e-04 
-(0.0778)

 

-2.06 e-04 
-(0.0227)

 

-6.71 e-04 
-(0.1632)

 
21λ

   
G -1.3529 

(-0.3375)
 

1.7560 
(0.3930)

 

9.8629* 
(1.9512) 

7.5466* 
(1.7889)

 
22λ

   
G 6.7558** 

(2.4735)
 

3.9220** 
(2.1542)

 

3.0509** 
(2.3168)

 

5.4008*** 
(2.8771)

  
. 
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Panel B Variance equation estimates for multi-factor models 
The table shows the estimates of the variance equation of the single-regime multi-factor model in 

Equation 3. These variance equations come from two different versions of the main model presented in 
equation 2: R refers to the Restricted version of the model in Equation 2 where λ21 = λ22 = 0 (Scruggs, 
1998) and G to the General model where all parameters are freely estimated. The proxy for the excess 
market returns (rm,t) is the CRSP Value-Weighted portfolio minus the risk-free rate. Each column 
illustrates the results from the estimation of the model using one of the choices for the (rb,t) alternative 
investment set. In model I the excess returns of the 5-year US Government Bond is used.  In model II the 
excess returns of the 10-year US Government Bond is used. In model III the excess returns of the 20-year 
US Government Bond is used. In model IV the excess returns of an equally weighted portfolio containing 
these three bonds is used. Excess monthly returns are used in the estimation of the model. The 
coefficients and corresponding t-statistics (in parenthesis) are shown for the full sample period (March 
1953-June 2013). The t-statistics are computed using Bollerslev-Wooldridge standard errors ( *** , **  and *  
represents statistical significance at 1%, 5% and 10% levels). 

 
 

 

'2

, , 11 11

2

, , 12 22 12 22

' '

'11 21 11 21 11 21 11 21
1 1 1

12 22 12 22 12 22 12 22

0 0m t mb t

t

mb t b t

t t t

c c
H

c c c c

a a a a b b b b
H

a a a a b b b b

σ σ
σ σ

ε ε− − −

= = +

+

    
    

   

       
       
       

 

 Model I Model II Model III Model IV 

11c
 

R -0.0120*** 
(-7.6547)

 

-0.0121*** 
(-7.4074)

 

-0.0118*** 
(-7.3043)

 

-0.0112*** 
(-7.5434)

 
G -0.0121*** 

(-7.6443)
 

-0.0121*** 
(-6.8438)

 

-0.0122*** 
(-4.8472)

 

-0.0113*** 
(-6.8261)

 

12c
 

R 2.71e-04 
(1.4859)

 

4.48 e-04* 
(1.8313)

 

3.21 e-04 
(1.0025)

 

2.75 e -04 
(1.2861)

 
G 2.46 e -04 

(1.3581)
 

4.46 e-04* 
(1.8074)

 

3.64 e-04* 
(1.0732)

 

2.95 e -04 
(1.3597)

 

22c
 

R 8.41e-04** 
(2.2754)

 

-5.94 e-04 
(-1.6341)

 

8.34 e-04 
(1.5543)

 

-5.05 e-04 
(-1.5533)

 
G 8.71e-04** 

(2.4581)
 

-5.69 e-04 
(-1.4379)

 

8.14 e-04 
(1.4955)

 

4.90 e-04 
(-1.4334) 

11a
 

R 0.2626*** 
(6.8906)

 

0.2321*** 
(5.8893)

 

0.2414*** 
(6.0994)

 

0.2367*** 
(6.5010)

 
G 0.2647*** 

(6.9755)
 

0.2272*** 
(5.3746)

 

0.2314*** 
(4.0545)

 

0.2284*** 
(5.8924)

 

22a
 

R 0.4598*** 
(13.3956)

 

0.4669*** 
(15.3871)

 

0.4523*** 
(13.8794)

 

0.4758*** 
(13.8889)

 
G 0.4589*** 

(13.4889)
 

0.4660*** 
(15.2226)

 

0.4505*** 
(14.0148)

 

0.4812*** 
(13.7421)

 

11b
 

R 0.9229*** 
(96.477)

 

0.9286*** 
(106.902)

 

0.9292*** 
(110.283)

 

0.9341*** 
(124.506)

 
G 0.9213*** 

(91.970)
 

0.9296*** 
(106.559)

 

0.9277*** 
(89.741)

 

0.9352*** 
(125.463)

 

22b
 

R 0.9006*** 
(87.067)

 

0.9092*** 
(95.571)

 

0.9180*** 
(94.528)

 

0.9067*** 
(82.0706)

 
G 0.9064*** 

(88.189) 
0.9096*** 
(95.767)

 

0.9180*** 
(95.379)

 

0.9048*** 
(79.7415)
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Table 3 
Mean equation estimates for state-dependent multi-factor models 

The table shows the estimates of the risk-return trade-off using the state-dependent multi-factor model 
in Equation 5. Two versions of the model are estimated: R refers to the restricted version of the model in 
Equation 5 where λ21,st = λ22,st = 0 (similar to Scruggs, 1998) and G to the General model where all 
parameters are freely estimated. The proxy for the excess market returns (rm,t) is the CRSP Value-
Weighted portfolio minus the risk-free rate. Each column illustrates the results from the estimation of the 
model using one of the choices for the (rb,t) alternative investment set. In model I the excess returns of the 
5-year US Government Bond is used.  In model II the excess returns of the 10-year US Government Bond 
is used. In model III the excess returns of the 20-year US Government Bond is used. In model IV the 
excess returns of an equally weighted portfolio containing these three bonds is used. The coefficients and 
corresponding t-statistics (in parenthesis) are shown for the full sample period (March 1953-June 2013). 
The t-statistics are computed using Bollerslev-Wooldridge standard errors ( *** , **  and * represents 
statistical significance at 1%, 5% and 10% levels). Panel A shows the estimations for the state st=1 which 
correspond to low volatility periods and Panel B shows the estimations for the state st=2 which 
correspond to high volatility periods. 

 

2
, , 10, 11, , , 12, , , , ,

2
, , 20, 21, , , 22, , , , ,

t t t t t t t

t t t t t t t

m t s s s m t s s mb t s m t s

b t s s s bm t s s b t s b t s

r

r

λ λ σ λ σ ε

λ λ σ λ σ ε

= + + +

= + + +  

Panel A. Low volatility state (st =1) 
 Model I Model II Model III Model IV 

10, 1tsλ =

 

R 0.0103 
(1.5267) 

-0.0231* 
(-1.6875) 

0.0344*** 
(3.3647) 

-0.0114 
(-0.8301) 

G 0.0040 
(1.1357) 

0.0022 
(0.4796) 

0.0022 
(0.4709) 

0.0056 
(1.3789) 

11, 1tsλ =

 

R 9.5670*** 
(2.7671) 

15.9695*** 
 (4.7872) 

18.4561* 
(1.8612) 

5.3076** 
(2.3019) 

G 9.7538*** 
(2.7423) 

12.1115*** 
(2.1571) 

12.1225** 
(1.9830) 

11.0457** 
(2.4170) 

12, 1tsλ =

 

R 5.0367 
(0.7751) 

4.3367*** 
(4.6199) 

12.2170*** 
(2.8454) 

6.6429** 
(2.3237) 

G 0.4954*** 
(2.4734) 

-0.8795 
(-1.1786) 

-0.8765 
(-1.0870) 

-0.4749 
(-0.3788) 

20, 1tsλ =

 

R 0.0011*** 
(11.2717) 

0.0017* 
(1.7776) 

0.0015 
(1.1309) 

0.0021*** 
(2.6354) 

G -0.0006 
(-1.4039) 

-0.0003 
(0.3757) 

-0.0003 
(0.4019) 

-0.0007 
(-0.7458) 

21, 1tsλ =

    
G 0.2131*** 

(2.4831) 
0.2994 

(0.5783) 
0.3006 

(0.6380) 
1.7573 

(0.7743) 

22, 1ts
λ =

    
G 0.1442*** 

(3.0205) 
0.0663* 
(1.7225) 

0.0664* 
(1.8384) 

0.0922** 
(2.0885) 

Panel B. High volatility state (st =2) 

10, 2tsλ =

 

R 0.0036** 
(2.1084) 

0.0048 
(1.3098) 

0.0024 
(0.6351) 

0.0029 
(0.7069) 

G -0.0349* 
(-1.8797) 

0.0119 
(1.3429) 

0.0191 
(1.2923) 

0.0093 
(1.1634) 

11, 2tsλ =

 

R 3.5663 
(0.2264) 

-9.6434* 
(1.6910) 

-14.5513** 
(-2.1125) 

-2.1357** 
(-2.1588) 

G 5.8157 
(0.8648) 

-1.5298 
(-0.1531) 

-1.5737 
(-0.1829) 

-1.0780** 
(-1.9709) 

12, 2tsλ =

 

R -1.4201 
(-0.9573) 

-2.6444*** 
(-5.5163) 

-9.1955*** 
(-2.7510) 

2.8581** 
(-2.3479) 

G -0.4033 
(-1.2127) 

2.9370 
(1.3179) 

2.9276* 
(1.6938) 

2.9347 
(0.6806) 

20, 2ts
λ =

 

R -0.0004*** 
(-3.1656) 

-0.0005 
(-1.0752) 

-0.0011** 
(-1.9850) 

-0.0006 
(-1.5629) 

G -0.0014 
(-0.6178) 

-0.0003 
(-0.1677) 

-0.0004 
(-0.1537) 

0.0013 
(0.6275) 

21, 2tsλ =

    

G -0.4776** 
(-2.5848) 

-0.3581 
(-0.7942) 

-0.3587 
(-0.7379) 

-1.1286 
(-0.6595) 

22, 2ts
λ =    

G 0.0733 
(0.7167) 

-0.0039 
(-0.1157) 

0.0039 
(-0.1138) 

0.0007 
(0.0183) 
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Table 4 
Variance equation estimates for state-dependent multi-factor models 

The table shows the estimates of the variance equation of the state-dependent multi-factor model in 
Equation 6. These variance equations come from two different versions of the main model presented in 
equation 5: R refers to the restricted version of the model in Equation 5 where λ21,st = λ22,st = 0 (similar to 
Scruggs, 1998) and G to the General model where all parameters are freely estimated. The proxy for the 
excess market returns (rm,t) is the CRSP Value-Weighted portfolio minus the risk-free rate. Each column 
illustrates the results from the estimation of the model using one of the choices for the (rb,t) alternative 
investment set. In model I the excess returns of the 5-year US Government Bond is used.  In model II the 
excess returns of the 10-year US Government Bond is used. In model III the excess returns of the 20-year 
US Government Bond is used. In model IV the excess returns of an equally weighted portfolio containing 
these three bonds is used. Within each alternative investment we distinguish between state st=1 which 
correspond to low volatility periods and state st=2 which correspond to high volatility periods. Excess 
monthly returns are used in the estimation of the model. The coefficients and corresponding t-statistics (in 
parenthesis) are shown for the full sample period (March 1953-June 2013). The t-statistics are computed 
using Bollerslev-Wooldridge standard errors ( *** , **  and * represents statistical significance at 1%, 5% 
and 10% levels). The last two rows of the table shows the estimates for the parameters of the transition 
probability matrix in equation 7. 
 

 

11, 11,
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c c c c
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     

11, 21,

12, 22,
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1 1,2st st
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H for s
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 
= 

 

   

 Model I Model II Model III Model IV 
  1ts =

 
2ts =

 
1ts =

 
2ts =

 
1ts =

 
2ts =

 
1ts =

 
2ts =

 

11c
 

R -0,0010***  
(-61.630) 

1,7228***  
(8,9911) 

-0,5371***  
(-8.7636) 

2,2911***  
(12,232) 

0.0025 
(0.0860) 

0.6885***  
(3.4195) 

0,0031 
(0.2803) 

2,2174***  
(7.3845) 

G 0.0011 
(0.5530) 

3.2867***  
(6.9591) 

0.0001 
(0.0396) 

1.6902 
(3.9268) 

-0.0001 
(-0.0131) 

1.6900***  
(3.5581) 

0.0002 
(0.0620) 

1.5366***  
(4.7093) 

12c
 

R 0,0000 
(0.0066) 

-0,0680***  
-(5,8563) 

0,0195 
(0.0006) 

-0,0831***  
(-11,248) 

-0.0003 
(-0.2108) 

-0.0973***  
(-2.7354) 

0,0000 
(-0.0006) 

-0,0174***  
(-7.8907) 

G 0.0000 
(-0.0054) 

-0.0540* 
(-1.8817) 

0.0000 
(0.0001) 

-0.0643 
(0.0359) 

0.0000 
(0.0001) 

-0.0642* 
(1.8560) 

0.0000 
(0.0010) 

-0.0056 
(0.0218) 

22c
 

R -0,0001 
(-0.1161) 

0,2606***  
(5,6229) 

-0,0319**  
(-2.2661) 

0,1361* 
(1,7949) 

-0.0009 
(-0.4217) 

-0.2516***  
(-3.1059) 

0,0002 
(0.1123) 

0,1204**  
(2.0302) 

G 0.0002 
(0.1434) 

0.4987***  
(4.6756) 

0.0000 
(0.0172) 

0.1186 
(1.5048) 

-0.0000 
(0.0058) 

0.1186 
(1.4597) 

0.0001 
(0.0256) 

-0.1102* 
(1.6514) 

11a
 

R 0,0492* 
(1.9031)) 

0,0129 
(0,9750) 

0,0002***  
(33.5008) 

0,0000* 
(1,9346) 

0.0060 
(1.5856) 

0.0053 
(1.4952) 

0,0001 
(1.4762) 

0,0001**  
(2.1763) 

G 
0.1879***  
(3.7328) 

0.2216***  
(4.0342) 

0.0554 
(1.3020) 

0.0082 
(0.5007) 

0.0555
*
 

(1.6871) 
0.0081 

(0.6502) 
0.0428 

(1.1991) 
0.0180 

(0.7784) 

22a
 

R 0,5786***  
(49.7512) 

0,1519***  
(25,4871) 

0,5367***  
(70.6927) 

0,0018***  
(4,0823) 

0.3485***  
(5.9286) 

0.3088***  
(5.5804) 

0,2128* 
(1.8658) 

0,1886***  
(2.7504) 

G 
0.3894***  
(0.0696) 

0.4548***  
(0.0753) 

0.5380 
(1.4783) 

0.0796 
(0.5685) 

0.5380
*
 

(1.8418) 
0.0799 

(0.7100) 
0.5191***  
(4.9893) 

0.2187***  
(3.2385) 

11b
 

R 0,8845***  
(38.7541) 

1,1407***  
(41,8484) 

0,8224***  
(39.3749) 

1,0607***  
(44,7155) 

0.8241***  
(27.4831) 

1.2325***  
(33.6105) 

0,7048***  
(28.791) 

1,0534***  
(37.856) 

G 0.8694***  
(14.4548) 

0.9312***  
(14.9593) 

0.8114***  
(17.4458) 

1.1237***  
(20.5306) 

0.8114***  
(16.9546) 

1.1237***  
(19.9531) 

0.7997***  
(20.9706) 

1.1499***  
(25.1493) 

22b
 

R 0,8318***  
(80.9501) 

1,0728***  
(87,6328) 

0,8245***  
(39.9644) 

1,0633***  
(45,3837) 

0.7878***  
(25.9462) 

1.1782***  
(31.7309) 

0,7077***  
(29.608) 

1,0576***  
(38.930) 

G 0.8744***  
(15.4474) 

0.9365***  
(15.9567) 

0.7887***  
(23.7954) 

1.0922***  
(28.0029) 

0.7887***  
(23.2738) 

1.0923***  
(27.3899) 

0.7689***  
(25.4467) 

1.1055***
 

(30.5161) 

p 
R 0.8058***  

(31.7236) 
0.8631***  
(35.3541) 

0.7637***  
(29.3734) 

0.8397***  
(23.0373) 

G 0.9176***  
(45.4736) 

0.8072***  
(16.7065) 

0.8061***  
(15.3766) 

0.7892***  
(18.8192) 

q 
R 0.7258***  

(14.6885) 
0.7820***  
(18.0196) 

0.5998***  
(12.2302) 

0.7860***  
(16.4037) 

G 0.7392***  
(12.976) 

0.7444***  
(11.5441) 

0.7443***  
(11.8855) 

0.7310***  
(15.0042) 
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Table 5.   
Mean equation estimates for SP500 using all multi-factor models 

Panel A of this table shows the estimates of the risk-return trade-off using the single-regime multi-
factor model in Equation 2 for the SP500 index as an alternative for the market portfolio. Panel B shows 
the estimates of the risk-return trade-off using the regime-switching multi-factor model in Equation 5 for 
the SP500 index as an alternative for the market portfolio. We show the results when we use the equally-
weighted bond portfolio as the alternative investment set (rb,t,st). Two versions of the model are estimated: 
R refers to the Restricted version of the model in Equations 2 and 5 where λ21,st = λ22,st = 0 (similar to 
Scruggs, 1998) and G to the General model where all parameters are freely estimated.  Excess monthly 
returns are used in the estimation of the model. The coefficients and corresponding t-statistics (in 
parenthesis) are shown for the full sample period (March 1953-June 2013). The t-statistics are computed 
using Bollerslev-Wooldridge standard errors ( *** , **  and * represents statistical significance at 1%, 5% 
and 10% levels).  
 

 2
, , 10, 11, , , 12, , , , ,

2
, , 20, 21, , , 22, , , , ,

t t t t t t t

t t t t t t t

m t s s s m t s s mb t s m t s

b t s s s bm t s s b t s b t s

r

r

λ λ σ λ σ ε

λ λ σ λ σ ε

= + + +

= + + +  

Panel A. Single-Regime 
model 

Panel B. Regime-Switching model 

Single-Regime Low volatility state (st =1) High volatility state (st =2) 

10λ
 

R -0.0091 
(-1.1900) 

10, 1tsλ =  

R -0.0053 
(-0.1212) 

10, 2tsλ =  

R -0.0133 
(-0.8295) 

G -0.0130 
(1.4140) G 0.0022 

(0.4911) G 0.0119 
(1.3024) 

11λ
 

R 6.3818 
(1.5054) 

11, 1tsλ =  

R 18.3502** * 
(7.0532) 

11, 2tsλ =  

R -14.1840** * 
(-10.5751) 

G 8.7912* 
(1.7107) 

G 12.0803**  
(2.1870) 

G -1.3256 
(-0.1340) 

12λ
 

R 0.3822 
(0.0434) 

12, 1tsλ =  

R -4.5477** * 
(-9.3330) 

12, 2tsλ =  

R 5.8620** * 
(6.4722 

G 2.2695 
(0.2478) G -0.8841 

(-0.8525) G 2.9801 
(1.1734) 

20λ
 

R 0.0003 
(0.7771) 

20, 1tsλ =  

R -0.0519 
(-1.2481) 

20, 2ts
λ =  

R 0.0025**  
(2.2982) 

G 0.0001 
(0.2144) G -0.0003 

(-0.4379) G -0.0003 
(-0.1524) 

21λ
    

G 0.8167* 
(1.8533) 

21, 1tsλ =

    
G 0.2910 

(0.6721) 21, 2tsλ =     G 
-0.3516 

(-0.8434) 

22λ
    

G 0.4861**  
(2.5831) 

22, 1ts
λ =

    
G 0.0660**  

(2.0519) 22, 2ts
λ =     G 

-0.0040 
(-0.1220) 
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Table 6.  
Mean equation estimates for multi-factor models (single regime and state-dependent) using the databases 
in Scruggs (1998) and Scruggs and Glabadanidis (2003) 
The table shows the estimates of the risk-return trade-off using the independent multi-factor model in 
Equation 2 (panel A) and the state-dependent multi-factor model in Equation 5 (panels B and C). Two 
versions of these model are estimated: R refers to the Restricted version of the model in Equations 2 and 5 
where λ21,(st) = λ22,(st) = 0 (Scruggs, 1998) and G refers to the General model where all parameters are 
freely estimated.  Excess monthly returns are used in the estimation of the model. The proxy for the 
excess market returns (rm,t) in Scruggs (1998) is the CRSP Value-Weighted portfolio of NYSE-AMEX 
stocks minus the 1-month T-bill yield from March 1950 to December 1994 while in Scruggs and 
Glabadanidis (2003) the sample period is from January 1953 to December 1997. The choice for the (rb,t) 
alternative investment is the Ibboston Associates long-term U.S. Treasury bond total return index for the 
corresponding sample periods. The coefficients and corresponding t-statistics (in parenthesis) are shown 
for the full sample period (March 1950 to December 1994 in Scruggs (1998) and January 1953 to 
December 1997 in Scruggs and Glabadanidis (2003)). The t-statistics are computed using Bollerslev-
Wooldridge standard errors ( *** , **  and * represents statistical significance at 1%, 5% and 10% levels). 

 

2
, 10 11 , 12 , ,

2
, 20 21 , 22 , ,

m t m t mb t m t

b t bm t b t b t

r

r

λ λ σ λ σ ε

λ λ σ λ σ ε

= + + +

= + + +
 

Panel A. Linear model 

 10λ
 11λ

 12λ
 20λ

 21λ
 22λ

 

Scruggs 
(1998)

 

R -0.0031 
(-0.4818) 

5.3664 
(1.3292) 

-2.3777 
(-0.5064) 

-0.0005 
(-0.1166) 

- - 

G -0.0039 
(-0.6214) 

6.3774 
(1.6151) 

-0.8979 
(-0.1936) 

-0.0004 
(-0.8502) 

3.4492 
(0.8792) 

-0.0102 
(1.4094) 

Scruggs and 
Glabad 
(2003)

 

R 0.0049 
(1.0071) 

3.0546 
(0.9958) 

1.2023 
(0.2661) 

0.0002 
(0.4674) 

- - 

G -0.0010 
(-0.1968) 

4.7449 
(1.4200) 

-0.2603 
(-0.0583) 

-0.0001 
(-0.2862) 

5.2473 
(1.4286) 

1.7210 
(0.9746) 

 

 

2
, , 10, 11, , , 12, , , , ,

2
, , 20, 21, , , 22, , , , ,

t t t t t t t

t t t t t t t

m t s s s m t s s mb t s m t s

b t s s s bm t s s b t s b t s

r

r

λ λ σ λ σ ε

λ λ σ λ σ ε

= + + +

= + + +
 

Panel B. Low volatility state (st =1) 

 10, 2tsλ =  11, 2tsλ =  12, 2tsλ =  20, 2ts
λ =  21, 2tsλ =  22, 2ts

λ =  

Scruggs 
(1998)

 

R 0.0042 
(1.0890) 

12.9126***  
(2.8804) 

-0.4506***  
(-2.8024) 

-0.0004 
(-0.7623) 

- - 

G -0.0037 
(-0.8085) 

20.6704***  
(3.5105) 

-0.4743**  
(-2.6360) 

0.0004 
(1.1624) 

0.2251* 
(1.7996) 

-0.0200 
(-0.6630) 

Scruggs and 
Glabad 
(2003)

 

R 0,0064 
(1.7984) 

10.7221***  
(2.2399) 

-0.4187***  
(-2.6746) 

-0.0001 
(-0.2364) 

- - 

G 0.0055* 
(1.8425) 

17.1605***  
(3.4377) 

-0.5750**  
(-2.5650) 

-0.0002 
(-0.3057) 

0.4077**  
(1.9683) 

-0.0565 
(-1.1828) 

 

 

2
, , 10, 11, , , 12, , , , ,

2
, , 20, 21, , , 22, , , , ,

t t t t t t t

t t t t t t t

m t s s s m t s s mb t s m t s

b t s s s bm t s s b t s b t s

r

r

λ λ σ λ σ ε

λ λ σ λ σ ε

= + + +

= + + +
 

Panel C. High volatility state (st =2) 

 10, 2tsλ =  11, 2tsλ =  12, 2tsλ =  20, 2ts
λ =  21, 2tsλ =  22, 2ts

λ =  

Scruggs 
(1998)

 

R 0.0103 
(1.3912) 

-14.1498***  
(-2.7193) 

0.5594***  
(2.8069) 

0.0002 
(0.1602) 

- - 

G 0.0029***  
(2.8503) 

-26.8595***  
(-3.6500) 

0.6760***  
(2.9173) 

-0.0005***  
(-3.9145) 

-0.3050**  
(-1.9867) 

0.1134**  
(2.3156) 

Scruggs and 
Glabad 
(2003)

 

R 0.0110 
(1.4134) 

-15.0876**  
(-2.5637) 

0.5437***  
(2.7185) 

0.0003 
(0.2498) 

- - 

G 0.0149* 
(1.9581) 

-18.5588***  
(-2.7977) 

0.6116**  
(2.6324) 

-0.0008 
(-0.4956) 

-0.1738 
(-1.2269) 

0.0572 
(1.2168) 
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Table 7. 
Mean equation estimates for linear models controlling for high-volatility observations 
The table shows the estimates of the risk-return trade-off using the single-regime multi-factor model in 
Equation 2 if we control for the high volatility observations with a dummy variable Di (taking value 1 for 
high volatility states) for each series using equations 8-11. Two versions of the model are estimated: R 
refers to the restricted version of the model in Equation 2 where λ21 = λ22 = 0 (Scruggs, 1998) and G to the 
General model where all parameters are freely estimated.  Excess monthly returns are used in the 
estimation of the model and the sample periods follows previous analysis. We estimate the model for 
several alternatives of the market portfolio. Each column illustrates the results from the estimation of the 
model using one of these alternatives as the excess market returns (rm,t): CRSP Value-Weighted portfolio, 
the SP500 index and the datasets used in Scruggs (1998) and Scruggs and Glabadanidis (2003). In the 
first 2 columns we show the results when we use the equally-weighted bond portfolio as the alternative 
investment set (rb,t). In the other 2 columns the alternative investment set is the one used in the 
corresponding paper. The t-statistics are computed using Bollerslev-Wooldridge standard errors ( *** , **  
and * represents statistical significance at 1%, 5% and 10% levels). 
 

 

2 2
, 10 11 , 11 1 , 12 , 12 2 , ,

2
, 20 21 , 22 , ,

m t m t d m t mb t d mb t m t

b t bm t b t b t

r D D

r

λ λ σ λ σ λ σ λ σ ε

λ λ σ λ σ ε

= + + + + +

= + + +
 

 CRSP SP500 Scruggs  Scruggs and Glab 

10λ
 

R -0.0142 
(-1.5622) 

-0.0437***  
(-4.1424) 

-0.2499 
(-0.3679) 

0.4716 
(0.9311) 

G -0.0152* 
(-1.7542) 

-0.0334***  
(-5.3779) 

-0.2949 
(-0.4250) 

0.3439 
(0.6459) 

11λ
 

R 23.1338***  
(3.3699) 

41.9584***  
(5.1381) 

13.1768**  
(2.4876) 

7.7647**  
(1.9737) 

G 25.1016***  
(3.7785) 

34.6001***  
(9.2975) 

13.6446**  
(2.4966) 

9.1683**  
(2.2090) 

11,dλ
 

R -25.4618***  
(-8.6418) 

-44.2197***  
(-12.1802) 

-33.6692***  
(-7.2032) 

-32.7354***  
(-7.6828) 

G -27.0210***  
(-9.5708) 

-43.9572***  
(-12.7881) 

-33.7009***  
(-7.3179) 

-32.8019***  
(-7.4893) 

12λ
 

R -25.6111 
(-1.6164) 

6.6709 
(0.3813) 

-23.8281***  
(-3.3738) 

-22.8791***  
(-3.4201) 

G 3.2608 
(0.2320) 

6.4367 
(0.4881) 

-20.8688** * 
(-20.9354) 

-20.1689***  
(-2.9303) 

12,dλ
 

R 53.4563**  
(2.4028) 

3.5437 
(0.1075) 

71.0805***  
(4.3543) 

74.3805***  
(5.1215) 

G 18.8511 
(0.9687) 

7.7326 
(0.2849) 

70.1197***  
(4.3739) 

74.5994***  
(4.8167) 

20λ
 

R 0.0002 
(0.4852) 

0.0001 
(0.2954) 

0.0009 
(0.0192) 

0.0137 
(0.2770) 

G 0.0004 
(0.8718) 

0.0004 
(0.0868) 

0.0472 
(0.9272) 

0.0280 
(0.5018) 

21λ
   

G 2.0084 
(0.3132) 

12.4749* 
(1.8751) 

0.4549 
(0.1074) 

5.4795 
(1.2761) 

22λ
   

G 5.4200**  
(2.3794) 

4.7549**  
(2.5954) 

3.0327* 
(1.7532) 

1.6108 
(0.8732) 
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Figure 1. Monthly excess returns of the selected portfolios  
The figure plots the excess monthly returns on the series selected for the market portfolio (rm,t) and the 
alternative investment sets (rb,t). The proxy for the market portfolio is the CRSP value-weighted NYSE-
AMEX portfolio and the risk-free asset is the yield on the one-month Treasury bill. The proxies for the 
alternative opportunity set are the total returns (computed as Morningstar ®) for the 5,10 and 20 years 
constant maturity US Government Bonds and an equally weighted portfolio containing these three bonds. 
The sample period includes observations from 1953 to 2013 and the monthly returns and yields are 
expressed as decimals. 
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Figure 2. Conditional covariances between excess market returns and the intertemporal component  
The figure plots the conditional covariances (σmb,t) from the multifactor model in Equation 6. In these 
plots we use the CRSP value-weighted NYSE-AMEX portfolio for the excess market returns (rm,t) and the 
total returns (computed as Morningstar ®) for the 5,10, 20 years constant maturity US Government Bonds 
and an equally weighted portfolio containing these three bonds as alternative investment sets (rb,t). The 
sample period includes observations from 1953 to 2013 and the monthly conditional covariances are 
expressed as decimals. 
 
  



39 
 

 

 
Figure 3. Filtered probabilities for low volatility states  
This figure plots the probability of being in a low probability state [P(st=1|Ωt;θ) ] for the state-dependent 
multifactor model according to Equation (10). In these plots we use the CRSP value-weighted NYSE-
AMEX portfolio for the excess market returns (rm,t) and the total returns (computed as Morningstar ®) for 
the 5,10, 20 years constant maturity US Government Bonds and an equally weighted portfolio containing 
the three previous bonds as alternative investment sets (rb,t). Shaded areas correspond to NBER 
recessionary periods. The sample period includes observations from 1953 to 2013. 
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Figure 4.A. Market risk premium for the linear multi-factor model  
This figure plots the estimated risk premium for different portfolios using the linear multi-factor model in 
equation 2. The green line represents SP500 and the red line is the premium associated with the CRSP 
Value Weighted Index Portfolio. The sample period covers observations from 1953 to 2013 and the 
monthly risk premiums are expressed as decimals. 

 

 
Figure 4.B Market risk premium comparison between linear and non-linear models  
This figure plots for each  market portfolio (CRSP and SP500) the estimated risk premiums using the 
linear multi-factor model in equation 2 (red line) and using the state-dependent multi-factor model in 
equation 5 (blue line). The sample period covers observations from 1953 to 2013 and the monthly risk 
premiums are expressed as decimals.

 

 
  
 

 


