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Abstract
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context, examining benefits of international diversification across short- and long-
run horizons. Employing a multi-horizon non-parametric filter, increased long-run
correlations between international equity markets are detailed, even for synchro-
nized markets. A model replicating the temporal aggregation properties of inter-
market correlation is developed, indicating that short-run correlations are down-
ward biased by frictions. Finally, the impact on portfolio allocation is investigated,

demonstrating decreased risk reduction benefits in the long-run.
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1. Introduction

The preferred allocation of wealth may diverge according to investment hori-
zon, with conventional wisdom advocating superiority of stocks over the long-run
(Spiegel, 2014). Investing for the long-run allows investors to take advantage of
relatively decreasing long-horizon variance and predictability in returns (Campbell
and Viceira, 2005; Barberis, 2000). Moreover, a focus on the long-run allows in-
vestors to ride out short-term fluctuations and mispricing, and purse illiquid invest-
ments. However, recent research has suggested that mean reversion, a contributor
to enhanced long-run investment opportunities, may be mitigated by parameter
uncertainty (Péstor and Stambaugh, 2012). This paper investigates the advantages
for long-run investors in a portfolio context, examining the risk-reduction benefits
of international diversification across short- and long-run horizons. We find that
long run benefits are somewhat negated compared to conventional wisdom.

Quantifying comovement between asset returns is one of the most fundamen-
tal aspects of modern finance. In international finance, the existence of low
cross-correlations between global equity markets forms the basis of risk reduction
through international diversification. The risk of holding a portfolio comprised of
a range of international equity markets has long been shown to be lower than the
risk of component assets (Levy and Sarnat, 1970; Grubel, 1968). Whilst evidence
for risk reduction through international diversification is strong, the extent of long-
run risk reduction may be obfuscated by the common use of weekly or monthly
data.

The extant literature has tended to represent international investment opportu-

nities with measures of broad market performance such as equity indices. However,



international equity indices may have characteristics, such as non-synchronous
trading hours and serial correlation, which may perturb accurate measurement
of diversification benefits. The primary finding in this paper is that the bene-
fits of international diversification are not equally dispersed across heterogeneous
horizons. In particular, long-run comovements between international equity mar-
kets are shown to be significantly larger than those measured at short horizons.
This finding is only partially diminished for synchronized markets, suggesting non-
synchronous trading is not the sole driver of increased long-run correlation. More-
over, starting with a monthly sampling interval, increasing correlation is found to
persist to horizons of up to five years. While short-run findings are in keeping
with the traditional literature on international diversification, the long-run results
follow recent literature which question the benefits of international diversification
(Christoffersen et al., 2012; You and Daigler, 2010).

The finding of increased long-run correlation between international equity mar-
kets has important implications. In order to shed light on possible sources, we
model the long-run intertemporal correlation between markets using only short-
horizon data, whilst accounting for characteristics of international indices such
as serial correlation and cross-serial correlation due to non-synchronous trading
hours and other frictions. The implication from the model is that short-run corre-
lations are, in fact, downward biased. Our finding of bias in the measurement of
correlation complements previous research which demonstrates short-run bias in
estimation for other common financial characteristics such as volatility and system-
atic risk, partially a consequence of non-synchronous trading (Lo and MacKinlay,
1990; Cohen et al., 1983). The implication for investors, even those with short-run

horizons, is that perceived risk reduction benefits may be overstated using short



horizon data.

Finally, our remaining contribution relates to methodology. In the presence
of non-synchronous trading hours, common in international markets, correlation
estimation may be biased. We introduce a novel non-parametric multi-horizon esti-
mation methodology which helps to identify the synchronized correlation between
two non-synchronized time series. The methodology is based upon an optimal
weighting of consecutive returns but, in contrast to recent work such as Ortu et al.
(2013), it consists of identifying long-run correlation rather than behaviour in a
narrow spectrum. Using a simulation study we show that the methodology pro-
vides correlation estimates with smaller error than those found with traditional
subsampling when presented with non-synchronous data.

The remainder of this paper is organized as follows. In the next section we
review some literature relevant to asset dependence and international diversifica-
tion. Section 3 describes the methodology, while Section 4 employs a simulation
study to demonstrate the benefits of our empirical methodology in estimating cor-
relation. The data investigated is discussed in Section 5. Our main results are

described in Section 6, while Section 7 provides a summary and conclusion.

2. Related Literature

International diversification has long been documented as a natural risk reduc-
tion extension of the classic Markowitz portfolio selection theory (Levy and Sarnat,
1970; Grubel, 1968; Markowitz, 1952). A variety of studies have demonstrated low
levels of cross-correlation between international equity markets and interpreted
this as an opportunity to improve portfolio risk-return trade-off (Berger et al.,

2011; Goetzmann et al., 2005; Levy and Sarnat, 1970; Grubel, 1968). However,
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recent research has indicated that the low levels of correlation found between in-
ternational equity markets may be deceptive, particularly when considered from a
downside risk perspective (Christoffersen et al., 2012; You and Daigler, 2010). We
contribute to this debate on the benefits of international diversification, examining
whether the benefits of international diversification persist in the long-run.

Various methods to augment the benefits of international portfolio allocation
have been proposed; Guidolin and Timmermann (2008) suggest an alteration in
diversification benefits as market regimes and preferences on skewness and kurto-
sis are taken into account. Eun et al. (2009) demonstrate additional international
diversification benefits from small-cap stocks. Systemic risk, captured though
simultaneous market jumps, is shown to reduce the benefits of international di-
versification (Das and Uppal, 2005). Moreover, time varying market regimes are
found to have significant impact on the risk management of international equity
portfolios (Okimoto, 2008; Ang and Bekaert, 2002). While significant diversifi-
cation benefits from international investment are demonstrated in these papers,
the long-run performance of international diversification has not been considered
in detail, with previous research predominantly focussed on weekly or monthly
return intervals.

Considerable evidence exists surrounding the influence of trading frictions on
the effective measurement of fundamental financial characteristics. For example,
quantification of non-diversifiable systematic risk, or beta, of an asset may be bi-
ased by delays in the trading process often attributed to liquidity (Kamara et al.,
2013; Perron et al., 2013; Gengay et al., 2005). Various authors have derived
methods linking the sensitivity of measured betas to underlying frictions using,

for example, leading and lagging serial and cross-serial correlations between an



asset and the market (Perron et al., 2013; de Jong and Nijman, 1997; Cohen et al.,
1983). Moreover, a vast array of approaches have been developed to estimate im-
portant financial characteristics such as correlation and systematic risk (Hollstein
and Prokopczuk, 2015; Cohen et al., 1983). Considering international equity in-
dices, significant serial correlation has been comprehensively observed, often with
positive serial correlation at short intervals and negative serial correlation at longer
return intervals (Ahn et al., 2002; Poterba and Summers, 1988). Moreover, inter-
national equity markets often have non-synchronous trading hours, which induces
cross-serial correlation between markets due to common information being incor-
porated in prices at different times (Schotman and Zalewska, 2006; Martens and
Poon, 2001). In this paper, we model the long-run intertemporal correlation be-
tween international equity markets. To this end, we take short-run return correla-
tion and incorporate a correction accounting for serial and cross-serial correlation
between markets.

The impact of investment horizon on asset risk and return has been examined
in some detail, with early research focussing on data with different return inter-
vals! to disentangle how financial characteristics alter with horizon. Considering
the relationship between financial assets, Epps (1979) documents increased corre-
lation between financial assets as the horizon at which price changes are measured

increases.? Recent contributions have considered the importance of time horizon in

I Differing return intervals are created by subsampling price data or by summing over high fre-
quency logarithmic returns and calculating long horizon or low-frequency returns. For example,
daily price data may be sub-sampled every Friday to create weekly data. One of the concerns
with this approach is the lack of motivation concerning sub-sample timing.

2For this reason, the phenomena of decreasing correlation between assets at high frequency is
sometimes known as the Epps effect. While Epps (1979) considered a small number of domestic
stocks at short horizons, in this study we consider a range of international equity markets and
find characteristic increases in correlation in the long-run.



determining market predictability (Péstor and Stambaugh, 2012; Boudoukh et al.,
2007; Barberis, 2000) and horizon-based asset pricing (Kamara et al., 2013; Bandi
and Perron, 2008).

In order to overcome potential bias due to non-synchronous trading hours be-
tween international equity markets, many studies examining the benefits of di-
versification employ either weekly or monthly return intervals.®> However, beyond
monthly horizons, little work has been done in determining the long-run benefits
of international diversification. Traditional data sampling to long return intervals
may result in a reduction in statistical power due to sample reduction (Ortu et al.,
2013). To mitigate this, we apply a non-parametric multi-horizon filter and show,
via a simulation study, that this results in more accurate estimation of long-run
correlation than subsampled return intervals in the presence of non-synchronous
trading.

Our filtering approach consists of decomposing each time series of interna-
tional equity returns into short- and long-run components using wavelet analysis.
Wavelet analysis has been comprehensively utilized across a range of problems
in both economics? and finance to understand horizon dependent characteristics.
In particular, wavelet based techniques have been broadly applied to understand
the time-frequency properties of financial time series (Ortu et al., 2013; Rua and
Nunes, 2009; In and Kim, 2006; Gengay et al., 2005). Relative to these studies,

the approach developed here consists of decomposing the time series into spec-

3For example, Christoffersen et al. (2012) and Bekaert et al. (2009) employ weekly returns,
while Eun et al. (2009) and Longin and Solnik (2001) consider data having monthly returns.

4Some specific wavelet contributions to the economics literature include tests for serial corre-
lation in panel models (Hong and Kao, 2004), long memory estimation in time series (Fay et al.,
2009) and multi-scale serial correlation tests (Gengay and Signori, 2015).



tral components, but our focus is on the residual long-run contributions rather
than the previously examined short-run frequency bands. We next describe the

methodology adopted in this paper.

3. Methodology

3.1. Wavelet Decomposition

The partitioning of economic and financial time series into short- and long-term
contributions has garnered considerable interest in the literature (Perron et al.,
2013; Hansen and Scheinkman, 2009; Hodrick and Prescott, 1997). Low-frequency
(long-run) features of a time series may overcome short-term noise or shocks and
help reveal underlying economic relationships between variables. When consid-
ering pairs of financial time series, measurement of their short-run dependency
may be biased by frictions in the trading process. In particular, international eq-
uity markets have non-synchronous trading hours and may be exposed to specific
frictions such as price transmission delays. Aggregation over longer horizons may
help to mitigate these biases, a problem we address here using a non-parametric
multi-horizon filter, based upon wavelet analysis.

In this section, we outline the wavelet approach to time series partitioning.
Specifically, we describe the discrete wavelet transformation (DWT), a mathe-
matical tool that projects a time series onto a set of orthogonal basis functions
(wavelets) resulting in a set of wavelet coefficients or filtered time series associated
with distinct frequencies (time horizons). A wavelet is defined as a small wave
which can grow and decay in a limited time period, capturing localized features of

a time series. The DWT provides a time-frequency (time horizon) representation of



a signal, detailing the frequency content of a signal as a function of time. We pro-
vide a concise description of wavelet decomposition using the Haar wavelet. While
previous work has tended to focus on the short-run time series contributions asso-
ciated with particular frequency bands, this provides little information regarding
the long-run behaviour of financial time series (Ortu et al., 2013; In and Kim, 2006;
Gengay et al., 2005). In contrast, our approach has a number of advantages; First,
short-run frequency bands disaggregate information in a fashion that may not be
of use to investors. In contrast, long-run wavelet correlation corresponds to the
long-run comovement between assets without the bias associated with short-run
frictions and is relevant for investment purposes. Second, using long-run wavelet
correlation allows us to relate the behaviour at the very shortest horizons to the
differential comovement found at the longest horizons, providing an intuitive basis
for horizon based effects. Finally, using a simulation study we demonstrate the
benefits of long-run wavelet correlation in estimating the synchronized correlation

between non-synchronous markets.

3.1.1. Discrete Wavelet Transformation

In this section, we introduce the discrete wavelet transform, taking the most
elementary Haar wavelet filter as an example. The Haar wavelet filter coefficient
vector of length 7, = 2!, corresponding to scale or horizon one, is given by h =

(ho,h1) = (1/v/2,—1/+/2) and has the following properties:

Zhl =0, Zh? =1, Zhthgn =0 V integers n #0. (1)
1 1 !

These properties ensure (i) the wavelet filter sums to zero and identifies changes in

the data, (ii) the wavelet filter has unit energy, resulting in variance preservation
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between the data and the decomposition, and (iii) orthonormality of the set of
functions derived from h, facilitating multiresolution analysis of a finite energy
signal.

The wavelet filter is complemented by the Haar wavelet scaling filter g =

(90, 01) = (1 /NV2,1/ \/5), viewed as a local averaging operator and has properties:

Zgl =2, ng =1, ZglgHQn =0 V integers n #0. (2)
I ! ]

Similar to the wavelet filter, the scaling filter has unit energy and is orthogonal to
even shifts. The first property ensures that the scaling filter averages consecutive
blocks of data, as opposed to differencing them.

Applying the Haar DWT filter of length 7, = 2 to a return series, {r;}, produces

the following wavelet, w; ;, and scaling, v, coefficients:

\/iwl,t = horoi—1 + hira, t=1,2,...,7/2,

\/§U1¢ = goT2t—1 + 9172, t=1,2,...,7/2

(3)

Gathering together the coefficients associated with different points in time,
the vector of wavelet coefficients w; corresponds to a set of weighted differences
between consecutive returns, representing the high frequency content of the time
series. In contrast, the vector of scaling coefficients v, corresponds to local averages
of length two of the original returns data. While coefficients, wy, associated with
the wavelet filter represent a band of high frequency oscillations, the wavelet scaling
coefficients capture low-frequency content. Collecting both sets of coefficients into
a matrix w = (wy, vq) results in a filtration of the returns data into two orthogonal

vectors.
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In order to derive longer horizon wavelet and scaling coefficients, we first need
to calculate higher order filters. To derive the scaling filter of order 2, we define
a filter ¢ = (g0,0,91) = (1/\/5,0, 1/\/5) which corresponding to a Haar scaling
filter with a zero between the two coefficients. Then, the order 2 Haar wavelet

scaling filter is defined as:

7—1

g2 ={9% g} = g9, i=0,...3 (4)
j=0

This allows determination of the scale 2 wavelet filter, go = (1/2,1/2,1/2,1/2)
with length 7, = 22 = 4.5 The Haar scaling filter of order 2 is a simple average of

four consecutive returns. Scaling coefficients are then calculated as follows:
2094 = goRar—3 + 1 Ryr—2 + o Ryp—1 + g3 Ry, t=1,2,3,...,T/4. (5)

Similarly, the scale 3 scaling coefficients may be generated by increasing the
number of zeros inserted between the scaling filter coefficients. The scaling fil-
ter coefficients are found using g3 = {{g* g/} x g/}, where ¢’ = (g0,0,0,91) =
(1/v2,0,0,1/v2), giving
B ( 1 1 1 1 1 1 1 1 ) (6)
gs \/ga \/§7 \/g) \/ga \/gv \/g) \/ga \/g
A similar process may continue up to the scale J = log 27 and for wavelet coeffi-

cients. Further detail may be found in Gengay et al. (2001).

5Similarly, a Haar wavelet filter, ho, may be defined that first averages two pairs of returns
and then proceeds to difference them. Further detail is given in Gengay et al. (2001).
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Decomposition of the original time series into wavelet and scaling coefficients
allows us to express the coefficients in terms of frequency bands. After the first
decomposition, returns {r;} are decomposed into wavelet coefficients w; associated
with high frequency content, 1/4 < f < 1/2 and wavelet scaling coefficients v;
which span the lower half of frequencies, 0 < f < 1/4. Repeating the procedure
for the scale two coefficients, the wavelet scaling coefficients are associated with
frequencies 0 < f < 1/8. Continuing in a similar fashion, the remaining scaling
coefficients span the residual frequencies 0 < f < 1/20%1 (and associated horizons
greater than 20+1),

The Haar DW'T scaling coefficients are closely related to time series aggrega-
tion, the process by which a set of 7j-day returns, {R;(7;)}, can be created by

summing over non-overlapping individual logarithmic returns, r;,

7;—1

R T
Rt(Tj):ZrTjt—ma t:1,2,3,7_— (7)

m=0 J

Later, we demonstrate equivalence between cross-correlation calculated for aggre-
gated time series and Haar DW'T scaling coefficients. Moreover, we show how
long horizon wavelet scaling correlations can be expressed as a function of corre-
lations calculated using original, unfiltered, data plus a correction for serial and
cross-serial correlation.

A variation of the DWT is the maximum overlap discrete wavelet transforma-
tion (MODWT). Analogous to the DWT, the MODWT produces wavelet coeffi-
cients w; and scaling coefficients v; associated with a particular frequency band
or horizon. In contrast to the DWT, the MODWT is not limited to dyadic time

series, instead retaining coefficients associated with all times. As the MODWT
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does not eliminate coefficients, this removes the alignment effects of the DWT and
leads to a more efficient time series decomposition at multiple time horizons. For
these reasons, the MODWT is adopted for the empirical analysis in this paper.
Further details on the MODWT may be found in Gengay et al. (2001) and Percival
and Walden (2000), amongst others.

The Haar wavelet decomposition described has a simple interpretation in terms
of differences and averages of consecutive returns. When decomposing a time series
of returns, we are separating layers of information associated with different frequen-
cies that decrease for longer horizons. A variety of more sophisticated wavelet types
also possess this interpretation as differences and averages of a time series.® In con-
trast to the Haar wavelet, longer wavelet filters such as the Daubechies wavelets,
the least asymmetric wavelets, and the Coiflet have a more refined weighting of
the elements of the time series. We later demonstrate that accurate estimates of
long-run correlation may be produced by employing these sophisticated wavelet

filters.

3.2. Wawvelet Long-Run Correlation

An important characteristic of wavelet analysis is the ability to partition the
variance and covariance of a time series, informing regarding the short- and long-
run contributions of each. Percival and Mofjeld (1997) proved the variance pre-
serving properties of the MODWT. That is, the variance of the original time series
is perfectly captured by the variance of the coefficients from the MODWT. In par-

ticular, total variance from a time series may be decomposed using the MODW'T

6 A detailed exposition of the array of sophisticated wavelets available to researchers is beyond
the scope of this manuscript, with the Haar wavelet described as a base case. Interested readers
are referred to Gengay et al. (2001) and Percival and Walden (2000) for further detail.
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wavelet and scaling coefficients as follows:

J
IR =D 1% P+ 1 95 |17 (8)

=1

where | w; ||2= S fj w7 ; is the variance associated with horizon 7; = 27 and
| ¥y 2= o fl vy ; corresponds to the variance associated with horizon greater
than 7; = 2. In this paper, our focus differs from the extant literature (Ortu et al.,
2013; In and Kim, 2006; Gengay et al., 2005). Instead of considering the short-run
contributions to variance || wj ||?, we concentrate on the long-run contribution
AR

Unbiased estimates of the wavelet long-run scaling variance, o7, ;, for asset m

at horizons greater than 7, are given by

Oy = Var(Un,g), (9)
where v, ; are the wavelet scaling coefficients for asset m at long-run horizons
greater than 7; = 27. Similarly, unbiased estimates of the wavelet long-run scaling

covariance, o2

mn.J» between two distinct assets m and n at horizons greater than

7; are defined by

2

O'an = COU(f)m’J,f}n,J), (10)

where 7; = 27 and ¥y, and 9, ; wavelet scaling coefficients for assets m and
n at horizons greater than 7; = 27/. While the wavelet covariance decomposes

the covariation on a scale-by-scale basis, the empirical results in this study will
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focus predominantly on the wavelet scaling correlation, corresponding to long-run

horizons (greater than 7; = 27) defined as

0.2

mn,J
P = =g (1)
" U%@,JJEL,J

This captures the level of long-run correlation between two time series, character-
izing the long-run dependence between two financial assets, vital in the context of

" Previously, literature has measured wavelet correla-

long-term asset allocation.
tion using wavelet coefficients, revealing the dependence structure between specific
frequency bands associated with a time series (Ortu et al., 2013; In and Kim, 2006;
Gengay et al., 2005). One of the difficulties with this approach lies in the prac-
tical implementation of frequency band analysis for investors. In contrast, our
focus on wavelet scaling correlation reveals the long-run correlation between time
series after short-run effects, often associated with frictions, have been removed.
We later demonstrate, using a simulation approach, that wavelet scaling correla-

tion provides more accurate estimation of synchronized dependence than simple

aggregated (weekly or monthly) returns.

3.8. Model of Long-Run Correlation

An assortment of previous studies have demonstrated increased long-run cor-
relation between financial assets. Moreover, a variety of studies have employed
wavelets to examine the horizon dependent properties of cross-market correlations
between assets, but with little intuition regarding the underlying drivers (Ortu

et al., 2013; Rua and Nunes, 2009; In and Kim, 2006). In this paper we con-

“In calculation of correlation, all wavelet coefficients associated with the boundary are re-
moved. This results in an unbiased estimate of long-run correlation.
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sider the long-run Haar wavelet correlation, which allows us to model long-run
correlation as a function of just the original unfiltered returns plus a correction
to account for serial and cross-serial correlation between markets. This provides
insight regarding the origin of horizon dependent correlation. In order to develop
this model, we first show that the elementary Haar DWT scaling correlation, py,.7,
can be related to that calculated using aggregated logarithmic return time series

at the same horizon.

Proposition 1. The Haar DWT long-run (scaling) cross-correlation between changes
in two stationary, finite time series m and n at horizon T; = 27 is equivalent to

cross-correlation between original time series aggregated at horizon 7; = 27.

Proof: See Appendix

This result demonstrates that the elementary Haar DW'T provides identical
estimation of wavelet scaling correlation to that found using aggregation. While
this would suggest little benefit in calculating correlation using the Haar DWT,
more sophisticated wavelets exist which aggregate time series information in a
more optimal fashion. We later apply these sophisticated wavelets in a simulation
to show that they result in accurate estimation of correlation in the presence of
non-synchronous trading hours. This notwithstanding, Proposition 1 allows us to
derive a model capturing the long-run Haar wavelet correlation as a function of
the original short horizon (1-day) data combined with information on serial and

cross-serial correlation.

Proposition 2. The Haar DWT long-run (scaling) cross-correlation between changes

i two stationary, finite time series of logarithmic returns r, and r,, at horizon

16



77 =27 can be expressed as a function of the original time series as follows:

P (Um,Ja Un,J) =p (Rm (TJ) ) Rn (TJ>>
Tj+7—jg:11<ps(7‘71n’r}l)tp’j(T}n,T}L)>> (12)

= p(l) X ijl ijl
<n-+2 ) pswn)) <Tj+2 ) psm))

Up,g and vy, ; are wavelet scaling coefficients associated with time series m and n at
horizon T; respectively, and R, (1) and R, (1) are aggregated returns at horizon
77. p (1) is the cross-correlation between the original untransformed returns r', and

s

rl before aggregation. p* and p~* correspond to leading and lagging inter-temporal

correlations of order s between the original series.

This proposition relates the wavelet long-run correlation to the short-run cor-
relation plus a correction for serial and cross-serial correlation. The proposition
suggests that changes in correlation at different horizons are a consequence of serial
and cross-serial correlation, frequently observed in financial time series. Moreover,
sources for serial and cross-serial correlations in equity indices include trading
frictions, nonsynchronous trading, trading volume, time-varying risk premia and
analyst coverage (Chordia et al., 2011; Lo and MacKinlay, 1990). Cross-serial
correlations are also related to the speed of adjustment hypothesis, whereby some
assets adjust more slowly than others to economy-wide information (Chordia et al.,
2011). Later, we use Proposition 2 to demonstrate how increased long-run correla-
tions between international equity markets may be modelled using only short-run

data.
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4. Wavelet Long-Run Correlation - A Simulation Study

To motivate our application of wavelet analysis to measuring the benefits of
international diversification, we first employ a simulation study to highlight some
advantages of measuring correlation using wavelet scaling coefficients versus sub-
sampling. Biased estimates of cross-market correlation are induced through the
use of non-overlapping trading hours in the simulation, replicating international
equity markets. Wavelet long-run correlation is then shown to produce estimates
of the true synchronized market correlation with smaller bias and error than sub-
sampled returns. While previous papers have adopted the wavelet transform to
examine correlation within specific frequency bands, one of the contributions of
this paper is the novel use of long-run wavelet correlation to provide improved

estimation of synchronous codependence.

4.1. Simulation Set-Up

The simulation is based on the relationship between returns for two markets,
each having systematic exposure to a single common factor (the ‘world market’),
resulting in correlation between the markets.® Biased estimation of the true syn-
chronous correlation between markets is induced by defining three non-overlapping
trading periods per day. Returns for each market, M1 and M2, are defined by:

RM = ay + B1R) + ARy, + B RS + M

(13)
RM? = ay + BoR)Y, 5 + BoRY| + B R}, + ™2

8A similar approach was applied by Lo and MacKinlay (1990) to examine whether non-
synchronous trading leads to serial correlation in portfolios.
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where RZ‘Q corresponds to returns of the zero-mean, independent and identically
distributed World market factor on day ¢ during trading period ¢, where i € 1,2, 3.

M1,M2

is zero-mean idiosyncratic noise, uncorrelated both cross-sectionally and
temporally. The constants, oy and as, are set to zero in the simulation, without
prejudicing the results. Market M1 has three trading periods, each of which are
perfectly synchronized with the world market. In contrast, market M2 is closed
during trading period 3 and price information from this period is incorporated
during the first trading session of the following trading day. This is captured in
equation 13 through the Sy R}Y 13 term. This setup results in daily returns of M2
incorporating price information from both days t — 1 and ¢.?

This model is analogous to the trading structure found between US and Euro-
pean markets. On a given day, trading begins on European markets, followed by
a period during which US and European markets are open, concluded by a period
when only the US is open. Information common to both markets is incorporated
into US markets during the final trading period, but European markets only in-
corporate this information into prices when trading recommences the following
morning. Non-synchronous trading has been previously shown to result in biased
estimation of cross correlation between markets as a consequence of induced serial
cross-correlation (Schotman and Zalewska, 2006; Martens and Poon, 2001). In-
creasing the horizon over which returns are aggregated has the effect of reducing
the proportion of non-synchronous trading hours between two markets, resulting

in lower estimation bias for correlation.

9A more advanced model could incorporate additional features such as further non-
synchronous trading or information delays. However, the set-up detailed is sufficient to examine
performance benefits of wavelet scaling correlation.
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Using simulation, we contrast the ability of wavelets and subsampling to mea-
sure the true synchronized correlation between markets. To this end, world mar-
ket returns (R") are simulated using a Gaussian Brownian Motion both with and
without jumps. Markets M1 and M2 are both assumed to have a beta coefficient
or systematic risk exposure of 0.8 with the world market.!? In this study, we com-
pare the effectiveness of wavelet scaling correlation to subsampled or aggregated
correlation using both bias and mean square error. In each case, we are comparing
the measured correlation to the actual synchronized correlation at a particular
horizon. MODWT scaling coefficients are used to measure the long-horizon corre-

lation and all boundary coefficients are removed, resulting in unbiased estimation.

4.2. Simulation Results

To illustrate the improvement in estimation using wavelet long-run correlation
versus subsampled correlation, we simulate non-synchronous markets as described
in equation 13. Differing specifications are examined, including simulation of long
and short time series both with and without jumps. The accuracy of the wavelet
long-run scaling correlation is compared to that measured using subsampled data
both in terms of bias and error.!
Results are detailed in table 1, for time series of length 8, 192.12 Across all mea-

sures, the level of bias is shown to decrease at long horizons, which corresponds

to increased trading synchronicity. Sophisticated wavelets (LA8, C6 and D8) are

10A variety of values for the systematic risk coefficient were tested resulting in no qualitative
impact on the results found. Wavelets were found to provide better estimation of synchronized
correlation in all cases.

"Bias is defined as E [p — p], while error is defined using the mean square error E [([) - p)Q].

12The time series were chosen to be dyadic in order to ensure optimal subsampling. A choice
of non-dyadic time series would further improve the quality of the wavelet correlation estimation
relative to subsampling.
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found to have considerably lower bias for all time series lengths, both with and
without jumps. In particular, without jumps the level of bias for the D8 wavelet
ranges from 9.4% to 80.4% of that from subsampling, with similar findings with
jumps. In terms of mean square error (MSE), the Daubachies wavelet of length
8 has the smallest error for horizons of up to 16 days without jumps in the simu-
lation. When jumps are included in the time series, the Haar wavelet has lowest
MSE at long horizons, as this wavelet filter accurately captures discontinuities in
data. These findings suggest that wavelets provide more accurate estimates of con-

temporaneous correlation when market returns are recorded non-synchronously.

[Table 1 about here.]

The ability of the wavelet long-run correlation to estimate synchronized cor-
relation for short time series is examined in Table 2. With and without jumps,
wavelet long-run correlation is shown to have smaller bias and error than sub-
sampled correlation. Without jumps, bias is shown to be as low as 18.4% of
subsampled bias for the D8 wavelet, while with jumps the improvement in bias is
found to be up to 24.5% of subsampled bias. Moreover, in terms of MSE, wavelets
are found to have better performance than sub-sampled correlation across all hori-
zons examined. Given the prevalence of trading lags and associated correlation
biases between international equity markets, these results support our application

of wavelets in this paper.

[Table 2 about here.|

Our simulation demonstrates that improved estimation of synchronous corre-

lation from non-synchronous data is possible using wavelets. In our analysis, the

21



Daubachies wavelet of length 8 is shown to dominate other wavelets in terms of bias
and MSE, with comparable performance found for the least asymmetric wavelet of
length 8. For this reason, the Daubachies wavelet is used throughout the analysis.
However, specific choice of wavelet filter is found to have little qualitative impact

on results.

5. Data

Data for the study was obtained from DataStream, a division of Thompson
Reuters. The data consists of daily prices for a range of international equity
indices from January 1, 1980 through May 26, 2011, a total of 8,193 days. For
each country, the index chosen represents a broad coverage of equities, with data
available over the entire sample period. In total, equity indices from 22 countries
were selected for the study, chosen to reflect a diverse range of developed and
emerging markets with geographical diversity. The countries examined in the

study are listed in Table 3 along with details of the equity index considered.
[Table 3 about here.]

To remove the impact of exchange rate fluctuations from the study, each local
index is converted to a common currency.'® In this study we choose to measure the
benefits of international diversification to a U.S. investor and thus select the U.S.
dollar as the common currency. Throughout the study, the base data considered

are daily logarithmic returns. Various studies considering international finance

13This is standard in international finance studies; Pukthuanthong and Roll (2009) suggest that
“such conversions represent a ubiquitous practice in empirical studies of international financial
markets”.
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have considered daily (Berger et al., 2011; Pukthuanthong and Roll, 2009), weekly
(Christoffersen et al., 2012) and monthly (Rua and Nunes, 2009) base data. In this
study we will use wavelet analysis to estimate the long-run relationships between

equity indices.'*

6. Empirical Results

6.1. Summary Statistics

Descriptive summary statistics for the set of international equity markets stud-
ied may be found in Table 3. There are considerable cross-sectional differences in
the characteristics of the raw returns. The MSCI Denmark Index had highest mean
return over the extended period examined, albeit one of the lowest median returns.
The Malaysian Kuala Lumpar Composite Index (KLCI) was found to have lowest
mean return. The average standard deviation of daily returns is 1.44%, with Asian
markets of Hong Kong, Malaysia and South Korea found to have standard devia-
tions much greater than average. The lowest daily returns of —37.01%, —30.31%
and —26.48% were experienced by Singapore, Australia and Malaysia. The major-
ity of indices demonstrate negative skewness and positive excess kurtosis, with the
Jacque Bera statistic rejecting the hypothesis of normally distributed returns for
all. First order serial correlation is significant for fifteen indices at a 1% level. The
majority of indices display positive first order serial correlation, with only indices
from the USA and South Korea having significant negative serial correlation. The
Ljung-Box test rejects the hypothesis that the first 20 autocorrelations in absolute

returns are zero in all cases.

14Robustness checks are also performed using monthly base data, with consistent results found,
Section 6.6.
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6.2. Correlation Analysis

The examination of long-run benefits of international diversification begins
with the measurement of unconditional long-run cross-correlation between repre-
sentative international equity markets. First, as we are interested in measuring
the benefits of international diversification to a U.S. investor, we measure the aver-
age unconditional correlation between the U.S. (S&P 500) and each world market.
Since bivariate correlations between the U.S and other world markets only con-
tribute partially to overall diversification benefits, we also investigate the average
correlation between each market excluding the U.S.. Considering correlations in
this way allows us the opportunity to distinguish between the various contributors
to international diversification risk reduction.

The impact of time-horizon on the unconditional correlation between markets
is examined in a selection of eight time-cohorts between 1980 and 2011 and for
the entire period. Motivated by Section 4.2, the MODW'T Daubechies wavelet of
length 8 is employed to decompose the time series data for each equity index into
a series of components corresponding to different time horizons.'> Then, uncon-
ditional long-run correlations between wavelet scaling coefficients are calculated
using Equation 11.

Average horizon dependent long-run correlations between the U.S. (S&P 500)
and each world market are detailed in Table 4. Considering first the average cor-
relation between 1980 and 2011 at each distinct horizon, this is found to differ
considerably across the various horizons studied. The 128 day correlation of 0.662

is 2.7 times greater than the correlation found at the original daily horizon and 1.2

13In the remainder of the analysis we refer to time horizons, which refers to the residual
frequencies 0 < f < 1/2/*! and corresponding horizons greater than or equal to 2771
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times that measured at a 16 day horizon. The latter is similar to the monthly in-
terval often used through the literature to calculate benefits of international diver-
sification and demonstrates the considerable difference with long-run correlation.
Using a Jennrich test, a significant difference is further shown between correlation
measured at the shortest and longest horizons. Our initial results suggest that
short horizon investors appear to reap further benefits from international diversi-
fication than their long horizon counterparts. However, correlation measured at
daily horizons may be biased downwards by a lack of contemporaneous trading.
Our later results suggest that adopting a weekly or monthly return interval may

be insufficient to eradicate all friction related biases.

[Table 4 about here.]

The dynamic nature of asset correlation has been well documented. In order to
examine the consistency of our results at differing points in time, we examine the
correlation between international equity markets in different cohorts. Table 4 de-
tails the long-run average unconditional correlation within each cohort for various
horizons. Results are found to be consistent, with increasing average correlation
between the S&P 500 and each world market moving from short to long horizons.
Jennrich tests confirm a significant difference between correlations measured at
short horizons and those measured at a 128 day horizon.

Average inter-market correlations between each of the world indices excluding
the U.S. are shown in Table 5. In agreement with our earlier results, average
inter-market correlation is found to increase moving from short to longer horizons.
A 32% increase in correlation is found when moving from a 4 day to a 128 day

horizon. Considering the differing cohorts detailed, significant time variation in
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unconditional correlation is further demonstrated in all cohorts.
[Table 5 about here.]

The increasing level of dependency detailed between world markets at long
horizons suggests that differing diversification benefits accrue to investors with
heterogeneous investment horizons. The lowest level of dependence between in-
ternational equity markets is found at short horizons, suggesting increased oppor-
tunity for diversification. In contrast, long-run equity market interdependence is
found to be larger, reducing the potential for diversification. While a short horizon
investor may regularly adjust their portfolio weights, a long horizon investor may
be a “buy-and-hold” investor, who adjusts their weights irregularly. One perspec-
tive on this suggests that, to increase the benefits of diversification, it may be
necessary to adjust portfolio weights regularly, potentially increasing transaction
costs. However, in Section 6.4 we model the increased long-run correlation as a
function of short-run correlation and a correction for serial- and cross-serial corre-
lation. Findings from this model suggest that short-run correlation are downward
biased in a similar fashion to systematic risk when measured at short horizons

(Gengay et al., 2005; Cohen et al., 1983).

6.3. Synchronized Returns

In order to isolate the impact of non-contemporaneous market trading and
price transmission delays on inter-market correlations, we now consider a reduced

set of contemporaneously measured international equity markets.'® As suggested

16The indices were selected due to the availability of a common index price measured daily at
16:00 GMT. Data was sourced from Datastream and stretches from July 2003 to May 2011, a
total of 2,048 daily returns.
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earlier, the use of non-synchronized data may induce cross serial-correlation be-
tween markets, in turn downward biasing estimation of cross-correlation (Martens
and Poon, 2001). We now determine whether the increasing long-horizon correla-
tions previously detailed are purely a consequence of non-synchronous markets or
whether there may be additional frictions at work.

Average horizon dependent unconditional correlations for both synchronized
and unsynchronized markets are shown in Table 6. Considering first the average
correlation between the USA (S&P 500) and the range of other markets, we find
significant increases in cross-correlation moving from short to long horizons, in
keeping with our previous findings. For example, the average synchronized cor-
relation using daily data is 0.756 while average correlation at a 128 day horizon
is 0.89, a 17.7% increase. If non-contemporaneous market trading hours are the
only driver of raised long horizon correlations, then we would expect this effect
to be mitigated using synchronized data. However, we find that the differential
between long and short horizons, while reduced, remains strongly and significantly
evident. The findings for synchronized markets suggest that the increased correla-
tion at long horizons detailed is not exclusively a consequence of non-synchronized

trading.

[Table 6 about here.]

We next consider the average inter-market correlation between the range of
markets excluding the USA. The remaining markets are all pan-European, sug-
gesting that the timing gaps between market trading hours should be minimal.
This is in keeping with our findings, with little evident divergence between syn-

chronized and unsynchronized correlations at a particular horizon. However, for
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both synchronized and unsynchronized markets we continue to find a persistent
increase in correlations from short to long horizons. The long term correlation
between markets using synchronized data is 0.863 compared to the daily return
correlation of 0.739, a 16.8% increase, similar to that found for US synchronized
correlations. This suggests that the benefits of international diversification are
mitigated at long horizons. We further consider this shortly, when we consider the

impact on portfolio optimization at differing horizon.

6.4. Why do international equity correlations increase at long horizons?

In previous sections, we have detailed increased long-run correlations between
international equity markets, even for contemporaneously measured markets. Pre-
vious literature has suggested that non-contemporaneous trading may induce cross-
serial correlation between markets, in turn downward biasing the measurement of
correlation (Schotman and Zalewska, 2006; Martens and Poon, 2001). The exis-
tence of intertemporal dependence for non-synchronous markets suggests suggests
the existence of additional frictions that alter correlation measurement. These
findings are in keeping with previous studies investigating the temporal character-
istics of markets with synchronized trading hours but potential lags in information
transmission due to liquidity differentials (Schotman and Zalewska, 2006; Ahn
et al., 2002; Cohen et al., 1983). In particular, for equity indices the latest index
price may reflect shocks to the largest stocks with smaller stocks lagging due to
information transmission delays (Hou and Moskowitz, 2004). Informed trading
is transmitted from large liquid stocks to smaller more illiquid stocks with a lag,
inducing cross-autocorrelations between stocks (Chordia et al., 2011). Moreover,

the high levels of observed serial correlation found for equity indices is partially a

28



consequence of microstructure frictions and information transmission delays from
large to small stocks (Ahn et al., 2002; Lo and MacKinlay, 1990).

In this section, we show how changes in correlations from short to long-run hori-
zons may be a result of serial- and cross-serial correlation between markets. To
this end, we model wavelet long-run correlations using only short horizon (daily)
data and information on leading and lagging dependencies for and between mar-
kets. These intertemporal equity market dependencies are firstly a consequence of
non-synchronous trading between markets, resulting in markets impounding com-
mon information at differing times. Further, inter-dependencies may be a result
of price-transmission delays between markets, previously linked to observed index
serial correlation (Ahn et al., 2002). While our findings on increased correlation
for synchronized markets suggest possible price transmission delays between inter-
national equity markets, perhaps a consequence of slow moving capital, we leave
a detailed examination of the mechanism underlying this for further study.

Proposition 2 outlines how long-run Haar scaling correlation between two sta-
tionary, finite time series can be expressed as a function of the original time series
plus a correction for serial and cross-serial correlation between the original series.
In this section, we use this link to model the long horizon cross-correlation using
original one day interval returns. To model the long-run 7;-day wavelet scaling
cross-correlation using original untransformed (daily) data, we first measure serial
correlation and all lagging and leading cross-serial correlations up to interval 7;
between each market.

Table 7 shows 7; horizon long-run correlations modelled using only one-day
returns. In each case, an average over all pairs of international equity markets

is shown. Long-run correlations are modelled for a range of different long-run
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horizons. For example, the 8 day horizon corresponds to the long-run wavelet
correlation at horizon 73 = 22. When no serial or cross-serial corrections are
accounted for, Equation 12 reduces to the cross-correlation between the original,
daily, time series, which underestimates the long-horizon correlation by 18.2%.
Incorporating information on serial and cross-serial correlation for up to 7 lags
results in an increased modelled correlation of 0.469, consistent with the average

measured correlation of 0.466.

[Table 7 about here.]

Considering our model of long-run correlation at longer horizons, similar re-
sults are found. Considering the scale 74 = 128 day horizon, we demonstrate a
consistent increase in the modelled correlation as further intertemporal lags are
included in the model. For example, incorporating information on serial and cross-
serial correlation for up to 3 lags results in an increase of 21.8% in average modelled
cross-correlation relative to daily. While this captures almost 50% of the total in-
crease required to replicate the measured correlation, at least 31 intertemporal lags,
corresponding to approximately a two month horizon, are required to accurately
model the average long-run measured correlation.

Previous research examining the intertemporal behaviour of financial charac-
teristics such as systematic risk has established that short horizon measurements
are biased (Gengay et al., 2005; Hawawini, 1980). These findings have been largely
related to frictions in the trading process manifesting in differential price adjust-
ment delays and resulting in cross-serial correlation between securities. Moreover,
the presence of serial correlation in equity indices has been extensively documented

(Ahn et al., 2002; Lo and MacKinlay, 1990). This is consistent with our model,
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where measured short horizon correlations are biased as a consequence of serial
and cross-serial correlations. Our empirical findings suggest that the correlation
between international equity indices is, on average, downward biased at short hori-
zons. The result of this, from the perspective of investors, is that perceived benefits
of international diversification may be overestimated at short horizons. We further

examine the implications for investors in the following Section.

6.5. Implications for International Diversification

The evidence presented thus far indicates that correlation between interna-
tional financial markets is a function of the measurement horizon. This, in turn,
suggests that diversification opportunities available to international investors differ
between short- and long-run horizons. In this section, we investigate the potential
benefits of international diversification in two ways. First, considering an equally
weighted portfolio, we determine the level of risk reduction achieved at different
horizons as the number of portfolio assets increases. Next, we examine whether
the mean-variance efficient frontier alters as a function of time horizon. This helps
to determine whether the benefits of international diversification accrue equally to
short- and long-term investors.

In Figure 1, we investigate the level of risk reduction achieved by international
investors as a function of the number of equally weighted international equity
market investments held. The level of risk reduction, measured using variance, is
calculated as a proportion of the average risk of a single randomly chosen asset. A
simulation approach is used, with the level of risk reduction measured for portfolios
made up of randomly chosen assets. Risk reduction is then averaged across 10, 000

simulations. Results demonstrate that the level of risk reduction achievable is a

31



function of horizon. For example, for a diversified portfolio made up of 15 equally
weighted international markets, an investor with a short horizon of 1 day removes
33.2% of the risk involved in holding a single randomly chosen asset, while an
investor with a 128 day horizon only removes 22.2%. Robustness tests for these
results are provided in Section 6.6, where results are shown to be independent of

the wavelet methodology.
[Figure 1 about here.]

One potential problem with measuring only the level of risk reduction, is the
potential for higher returns as compensation for the greater risk associated with
long horizons. We address the risk-return trade-off now by determining the efficient
frontier across the range of time horizons studied, Figure 2.7 The top figure
displays the efficient frontier measured using all data from 1980 — 2011. For a
given level of return, we see that the level of risk increases from short to long
horizons. For example, for a 10% annualized expected return, the associated risk
is 14.21% at the shortest horizon studied but 17.32% at the longest horizon, an
increase of 22%. Investors with short time-horizons appear to achieve much lower
levels of risk for a given level of return than long horizon investors, given the same
investment set. This explicitly demonstrates the impact on portfolio allocation of
the high long-run correlation between international equity markets, with greater
associated levels of risk due to negated diversification benefits.

Figure 2 also shows a series of mean-variance efficient frontiers associated with

the different time cohorts studied in Tables 4 and 5. Results across the cohorts

17A risk aversion level of 3 was used for the mean-variance allocation. Results were found to
be consistent for differing aversion levels. The mean-variance analysis presented is ex-post.
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are consistent with findings for all data, as short horizon investors experience
substantially lower risk than long horizon investors across the majority of cohorts.
The recent cohort, 2007 — 2011, is worth focussing on, as the difference between
short and long term risk is found to be considerable for low levels of return. For
example, for a 7% annualized expected return, risk is shown to increase from
16.45% to 22.51% moving from the shortest to longest horizon, an increase of
36.9%. This suggests that long horizon investors might have struggled to reduce

risk during the global market crisis, contrary to market folklore.

[Figure 2 about here.]

6.6. Robustness

To ensure that our results are not simply an artefact of the estimation pro-
cedure, we test our results without wavelets, using sub-sampled return intervals.
Table 8 displays the average correlation between the U.S. (S&P 500) and each in-
ternational equity market for a range of sub-sampled return intervals.'® The trend
in correlation is found to be consistent with previous wavelet results, showing

increased correlation at long return intervals.

[Table 8 about here.|

Throughout this study, we have focussed on a daily sampling interval, allowing
us to examine the impact of horizon on the benefits of diversification in different

cohorts. In Table 9, we examine the robustness of our results using a monthly

18Similar results were obtained for the average correlation between world markets, excluding

U.s.
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sampling interval, to determine if our findings are a result of the base return in-
terval chosen. Reduced data quantities mean that results are only available over
the entire 1980 — 2011 period. In keeping with earlier findings, correlations are
shown to increase moving from short to long horizon. Consistent with previous
results, the average U.S correlation with world markets increases from 0.244 at the
original daily horizon to 0.637 at a 4 month horizon, with a further increase to
0.721 at a 64 month horizon. This is substantially above the weekly or monthly
correlations often used in studies of international diversification. Similarly, the
inter-market correlation excluding the USA is shown to have a 64 month average
of 0.72, also greater than daily or monthly measured correlations. This further
supports our hypothesis that long-run investors appear to achieve much lower di-
versification benefits than those measured in the short-run, and that measurement

of international diversification benefits using weekly or monthly data is insufficient.

[Table 9 about here.]

Optimal asset allocation decisions have been found to differ considerably dur-
ing bull and bear market regimes (Okimoto, 2008; Guidolin and Timmermann,
2008). In order to ensure that our main results relating to increased unconditional
correlation at long horizons are robust to varying market conditions, we explore
the horizon dependence during NBER categorized economic expansion and con-
traction cohorts. In Table 10 we detail the average correlation between all world
markets across short and long-horizons during both recessionary and expansion-
ary periods. Results are shown to be consistent with earlier findings, displaying
increased correlation in the long-run across all cohorts. This suggests that the

results documented are not a consequence of asymmetric dependence structure
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during bull and bear market regimes.
[Table 10 about here.]

Building on the risk reduction analysis in Section 6.5, we finally consider the
benefits of international diversification using sub-sampled return intervals, Figure
3. The impact of adding additional assets to a portfolio made up of a randomly cho-
sen selection of international equity markets is examined at different sub-sampled
time horizons. The results suggest that our previous findings were not a conse-
quence of the wavelet method adopted. As found previously, long horizon investors

achieve significantly less diversification benefits than short horizon counterparts.
[Figure 3 about here.]

These robustness tests suggests that our findings of increased long-run correla-
tion between international equity markets are not a consequence of methodology,

original data periodicity or cohort.

7. Conclusions

Many investors, such as pension funds and private equity investors, have an
ability to hold investments for the long-run. A common view is that such long-run
investments are advantageous, in part due to an improved risk-return trade-off.
However, little focus has been given to the advantages of long-run investment
in a portfolio context. In this paper, we examine the portfolio risk-reduction
benefits of international diversification across short- and long-run horizons. Our
primary finding is that long-run portfolio risk reduction benefits from international

diversification are smaller than at short horizons.
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To overcome biased measurement of correlation for non-synchronous data, a
novel non-parametric multi-horizon methodology is first developed. In contrast
to earlier work, this paper uses wavelet scaling coefficients to provide correla-
tion estimates with smaller errors than those found with traditional subsampling
when presented with non-synchronous data. A simulation study demonstrates im-
provements in reducing correlation bias of up to 90.6% using the wavelet scaling
methodology.

The main empirical contribution of the paper relates to the long-run diversifi-
cation benefits from international diversification. Considering international equity
indices, we find robust evidence of increased intermarket correlation at long-run
horizons. Considering the average correlation between the U.S. and World equity
markets from 1980 to 2011, correlation at a 128 day horizon is shown to be 1.23
times that at a monthly horizon, with the latter interval often considered in studies
on international diversification. Examining the portfolio allocation implications,
we demonstrate decreased risk reduction benefits in the long-run. Our finding of in-
creased long-run correlation is only partially diminished for synchronized markets,
suggesting that non-synchronous trading is not the sole driver of increased long-
run correlation. Moreover, starting with a monthly sampling interval, increasing
correlation is found to persist to horizons of up to five years.

To shed light on why long horizon international equity correlations are found
to increase, a model accounting for frictions in the trading process is described.
Incorporating delays in information transmission and non-synchronous trading be-
tween international markets using leading and lagging intertemporal correlations,
we detail how elevated long horizon correlations may be generated using short

horizon data. The implication from the model is that short-run correlations are,
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in fact, downward biased. This bias is a consequence of characteristics of financial
time series such as serial correlation, often attributed to frictions. Our interpre-
tation of bias in the measurement of correlation relates to previous research that
demonstrates bias in estimation for other common financial characteristics such
as volatility and systematic risk as a consequence of non-synchronous trading (Lo
and MacKinlay, 1990; Cohen et al., 1983). The implication for investors, even
those with short-run horizons, is that perceived risk reduction benefits may be
overestimated using short horizon data. In summary, our results show that the
benefits of international diversification are not equally dispersed across heteroge-
neous horizons. When measured at short horizons, the benefits of international
diversification may appear to be large but this may be a function of characteristics
specific to international indices such as serial correlation. For long-run investors
international diversification is shown to reduce portfolio risk, but perhaps not to

the extent previously thought.
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Appendix

Proof of Proposition 1.
We demonstrate that determination of the Haar DW'T scaling correlation at hori-

7 is equivalent to calculating correlation between aggregated data at

zon Ty = 2
the same dyadic horizon. At horizon 7, = 2!, the Haar scaling filter of length 2
is given by g = (go,q1) = (\%, \%) Applying the Haar scaling filter to a set of

returns {r;} and rearranging the scaling coefficient formula (Equation 2), we get
QUl,t = Tot—1 —f-?”gt, t= 172,3,...,T/2. (14)

The orthogonality of the DWT and associated decimation gives T'/2 scaling coeffi-
cients at horizon 71, in a similar fashion to non-overlapping time series aggregation.
Next, we represent the aggregated time series at horizon 7, = 2! as a summation

over consecutive non—overlapping returns,
Rm,Qt (7-1) = T2t—1 +r2t7 7t: 172737"'7T/2' (]‘5)

Common terms in equations 14 and 15 are now exploited to determine the
relationship between wavelet and aggregated correlations at horizon 77. For time
series 1, and r, for assets m and n, aggregated covariance and variance at horizon

71 = 2! may be written in terms of wavelet scaling coefficients Upp,1 and v, 1,

Cov (R, (11), Ry (11)) = 22Clov (Um.1, Un1) = 4772%”] (16)
Var (R, (1)) = 2Var (vm,1) = 202%]- (17)
Var (R, (1)) = 2Var (vn1) = 207214 (18)
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In turn, this relates the aggregated correlation between R,, (1) and R, (11) to the

wavelet scaling correlation

_ 4Cov (g, vn1) 4%2nn,J
 4Std (o) Std (vn1) 402, 02

p (B (11), Ry (11)) = p (Um1,01)  (19)

Similarly, Haar DWT scaling coefficients, representing the average or long run

trend at horizon 75 = 4 can be rearranged as

225y, = g3+ Tayo+ Ty + 14y, t=1,2,3...,T/4 (20)
Aggregated returns at horizon 7, = 22 can similarly be written as

Riypat(T2) = Tap—3 + Tap—o + Tg1 + vy, t=1,2,3...,7/4 (21)

As previously shown for horizon 71 = 2!, we write the aggregated variance and
covariance as a function of wavelet scaling coefficients at horizon 7, = 22. Aggre-
gated correlation at horizon 7 = 2% is then written in terms of wavelet scaling

coefficients,

3 34,2
2 COU (Um,Qa Un,Q) 2 ’ymn,Q

Rm 7Rn = = = m,2s Un 22
P (72) () 23Std (vm,2) Std (vn2) 230%,2‘7721,2 o (Wntnz)  (22)

Adopting a similar approach, we may demonstrate that the Haar wavelet scal-
ing correlation is equivalent to the aggregated data correlation at any horizon
T] = 2J7

p (R (11), Rn (77)) = p (U7, Vn,7) (23)
O
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Proof of Proposition 2.
The estimation of cross- and serial-correlations from non-synchronous data has
long been of interest (de Jong and Nijman, 1997; Lo and MacKinlay, 1990). Fol-
lowing Cohen et al. (1983), we outline how horizon 7; cross-correlation may be
written as a function of original (1 day) correlation with a correction for serial and
cross-serial correlation. Applying proposition 1, long-run wavelet scaling correla-
tion are then related to original (1 day) correlation with correction terms.
Assume that changes (returns) in two sets of stationary, finite variance time

series of returns {R,,} and {R,} are additive. In other words, by summing over

1
n,t’

non-overlapping individual returns 7“1ln¢ and 7, ,, at the shortest interval (daily

return intervals in this study), we achieve a 7;-day return,
7i—1
1
R{m,n},t (7-1) = Z r{m,n},Tjtfi (24)

1=0

The aggregated 7; day covariance between R,, and R, is then given by

Omn (15) = Cov [r# (75) 77"711 (Tj)]

The diagonal elements of the time-covariance matrix o,,, (7;) are each equal
to the contemporaneous covariance between rl and r! at the base horizon (1
day in our analysis). The off-diagonal covariances are leading and lagging cross-

covariances. Assuming stationarity, all covariances where the lead and lag, s = i —
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k, are the same are equal and there are (7; — s) of these (Similarly, for —s = i—k).

Considering the various component elements of o,,, (7;), we can write

- 1 _ 1,1
1=k Cov [ Tnyr;—is Ty — k} =Cov [r},, 7]
1>k Cov |r rk =Cov |r} r!
) mT - 'nri—k| T m,7j—1) ' n,7j—(i—s)

k> Cov|rh oo o] = s (i) o (7h) 0w (1)

For brevity, we drop the common T%m n} notation and then substitute each term

into Equation 25, giving

7;—1 T;—1

Omn (Tj) = Tjo-mn + Z - S pmno-n + Z - S pmno-m (26)

3 _ O
Since 0,0, =

mn and 7, at horizon 7; is
Pmn

Omn (Tj) = Omn (1)

i
i+ Z p— (7 — 5)] (27)

s=1

Similarly, the variance of an aggregated time series at horizon 7; can be written as

T2 pn (- 8)] (28)

Combining equations 28, 27 and 23, the aggregated correlation between returns

rm and 7, at horizon 7; = 27 can be expressed as a function of the original (one
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day) time series cross-correlation plus a correction as follows:

’Tj—l B s
Tj _|_ Z (Pmn +Pmn )
s=1

Pmn

Pmn (Tj) = Pmn (1> X 1 1
Ti Ti

(Tj+2 > /);"’n) (Tj+2 > p;i)
s=1 s=1

Proposition 1 demonstrated that wavelet long-run correlation between two time

series is equivalent to aggregated correlation at the same horizon. Applying propo-
sition 1, we write the wavelet scaling correlation in terms of correlation between
original (one day, r%m n}) time series plus a correction for leading and lagging serial

and cross-serial correlation,

P (Vmry,Ung) = p(Bn (), Ra (7)) (29)
Ti—1 s(pl pl —s T}nﬂ“}z
ERp (p i )))
pn (1) — — (30)
<TJ +2X 0 (T#)) (TJ +23 0 (n%))
s=1 s=1
]
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Equally Weighted Risk Reduction at Different Horizons (World Markets 1980-2011)
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Figure 1: Risk Reduction at a Range of Time Horizons for Differing Portfolio Sizes
(1980 — 2011).

The average risk of a portfolio made up of a number of randomly chosen assets is measured
as a proportion of the average variance of a single randomly chosen asset. The Daubechies
wavelet scaling coefficients are used to decompose returns data into the range of horizons detailed.
Portfolio risk is determined using all available data for each asset from 1980 —2011. A simulation
approach is applied, with risk averaged over 10,000 randomly generated portfolios for each
portfolio size.

48



‘€ JO JUIOIR0D

UOISI9AR YSII B SUIUNSSE 9peW I8 SUOIJEIO[[e dOURIIEA UWRSA "UOZLIOY [OBd }e POJe[NI[ed UL} oI SUOIIR[OII0D UNI-SUO] pUe ‘Pa[lejop SUOZLIOY JO oSuel
9} OJUI BJEP SUINIDI 950dUI0DSP 0} PAsh dIe SJUSIDIJO0d SUI[RIS J9[oARM SOTUIdqNE(] 9Y ], "}I0Y0d [Ded UIYIM PIJRUIIISe UINGOI WU PUR SOUBIIBAOD [IIM
1108-L00Z ‘L00G-€00T ‘€008-66616661-G66T ‘G661-C66T ‘T66T-886T L8GT-FSET ‘€86T-086T SIOYOD SUIMO[[O] S} UL SISTIUOL JUSIDIJS ddURLIEA-UEIW (Aep
) mozLioy 110ys pur (Aep ggT) UOZLIOY SUO[ o1} djeIisuowop sjofd SUIMOT[0] o], "SARD Q7] PUR g€ ‘F JO SUOZLIOY e T1(Z-086T WO ©yep Sulsn IS1IUoI]
JUSIOIJO 9OURLIBA-URIW 91} SMOUS oINSy doj 9y, 'S}I0Y0D PuR SUOZLIOY JO 9SURI B SSOIDE PIJR[NI[ed 9T SISIJUOI] JUSIIPo ddUeLIBA-URIW paseq ojdureg
‘(IT0Z-0861) SUOZLIOH JUSISHIP € SISTJUOIL] JUSIOUJH SoURLIBA -URSIA] :g oIN3I]

(%) sty (%) st
jeis] 0s 14 o Ge (0 o4 (074 ST (013 8T 9T VT 1% 0T 8 9
T T T T T T T T T O T T T T T T OH
uozioH Aeq@ 8zt 2 uozuoH Aeq 8zT oz 2
uozuoH Aeq v \\\\ s w. uozioH Aeq v m.
=}
0T \o/w o€ %
ST ov
(TTOZ-2002) SUOZIIOH Juaiayid 1e Januo.- JUsIdlT dueLieA-UeaN (£00Z-£002) SuoziI0H Juaiayid Te JaNuoiH U1l souelleA-Ues N
(%) sty (%) d1s1y
L1 9T ST v €T et 1T 0T 6 8 L 8T 9T V1 T 0T 8 9
r T T T T T T T T T G- T T T T T T 0T
uozloH Aeq 82T 1o w u0zZIIOH Aeq 82T W
uozyoH Aed 5 uoziioH Aeq ST g
B =}
) s 3 3
-0T
(£002-666T) SUOZLIOH Jualayld Ye 1a1uoi- JUBIT soueleA-UBS (666T—966T) SUOZLIOH JuaIayld ¥e 131U0I- BT douelBA-UBS
(%) sty (%) M1s1y
¢t T 0T 6 8 L 9 S ST V1 €T T 1T oT 6 8 L 9
T T T T T T T O T T T T T T T T T OH
:o“_mw”_o%m%ma Jot W uozioH Aeq 8zt o1 W
uoH Aeq v \\\\\ 5 uozuoH Aeq ¥ s
—0¢ % 0c¢ 3
-0¢g 14
(S66T—266T) SUOZLIOH JuaJayid e 181luoi- JUBIoIYT SdueLeA-UBSN (T66T—886T) SUOZLIOH 1UaJaYIQ Te Janu0i- JUaIdLg doueLeA-UBS\
(%) sty (%) M1s1y
S€ 0€ 14 0C ST 0T S [44 0C 8T 9T vT 4 ot 8 9
r T T T T T 0 r T T T T T T T 0¢-
uozlioH Aeq 8zT 0z % uozlioH Aeq 82T 1o mm
uozioH Aeq v \\\ m uozioH Aeq v \\\\ m
014 % —10¢ %
09 - ov
(286T-786T) SUOZLIOH Jualayld Ye 1a1uoI- JUBIOWT soueeA-UBS N %) (€86T—-086T) SUOZLIOH JuIayI( ¥e 131UOI- BT doUBLBA-UBS
%) sid
ve €c (44 114 (014 6T 8T LT 9T ST 71 €T
| , , , , , , , , | , 8
uozioH Ae@ 8ZT 3
uozloH Aeq zg — 0T m
uozioH Aeq ¥ S

(TTOZ-086T) SUOZLIOH JUBIBHIA Te JONUOIS JUBIDYT SOUBLIEA-UEI

49



Equally Weighted Risk Reduction at Different Horizons Using Sub-Sampled Data (World Markets 1980-2011)

—— QOriginal Data
—— 4 Day Horizon
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——+— 16 Day Horizon
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—+— 128 Day Horizon

Risk Proportion

| |
0 2 4 6 g 10 12 14 16 18 20
Number of Assets in Portfolio

Figure 3: Risk Reduction at a Range of Sub-Sampled Time Horizons for Differing
Portfolio Sizes (1980 — 2011).

The average risk of a portfolio made up of a number of randomly chosen assets is measured as a
proportion of the average risk of a single randomly chosen asset. Subsampled returns are created
by sampling the original data. Portfolio risk is determined using all available data for each asset
from 1980 — 2011. A simulation approach is applied, with risk averaged over 10,000 randomly
generated portfolios for each portfolio size.
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(i) Modelled 7 Horizon Average Correlations

Horizon
No of Intertemporal Lags | Original 4 8 16 32 64 128
0 0.381 0.381 0.381 0.381 0.381 0.381 0.381
3 0.443 0.454 0.460 0.462 0.464 0.464
7 0.469 0.481 0.488 0.491 0.492
15 0.493 0.509 0.517 0.521
31 0.521 0.545 0.556
63 0.543 0.549
127 0.563
(ii) Measured Long-Run Average Correlations
Horizon
Return Interval ‘ Original 4 8 16 32 64 128

Average Correlation

Table 7: Modelled 7-Horizon Long-Run Correlations for Different Intertemporal

Lags.

Notes: Long horizon average 7-Day correlations between each pair of international equity in-
dices is modelled using equation 12. The imputed correlation incorporates the contemporaneous
correlation between each market in additional to a range of lagged and leading correlations, cal-
culated using wavelet smooth. The number of intertemporal lags indicates the number of lagged
and leading intertemporal variances and covariances used to impute the 7-Horizon correlation.
Measured Correlations are found using wavelet scaling coefficients at different horizons. Correla-
tions are modelled for each pair of international equity markets individually and then averaged

cross-sectionally.

0.381 0.434 0.466 0.499 0.519 0.537 0.548
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Average Average
Horizon (Months) || U.S. Correlation World Correlation

4 0.637 0.548
[0.545, 0.715] [0.441 ,0.639]

8 0.675 0.595
[0.589, 0.747] [0.495 ,0.680]

16 0.726 0.632
[0.649, 0.789] [0.536 ,0.712]

32 0.706 0.646
[0.621, 0.776] [0.546 ,0.729]

64 0.721 0.720
[0.614, 0.803] [0.609 ,0.804]

Original Daily 0.244 0.400
(daily) [0.224, 0.264] [0.382, 0.418]

Jennrich Test

P-value

P-value

Table 9: Average Unconditional Wavelet Long-Run Correlation between International Markets

0.00

0.00

(1980-2011) for Monthly Base Data.

Notes: The average unconditional correlation between a range of world equity markets is calculated at different
time horizons using data from 1980-2011. Monthly sub-sampled data is used as the base-data set upon which
the wavelet transform is applied. The Daubechies MODWT scaling filter of length 8 is used to decompose
returns data into the range of horizons detailed, and long-run correlations are then calculated at each horizon.
Correlations found using the original untransformed daily data are also shown. The equality of correlation
matrices constructed using short and long horizon data is tested using the Jennrich test. 95% confidence

intervals are shown below each correlation.
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Equality of 64 Month and Original Correlation Matrices

0.00

Equality of 64 Month and 4 Month Correlation Matrices

0.00
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