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Abstract

This paper investigates the sensitivity of higher-order co-moments for different
return measurement intervals. The levels of systematic skewness and kurtosis are
found to be significantly influenced by the length of return interval. An asset pre-
ferred because of its positive co-skewness and low co-kurtosis when measured in
one particular interval may have negative co-skewness or high co-kurtosis for an-
other interval. We find the intervaling effect varies according to the level of price
adjustment delay as proxied by market capitalization and illiquidity. Findings per-
sist for intervals of up to twelve months, and are consistent during both volatile

and stable periods.
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1. Introduction

An extensive literature has provided evidence that systematic skewness and
systematic kurtosis' further characterize the risk of an individual security relative
to the market, thus supplementing the capital asset pricing model (CAPM) (see,
for example, Hung et al., 2014; Kostakis et al., 2012; Kraus and Litzenberger,
1976). These higher-order co-moments have been widely applied to security pric-
ing (Conrad et al., 2013; Kostakis et al., 2012), and optimal portfolio allocation
(Jondeau and Rockinger, 2012; Martellini and Ziemann, 2010). Among current
empirical studies, however, minimal consideration is given to the appropriate re-
turn interval for the calculation of higher-order moment parameters. In this paper,
we find that the return interval plays a central role in the estimation of higher-order
co-moments and is also significantly related to the delay of securities in adjusting
prices to market wide information.

A long line of research considers the effect of the investment interval on the
estimation of financial parameters, often referred to as the intervaling effect.? Pri-
marily, the systematic risk (beta or ) of an asset or a portfolio changes as the
interval alters, when the single-factor model or Sharpe-Lintner CAPM is applied
(Gilbert et al., 2014; Perron et al., 2013; Gengay et al., 2005; Handa et al., 1989;
Hawawini, 1980b; Cohen et al., 1980; Levhari and Levy, 1977). A considerable
body of work has also yielded similar intervaling effects, for example, in exam-
ining common risk factors when the Fama-French three-factor model is consid-
ered (Kamara et al., 2015; Brennan and Zhang, 2013), in utilizing the GARCH-M
framework through the use of the conditional CAPM (Brailsford and Faff, 1997),
and in inspecting the multi-index return generating process underlying the Arbi-

trage Pricing Theory (Parhizgari et al., 1993).
TABLE 1 ABOUT HERE

Nonetheless, there is little, if any, literature that has considered the impact

I'Systematic skewness (kurtosis), is defined as the component of an asset’s skewness (kurtosis)
that is related to the market portfolio’s skewness (kurtosis) respectively. Section 2 has more details.

2This effect has been named alternatively: the interval effect, the investment interval problem,
the holding period problem, etc. In this research we will refer to it as the intervaling effect. The
interval is the time frequency of the data, e.g. daily, weekly, monthly, quarterly, annual, etc.
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of the return interval on higher-order co-moments.> For example, Table 1 de-
scribes 24 papers which are published in top peer-reviewed journals covering our
sample period. Monthly or daily returns are widely used and without further ex-
planation. We contribute to the literature by considering the intervaling effect
on systematic skewness (denoted as co-skewness, gamma or ¥) and systematic
kurtosis (denoted as co-kurtosis, delta or ). This is of particular relevance for
empirical estimation of higher-order parameters. First, the skewness and kurtosis
of financial asset returns have long been shown to display significant variation as
a function of the measurement return interval (Hawawini, 1980a; Smith, 1978;
Francis, 1975; Fogler and Radcliffe, 1974).4 Gamma and delta measure the con-
tribution of skewness and kurtosis of the market portfolio to asset returns, respec-
tively. Second, recent literature suggests that most common risk factors, such as
the well-known Fama-French factors, are interval dependent (Kamara et al., 2015;
Brennan and Zhang, 2013). These risk factors have been found to act as proxies
for the higher-order pricing factors, (Nguyen and Puri, 2009; Chung and Schill,
20006), suggesting that the intervaling effect should carry through to higher-order
co-moments.

In this paper, we find that systematic skewness and kurtosis are highly sensi-
tive to the length of the return interval. Significant differences between estimated
gammas and deltas across distinct sampling intervals are detailed. The intervaling
effect on gamma is approximately ten times stronger than that found for delta.
Moreover, we find that the parameter sign associated with gamma differs from
interval to interval. This finding is consistent with previous empirical evidence on
the changing signs of financial returns’ skewness, when different sampling inter-

vals are considered (Lau and Wingender, 1989; Hawawini, 1980a).

30ne exception is Galagedera and Maharaj (2008) who investigate the association between
portfolio returns and higher-order co-moments at different time-scales for Australian industry
portfolios only. Moreover, they do not consider stock level parameters or the possibility that
information delays might be associated with the intervaling effect.

4Among these, Hawawini (1980a) identifies the factors that determine the direction and the
strength of this effect mathematically, explaining earlier contradictory empirical observations. The
author demonstrates that the behavior of skewness in response to changes in the length of the
differencing interval is a function of both the signs and magnitudes of the skewness, and coefficient
of variation measured over the one-day interval.



The existing literature attributes the intervaling effect to frictions in the trad-
ing process, such as price delay (Kamara et al., 2015; Corhay, 1992; Handa et al.,
1989; Cohen et al., 1983b). Moreover, the effect has been linked to the frequency
of trading on a structural level (Dimson and Marsh, 1983; Dimson, 1979; Sc-
holes and Williams, 1977). Different delays in the adjustment of securities’ prices
to a change in market wide information induce serial cross-correlation between
security returns and market returns. The parameter estimation for higher-order
co-moments may be biased due to four underlying aspects. First, there is serial
correlation in individual securities’ returns. Second, serial correlation also exists
in market returns. Third, the relative levels of the two serial correlations may be
different. Finally, the level of serial correlation may alter for different sampling
intervals. In general, the greater the expected trading delay of a security relative
to the (equal or value-) weighted average trading delay in the market index, the
greater the sensitivity of co-moments to the measurement interval.

To investigate this for the higher co-moments, we first explore the term struc-
ture of estimated gammas and deltas across different intervals, by forming port-
folios based on firms’ market capitalizations. The speed of pricing adjustment
for larger firms is greater than that for small counterparts (Theobald and Yallup,
2004).°> We find that for all securities whose firm sizes are greater (less) than
the market average, the magnitude of the intervaling effect on co-moments are
positively (inversely) related to their market capitalization. Moreover, the esti-
mated deltas of securities for relatively smaller firms are found to shrink as re-
turn intervals shorten, while the securities of larger companies display generally
increasing deltas. Our results are robust to the methods used to construct the mar-
ket index. Further, the intervaling effect on co-moments computed from using
equal-weighted market index is stronger than that using a similarly constructed
value-weighted index.

Studies document that the intervaling effect, as a consequence of delays in the

>Theobald and Yallup (2004) establish the lead/lag relationship and demonstrate that large
firms have higher speeds of adjustment than small firms. Their results are consistent with a number
of other papers, such as Jegadeesh and Titman (1995) and Lo and MacKinlay (1990), which have
established and investigated the lead/lag effects across size sorted portfolios and shown that large
capitalisation stocks lead small capitalisation stocks.



trading process, may also be linked to liquidity. For example, Kamara et al. (2015)
and Brennan and Zhang (2013) find that less liquid securities have greater adjust-
ment delays than frequently traded securities. Using Amihud’s (2002) illiquidity-
sorted portfolios, our results suggest that for all security with greater (less)-than-
average liquidity relative to the market portfolio, the magnitude of the intervaling
effect on their co-moments are increasing (decreasing) with the level of liquidity.

We also test the robustness of our results to several possible concerns. Previ-
ous studies test the intervaling effect using longer intervals (Perron et al., 2013;
Handa et al., 1989), using data from different subperiods, or using securities se-
lected on the basis of their continuous presence during the whole period (Corhay,
1992). We find our results are robust in all these situations. We also reveal that
the intervaling effect on higher-order co-moments exists during both low-risk and
high-risk periods.

Our findings for the impact of the sampling interval on co-moments is im-
portant for both portfolio selection and asset pricing. Risk-averse investors pre-
fer stocks with lower betas and deltas (Hung et al., 2014; Kostakis et al., 2012;
Dittmar, 2002). We show that an asset which has smaller than average betas and
deltas using a particular sampling interval may have larger than average estimates
when measured using another interval. Moreover, investors’ preference for pos-
itive skewness typically leads to a desire for positive and higher gammas, which
represent higher probabilities of extreme positive returns in the security relative to
market returns. Our findings suggest that an asset which is selected for a portfolio
based on its positive gamma using one measurement interval may have negative
gamma when using another interval, with resultant implications for asset and port-
folio selection. Furthermore, since systematic skewness and kurtosis are interval
dependent, the measured risk premia of these moment-related risk factors in the
higher-order moment capital asset pricing model and their explanatory power may
also be sensitive to the measurement interval.

The remainder of this paper is organized as follows. Section 2 describes the
methodology applied to derive the co-moments and measures to capture the mag-
nitude of the intervaling effect. Section 3 introduces data for each test and port-
folio formation. Section 4 details the main empirical results and describes some

robustness checks. Concluding comments are given in Section 5.



2. Test Methodology

2.1. Construction of Co-moments and Four-moment CAPM

The Sharpe-Lintner CAPM is strongly reliant on a variety of assumptions.
Among them, the normality of returns is often argued as the crucial assumption.
However, the returns of an asset or a portfolio tend to have negative skewness
and their tails are often fatter than those implied by a normal distribution. Thus,
moments of returns higher than variance are central to maximizing investors’
expected utility. Progressively, Rubinstein (1973) and Kraus and Litzenberger
(1976) extend the static CAPM to nonlinear forms of the risk-return trade-off
by considering systematic skewness. Building on this, Fang and Lai (1997) and
Dittmar (2002) suggest a four-moment capital asset pricing model by including
co-kurtosis.

As a starting point, we will also follow Kraus and Litzenberger (1976) theo-
retical framework. Given W as the end of period wealth, an investor’s expected
utility (E[U(W)]) can be expressed by using a Taylor series expansion to the n'”
order around mean wealth (W), approximated as:

-
vl ),WE[(VV -W) (1)

n

E[U(W)] = io

where U™WW is the n'" derivative of the utility U (W) evaluated at the mean of
the investors terminal wealth. Thus, the expected return of asset i in excess of the
risk-free rate Ry is equal to the weighted sum of co-moments, with the weights

reflecting measures of an investor’s risk aversion:

> —yn
ER]-Ry=Y

= (n— 1)!E[U/(W)]Cin(Ri,W) )

where R; is the return on risky asset i. Cj, (Ri,W) stands for the n'" co-moment
of risky asset i with the investor’s wealth portfolio, defining the contribution of
a marginal increase in the holdings of the security to the corresponding central
moments of the investor’s future wealth.

In this paper, we consider the first four central moments and adjust them to

different sampling interval lengths. At the aggregate market level, the standard
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deviation, skewness, and kurtosis of the market portfolio M measured by an L-

day interval are given by oy 1., Sm 1, and Ky 1, shown below

om, = E[(Rur —Rup)*"?
Sur = E[(Rur —Rur)’]"? 3)
Ky = E[(Ruz —Run) ]

where Ry p is the L-day return on the market portfolio and Ry 1 is the mean
value during the sample period. Biy 1, Yim ., and Sz 1, are measures of systematic
variance, skewness and kurtosis of the risky asset i with respect to the market

portfolio M and are given by

E[(Rir —Rir)(Rmr—Rumr)]
E[(RyL—Ru.)?]
E[(RiL—Rir)(Rmr —Rump)?]

Bimr=Ci(Rir,Rur) =

Ymr = Ci3(RiL,RmL) = — 4)
l S E[(Rur—Ru.L)’]
E[(Riz—Rir)(Rur—RuL)?
Om. = Cis(Rir,RuL) = (Riz — Ry )( L 7 ur)]
E[(Rm,L — Ry,)?]
The excess return on the i asset is®
RiL—Rep = AgBisr+ AyYimr + AsGim L (5)

where the coefficients lﬁ, Ay, and A are the risk premia (factor exposures). Equa-
tion 5 is referred to as the four-moment pricing model (hereafter 4AM-CAPM) in

this paper.

The existing literature expands the investor’s expected utility of end-of-period wealth to higher
moments by using Taylor series expressions. Then, the Lagrangian approach is used to maximize
the investor’s expected utility of end of period wealth, subject to a budget constraint. Finally,
the higher-order risk-return equilibrium conditions are formed. In our study, we follow the same
theoretical framework. We assume that the investor’s expected utility is the same for a given
wealth level measured using different sampling intervals.



2.2. A Correction to Beta, Gamma and Delta Estimates

We estimate individual betas, gammas and deltas based on the definitions pro-
vided in Equation 4 using non-overlapping logarithmic returns measured across
different intervals. At this stage, a correction approach for co-moment estimation
is applied to deal with seasonality.” Since a return for a specific interval length is
measured as the difference between the first and last logarithm of prices (R;; =
In[P¢] —In[P;;_r)]), price moves between these two days (e.g. Pi—1), " Pi—r+1))
are wiped out. Hence, a large number of substantial price moves that could have
significant impact on the estimates will be ignored, if we use return intervals with
longer lengths.

The correction consists in computing each parameter (beta, gamma or delta)
in Equation 4 a total of L times for an interval of length L, and then calculat-
ing an average estimate. Such a procedure allows us to avoid bias in estimating

parameters. Thus, the equations become:

L
.BiM,L = Z ﬁiM,L,n/L
n=1

L
Yimr = Z Yim,Ln/L (6)

n=1

L
Simr =Y SimLn/L
n=1

All co-moments are first computed for returns of interval length L using the com-
plete series of daily returns. Then, the first daily return is deleted, the returns
of interval length L are recalculated with the remaining observations and beta,

gamma and delta are computed again and so forth until repeated L times.

"This method is first suggested by Corhay (1992). Corhay indicates that the estimated betas
and their speed of convergence to the asymptotic value depend on which day the differencing
interval starts. He demonstrates that betas estimated using Monday to Monday weekly returns
are always larger than those estimated using Friday to Friday weekly returns, due to seasonality.
Recent studies such as Hong and Satchell (2014) also suggest that a correction of beta is necessary
to better discern the convergence of the beta coefficient, if additive returns are used.



2.3. Ordinary Least Squares Coefficients

In the section above, we develop a methodology to calculate higher order mo-
ment parameters using individual moment characteristics. However, a portion
of empirical tests on the intervaling effect rely on estimates of Ordinary Least
Squares (OLS) regressions, instead of using the mathematical definition shown
in Equation 4. The literature attempts to represent the higher moments through a
simple polynomial functional relation between the returns of an asset or a port-
folio and the market index (e.g. Lambert and Hiibner, 2013; Doan et al., 2014;
Kostakis et al., 2012), given byS:

Rir—Rer =001+ 01(Rur—Rpr) + 920 (R — Ry ) + 030 (R —Rur)’ + &1
(7)

Many studies directly use the three coefficients, ¢;;, ¢», and ¢35, in Equation

7, as proxies for the betas, gammas and deltas respectively. However, although
this cubic market model is consistent with the 4M-CAPM, the estimated coeffi-
cients of the OLS regression for Equation 7 are inherently different from those
corresponding systematic measures. If the asset returns conform to Equation 7,
the systematic risk measures of the 4AM-CAPM, Biys 1, Yim. L, and s 1, respectively,

8 Although polynomial regressions fit a nonlinear model to the data, as a statistical estimation
problem it is linear, in the sense that the regression function E(y|x) is linear in the unknown
parameters that are estimated from the data. For this reason, a polynomial regression is considered
to be a special case of multiple linear regression. See Lambert and Hiibner (2013) for more detail.



are linear combinations of the estimated coefficients gi31, L, ¢32y 1, and (133, 2

~ E(Ryp —Rur)*
+ 5L ( = )2
E(Ryr—Rur)
YimL = PrL+ P2L E(Ryi—RoL)?
-5 E(RyL—Rur)’ —ERur—Rur) E(Ryr—Rur)?
t E(Ry—RuL)?
SrL = Oh1+ ¢ZALE(RM,L ~Rm1)’ —ERyL—Ru1)*E(Ryr—Rur)?
L - —
' ’ ’ E(Ry,. — Ry n)*
N ¢§LE(RM,L —Ru1)® — [E(RyL — Ru1)’)?
’ E(Ry. —Rm.)*

~ ~ E(RML — EM L)3
Bmr= 1.+ 21 —
l E(Ry.—Rup)?

)

For robustness, we further apply the regression approach over the different in-
tervals. We refer to the beta, gamma and delta estimated by this approach as OLS
estimated beta, gamma and delta. The OLS regression and linear combination
calculations will also be repeated L times for a sampling interval of length L to

remove any effect of seasonality.

2.4. Sensitivity to the Measurement Interval

The extant literature considering the intervaling effect has not specified a test
to measure the strength of the intervaling effect. The one-way analysis of variance
(ANOVA1) is the most commonly used approach. However, tests of significance
for ANOVAL are known to be valid only if the observations are assumed to be
normally distributed or have equal variances. Both of these assumptions may be
violated in studies related to the intervaling effect.

Therefore, we augment the use of ANOVAI, with a series of parametric and
non-parametric tests. First, rather than testing the betas, gammas and deltas di-
rectly, we will explore the performance of ratios of estimates. For example,

Ratio’f 1, is the ratio between 1-day gamma and monthly gamma of the same

“Hung (2008) and Rubinstein et al. (2006) both document the mathematical proof of Equation
8 and show that the cubic market model is consistent with the four-moment asset pricing model.

10



firm.!%!! Using this framework, if there is no intervaling effect, all ratios are
equivalent (equal to 1), while the alternative hypothesis is that at least one group
of ratios is significantly different from 1.

Second, we use the parametric ANOVAI, the Kruskal-Wallis non-parametric
ANOVAL test, the Wilcoxon-Mann-Whitney rank-sum test, and the Wilcoxon
signed-rank test to test the magnitudes of the betas, gammas and deltas. We deter-
mine whether there are significant variations across different sampling intervals.
Furthermore, we use a sign variation test to check if the signs of gamma also
change. We retain the ANOVAL test due to its wide application in previous litera-
ture, but a Bartlett’s test for equal variances is also considered.!? Therefore, if the
equality of variance is significantly rejected, we will focus on the non-parametric
tests mentioned above to validate findings.

Third, to quantify the magnitude of the intervaling effect, we define an intu-

itive variable, referred to as SAD, as the sum of the absolute differences between

10Using ratios has several advantages. Most importantly, we can easily hypothesise that they
are equal to 1 if there is no intervaling effect on the systematic measures. A ratio greater than
one indicates an upward intervaling effect, and vice versa. A negative ratio indicates the signs of
estimates are affected by the sampling interval used. Moreover, the coefficients estimated across
different intervals may not be independent, while even non-parametric tests require independent
random samples. We can compare the estimates with a sample of ones instead. Using ratios also
allows us to compare the intervaling effect on three systematic measures, even if the magnitudes
of the betas, gammas and deltas are considerably different. See Brennan and Zhang (2013) for
further details.

"'The choice of denominator in estimates has no impact in applying the ratio analysis. We use
monthly returns in our paper since they are most widely applied in recent asset pricing studies.
Moreover, literature on the intervaling effect also suggests that monthly estimates are very close
to the “true” values.

12Results of the analysis of variance may not change appreciably in the face of moderate vio-
lations of the assumptions. However, even if the assumptions are not valid, one may still use the
calculated F-statistics as relative measures of the treatments being considered.
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other interval estimates and monthly estimates:

L _ p—
SADg =Y " |Bissn— Bini.L,,
n
L
SADy =Y |Yivgn — Vi, ©)
n
L p— p—
SADs =Y |8issn — SimiL,

n

where BZM’”, Yim,, and Sim,n are the corrected beta, gamma and delta measured
by n — day interval and L,, stands for the length of a business month. The SAD
quantitatively captures the aggregate tendency of all estimates of beta, gamma and
delta to vary from that measured at a monthly interval. If there is no intervaling
effect, the SAD should be zero.

2.5. Test Hypotheses

The empirical tests proceed as follows. First, we examine the overall inter-
valing effect on individual betas, gammas and deltas, regardless of firm character-
istics. Second, we sort individual firms into portfolios according to their market
capitalization and liquidity, as proxies of price delay, and explore the sensitivities
of portfolio mean beta, gamma and delta to the measurement interval.

We test the following hypotheses on examining the intervaling effect, espe-

cially on co-skewness and co-kurtosis.

Hypothesis 1a. The magnitudes of estimated beta, gammas and deltas are invari-

ant to the length of the sampling interval used to compute returns.

This can be formulated as:

. : S
Hy: VL RatioEL = M =1, Ratio’L/L — ML _ 1 and Rationg = ML
L Bivr, YL, : OiM. L,
. : S
Hy: 3L s.t. RatioEL = M #1, RatiozL _ VL #1 and/or Ratio?Lm = ML # 1
L Bivr, YL, : OiM, L,

(10)

where L is the length of one specific interval and L, stands for the length of a

business month (assumed to be 20 business days in this paper). Alternatively,
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with SADs calculated using individual betas, gammas and deltas, we can also test

this hypothesis by assuming a null of
Hy: SADg =0, SADy=0 and SADs=0 (11)

Hypothesis 1b. The signs of estimated gammas are invariant to the length of the

sampling interval used to compute returns.

Specifically, the literature suggests that the sign of skewness will also change
due to different sampling intervals used (Lau and Wingender, 1989; Hawawini,
1980b). Building on this, we test whether the sign of systematic co-skewness
changes from one interval to another. For two gammas with opposite signs, the
resultant ratio will be negative. Thus, the hypothesis regarding the sign of gamma

can also be formulated as:

<0 (12)

Furthermore, we test whether the intervaling effect is more prevalent among
stocks with distinct characteristics. In particular, larger or more liquid firms have
relatively less price delay in adjusting to market information (Kamara et al., 2015;
Theobald and Yallup, 2004; Corhay, 1992). We then describe our null hypotheses

as:

Hypothesis 2. The magnitude of the intervaling effect on beta, gamma and delta
is invariant to the security’s price delay (using market capitalization and Amihud

illiquidity as proxies).

Therefore, for any two firms X and Y with different levels of market capital-

ization or liquidity (or illiquidity), the null hypothesis is:
HO : SADB,X = SAD/gyy, SADY’X = SAD%Y and SAD&X = SAD&Y (13)

where SADlg’ x» SADy x and SAD,y correspond to the sum of absolute differences
of systematic variance, skewness and kurtosis for Firm X and Y, respectively. A

non-zero SAD corresponds to an intervaling effect.
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3. Data and Portfolios

3.1. The Sample

To examine the intervaling effect on systematic skewness and kurtosis, we
use stocks listed on the Center for Research in Security Prices (CRSP) daily tape
with share codes 10 or 11 for the period 01/02/1990 to 12/31/2013'3. Alongside
prices, the total market capitalization and trading volumes of outstanding shares
are also collected. Non-overlapping logarithmic returns are calculated for nine
sampling intervals: 1, 2, 3, 4, 5, 10, 20, 65 and 125 business days. These intervals
encompass the majority of regular measurement intervals used both in practice
and in the literature: daily, weekly, monthly, quarterly, and semi-annually.

To test Hypothesis 1a and 1b, we have nine samples corresponding to the nine
sampling intervals. For all intervals, we use value-weighted returns as the market
index.'* The risk free rate is the (compounded) three-month T-bill rate, and we
will scale the rate for each sampling interval.> To ensure a sufficient number of
observations for each interval, we drop those stocks with less than five years of
daily returns (at least ten observations for all individual stocks measured using the

125-day interval). This results in a total of 8088 securities in our sample.

3.2. Price-delay Sorted Portfolios

The existing literature has documented that prices adjust following the arrival
of information, and that adjustment delays are inversely related to the size and
trading liquidity of firms (Lin et al., 2014; Hou and Moskowitz, 2005). Larger
and more liquid firms have less delay in pricing adjustment to market informa-

tion. For this reason, we sort all stocks into 20 equally sized portfolios by market

B3Daily returns on the CRSP file are recorded since July 1962. However, we mainly use data
starting from 1990 since there is a great proportion of data missing for most securities on CRSP
daily tape before 1990, which may significantly affected our following constructions and tests on
individual securities. The results based on the full data range can be obtained on request.

l43We do not use the CRSP index as our market index because its returns are not logarithmic,
and therefore are not additive. Our daily market returns are reasonable and closely track the daily
CRSP index having a correlation coefficient of 0.994.

I5This may cause a reduction in the accuracy of estimates. However, we focus on the magni-
tudes of betas, gammas and deltas. The risk free rate is not involved in calculating the estimates
based on their definitions (Equation 4.) The risk free rate is used in the OLS regression on the
cubic market model, but will be omitted when computing the betas, gammas and deltas as well.
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capitalizations (MC portfolios) and Amihud (2002) illiquidity ratios (AR portfo-
lios), respectively. The Amihud ratio is one of the most widely used illiquidity
proxies in recent literature.'® It is expected to be positively related to the delay
in price adjustment. In other words, the intervaling effect is expected to be more
evident in more illiquid stocks.

Our set-up for portfolios to test Hypothesis 2 is similar to those in Perron
et al. (2013) and Handa et al. (1989). For size sorted portfolios, we reassign
securities on an annual base into 20 portfolios according to their average market
capitalization ranks.!” The first, MC1, contains the smallest 5% of firms and
the last, MC20, contains the largest 5%. For each MC portfolio, we estimate
all individual betas, gammas and deltas using each stock’s one-year returns and
re-estimate them each year from 1990 to 2013. Then we calculate value or equal-
weighted co-moments as the estimates for each portfolio. To ensure an adequate
number of observations when using one year of data, we consider the first seven
sampling intervals: 1, 2, 3, 4, 5, 10, and 20 days.18

The Amihud illiquidity measure captures the daily price response associated

with one dollar of trading volume:

. 7|
Amihud = A 14

S verase [Dollar Volume; (14)
The average is only calculated over positive-volume days. Thus, for Amihud-
ratio sorted portfolios, the first, AR, contains the smallest 5% Amihud ratios
(highest liquidity) of the firms and the last, AR20, contains the largest 5% (lowest
liquidity). We also calculate the annual means of Amihud ratios and reassign AR

portfolios each year from 1990 to 2013.

16The estimates for portfolios formed on the basis of other liquidity measures such as Amivest
ratios, bid-ask spreads and volume of trading of the securities are also calculated, but as their
results do not significantly differ from those obtained with the market capitalization, they are not
presented.

70ur portfolio composition changes each year, since firms’ average market capitalizations are
re-ranked and firms enter and leave the sample as a result of listing, delisting, mergers, and the
like.

8We also check the robustness of our results by using longer intervals in Section 4.3.
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3.3. Normality Tests and Summary Statistics

To get an idea of the statistical properties of the data under examination, Table
2 details Jarque-Bera statistics and corresponding p-values from tests of normality
of the returns for the market index, our data sample and for portfolios formed
according to market-capitalization or to their Amihud ratios. The results from tests
on returns of different intervals suggest that higher frequency returns data tend to
be more skewed and leptokurtic, while returns measured by longer-interval data
are usually better represented by a normal distribution. This finding is consistent
with existing literature (e.g. Hung, 2008; Chung and Schill, 2006).

TABLE 2 ABOUT HERE

The Jarque-Bera test rejects the assumption of normally distributed returns for
the market index and weighted average returns for all intervals at a 95% level.
Considering portfolios formed using market capitalization and Amihud liquidity,
contrasting results are found. For 1-day up to 20-day intervals, the normality of
portfolio returns are significantly rejected at the 99% level. At the longest inter-
vals examined, normality cannot be consistently rejected. In particular, for the
smallest and least liquid stocks, the assumption of normality cannot be rejected.
Moreover, for the portfolios containing the largest and most liquid stocks, normal-
ity is not rejected. These findings suggest that security size and liquidity impact

the distributional properties of stock returns.

4. Empirical Results

4.1. Sample Means across Measurement Intervals

We first test Hypotheses 1a and 1b on the full set of 8088 securities from 1990
to 2013. Table 3 illustrates market value-weighted averages for individual betas,
gammas and deltas, as well as for the sums of absolute differences (SADs). Co-
moments (beta, gamma and delta) are all significantly sensitive to the sampling
interval. These results suggest that the conclusions of all asset pricing and portfo-
lio selection studies incorporating gamma and delta will substantially depend on

the chosen return interval.

TABLE 3 & FIGURE 1 ABOUT HERE
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In Panel A of Table 3, we detail the betas, gammas and deltas estimated using
the definitions given in Equation 4, while the values in Panel B are calculated
as a linear combinations of coefficients of the cubic market model (Equation 7),
based on the formulas in Equation 8. The results detailed for each methodology
are essentially identical. In the rest of this study, we will rely on estimates formed
using the Equation 4 definition, since this approach is parsimonious.

Market value-weighted betas and deltas are shown to display a similar trend,
and are both monotonically increasing as the sampling interval is lengthened, from
approximately 1.0 using a 1-day sampling interval to 1.190 for beta and 1.290 for
delta using a 125-day interval. Findings for estimated gamma suggest a U-shape
pattern from short to long intervals. Gamma declines from 1.182 for a 1-day
sampling interval to 1.089 for a 4-day interval, and then rebounds to 1.962 for the
longest interval considered. This U-shaped pattern may primarily be attributed to
changes in sign for a large number of estimated gammas between the 3 day and
4 day interval. Furthermore, SADs indicate that gammas are far more sensitive
to the intervaling effect than the other two parameters (approximately 10 times
larger).

Panel C in Table 3 presents empirical results found from testing the strength of
the intervaling effect in higher order co-moments, using data for 8088 individual
stocks from the beginning of 1990 to the end of 2013. On the one hand, ANOVAI
tests give mixed results: the F-test statistics from the analysis of variance among
the nine samples of the individual betas and gammas are insignificant, while that
for the deltas is 3.809 and is statistically significant at the 99% level. If this is
true, only delta is significantly affected by the sampling interval among the three
systematic measures, contradicting previous empirical evidence of the intervaling
effect on betas (Cohen et al., 1983a; Hawawini, 1980b). However, these statistics
are significantly biased by violations of the main assumption of equal variances
(significantly rejected by Bartlett’s tests).

On the other hand, the results of our non-parametric tests strongly suggest a
significant intervaling effect on betas, gammas and deltas. The Kruskal Wallis test
indicates that the sampling interval has a significant effect on all three systematic
measures. Betas have the largest K statistics (approximately x? distributed with 8

degrees of freedom), while gammas have the lowest. Higher K statistics suggest
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that among the nine samples of gammas and betas, at least one sample stochasti-
cally dominates another sample. The Wilcoxon-Mann-Whitney test and Wilcoxon
Signed-rank test also significantly reject the equivalence of the samples at the 95%
level. The results of Wilcoxon Signed-rank test provide strong evidence, since this
test only compares the individually paired observations.

Finally, testing the variation in the sign of gamma (Hypothesis 1b), we find
that there are 5 samples having significantly different signs from estimates using
monthly returns. In contrast, when we also test the sign variation in betas and
deltas, none of the tests rejects the null hypothesis. These findings suggest that
when we use data for all stocks from 1990 to 2013, only the signs of gammas are
considerably affected by the sampling intervals used. Our results are particularly
important for the recent literature on Mean-Variance-Skewness and higher-order
portfolio selection frameworks. Investors’ preference for positive skewness typ-
ically leads to the selection of securities with positive gammas, which represent
higher probabilities of extreme positive returns in the security over market returns.
However, according to the results outlined in Table 3 and also later in Table 9, an
asset of interest that is identified with positive gamma using a particular sampling
interval may have negative gamma using another interval.

The results outlined above, testing Hypotheses 1a and 1b, suggest that esti-
mated gammas and deltas are sensitive to the choice of sampling interval. How-
ever, this provides little detail regarding the origins of the intervaling effect. We
next test Hypotheses 2 to understand the relation between the delay in pricing

adjustment and the intervaling effect on systematic skewness or kurtosis.

4.2. The Intervaling Effect and Firm Size

Literature suggests that prices adjust following the arrival of information and
that adjustment delays are negatively related to firm size (e.g. Lin et al., 2014;
Hou and Moskowitz, 2005). Cohen et al. (1980) also show that larger firms have
a higher speed of price adjustment results, and consequently smaller serial corre-
lation in returns.

We wish to study how the magnitude of the intervaling effect on a security’s
higher-order co-moments is influenced by its firm size (market capitalization).

Sorted on the basis of securities’ market capitalizations, Table 4 and Table 5 illus-

18



trate the estimated co-moments using value-weighted and equal-weighted market
index, respectively.!® The intervaling effect on three co-moments of all portfolios
are significant at a 99% level in both K-W tests and SAD-related hypothesis tests.
Consistently, SAD figures for gammas are still much larger than those of betas
and deltas, and the sign of gamma is also found to change significantly for all

portfolios, as shown in Table 3.
TABLE 4 & TABLE 5 ABOUT HERE

More precisely, our results make a number of novel contributions. First, for all
securities with greater expected trading delays than the weighted average trading
delay in the market, the magnitudes of the intervaling effect on their co-moments
are inversely related to their market capitalizations. We assume a value-weighted
market capitalization at $29.80 billion and a equal-weighted value at $3.39 billion
are proxies for weighted average trading delay for the value-weighted and equal-
weighted market index, respectively. Therefore, using value-weighted returns in
Table 4, the first 19 MV portfolios all have less market capitalizations than than
that of the market. Thus, the magnitude of the intervaling effect, measured using
SADs, is found to be inversely related to the market capitalization. Similarly,
using equal-weighted returns in Table 5, the SADs of the first 12 portfolios are
generally in a decreasing order.

Second, in contrast, if a security has greater-than-average firm size, its ex-
pected trading delays are less than the weighted average trading delay in the mar-
ket. Thus, for these securities, their co-moments’ sensitivity to the measurement
interval should be positively related to their market capitalizations. Most existing
literature only sorts stocks into 20 or fewer portfolios. Thus, usually only one port-
folio (such as MC20 in Table 4) has much larger averaged market capitalization
than those of others’ and of the market. We re-sort MV 20 into 10 sub-portfolios to

clarify the pattern of the intervaling effect on these securities, as shown in Table

19Table 4 lists estimates for MC1 to MC5 and MC16 to MC20, five portfolios containing the
smallest firms and five containing the largest firms, for brevity. These ten portfolios have the most
important economical and statistical implications for our study. Table 5 selects results of two
smallest portfolios, two largest and four portfolios in the middles, since the intervaling effect on
estimates show a U shape. Complete tables can be obtained upon request.
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6. From MV20 —7 to MV20 — 10, the intervaling effect on co-moments is posi-
tively related to the market capitalization. Consistent results can be found using
the equal-weighted market index as shown in Table 5. MV'19 and MV 20 both have
greater market capitalizations than the market, resulting in all SADg, SADy and
SADg of MV'19 being smaller than those of MV 20.

Third, previous evidence suggests betas of smaller firms are shown to increase,
while those for the largest firms decline as the measurement interval lengthens
(Cohen et al., 1983a,b). Consistently, we find that estimated deltas of most port-
folios in Table 4 and sub-portfolios in Table 6 are monotonically increasing as the
sampling interval is lengthened. Exceptionally, deltas and betas of securities with
larger market capitalizations than that of the market portfolio, show a downward
trend when the sampling interval increases from 1 day to 20 days, with values very
close to one. This also confirms the behaviour of the security betas documented in
the existing literature. However, we fail to find a similar monotonic relationship
between estimated gammas and the sampling interval. Instead, gammas of MC
portfolios display rough U-shape patterns.

Lastly, given that value-weighted market returns are primarily affected by
larger stocks, a value-weighted market index should have smaller serial correla-
tion than a similarly constructed equally-weighted market index. We find that for
the same portfolio, SADg, SADy and SADj calculated based on an equal-weighted
market index (Table 5) are all greater than those using a value-weighted index (Ta-
ble 4), respectively. Our results confirm the empirical findings on betas in Cohen
et al. (1980), and extend these to co-skewness and co-kurtosis.

Therefore, we conclude that for any security, the greater (less) is the expected
trading delay of the security relative to the weighted average trading delay in the
market index, the more sensitive the co-moments will be to choices of the mea-
surement interval. The estimated betas and deltas of these securities are found
to shrink as return intervals shorten. Moreover, higher-order co-moments esti-
mated using a value-weighted market index are less affected by the measurement
interval.

Our results contribute to existing studies, by considering the similarities and
differences of the weighted average trading delay in the market index between us-

ing value-weighted and using equal-weighted market returns. Previous results are
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not robust to the construction methods of the market index. On the one hand, stud-
ies like Corhay (1992) and Hawawini (1983) use a value-weighted market index
and indicates that the strength of the intervaling effect on beta is inversely related
to the size. On the other hand, Perron et al. (2013) and Handa et al. (1989) apply
an equal-weighted market index. They offer evidence that the betas of extreme
market-capitalization portfolios (largest and smallest securities) change dramati-

cally. Our results help to reconcile these previous findings.

4.3. The Intervaling Effect and Liquidity

An extensive literature also suggests that liquidity plays a significant role in
explaining the delay in price adjustment. Liquidity stimulates arbitrage activ-
ity and thus enhances market efficiency. Securities of illiquid firms will be less
efficient in adjusting to market information and thus have stronger cross-serial
correlation with the market portfolio (for example, see Chung and Hrazdil, 2010;
Chordia et al., 2008). We, therefore, sort securities into portfolios using the Ami-
hud illiquidity ratio, which is one of the more widely used liquidity proxies in the
finance literature. Table 7 shows the results of empirical tests for Hypothesis 2.

We list co-moments estimated using the value-weighted index only.
TABLE 7 ABOUT HERE

Panels A, B and C of Table 7 display sample means of 10 Amihud-ratio sorted
(AR) portfolios’, AR1 to AR5 and AR15 to AR20 for beta, gamma and delta re-
spectively. The greater the Amihud ratios, the less the firm’s liquidity and thus the
greater delay in adjusting price. The most liquid firms will often have relatively
large market capitalizations. Hence, the pattern of estimated betas, gammas and
deltas for AR portfolios are similar to those of MC portfolios in Table 4 above, but
ranked inversely.

The value-weighted mean betas and deltas of the most liquid portfolio, ARI,
similar to those of MC20, each take value close to one and are inversely related
to the lengths of the measurement interval (from approximately 1.0 with 1-day
interval to 0.95 with 20-day interval). The gammas of AR1 are also found to
be less affected by the measurement interval, compared to those of the other 9

portfolios.
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The value-weighted Amihud ratio of the market index is 2.456, indicating
that only AR1 has higher liquidity and likely has less price delay than those of the
market. Consistently, according to both K-W statistics and SADs, for all securities
with lower liquidity than the market, the magnitude of the intervaling effect is
inversely related to liquidity. Moreover, SADg of AR2 is smaller than that of ARI,

[1PR]
1

which is in agreement with our earlier findings on the shape SADs, using

value-weighted returns.

4.4. Implications for Higher-order Asset Pricing and Portfolio Selection

Table 4 and Table 7 have several implications, for higher-order asset pricing
and portfolio selection. First, the literature documents some return anomalies such
as the Size Effect (Banz, 1981) and Liquidity Effect (Amihud, 2002; Amihud and
Mendelson, 1986). Investors may pursue stocks with smaller capitalizations or
less liquidity while seeking out opportunities for extra returns. However, regard-
less of the debate on whether these anomalies are still present currently, our results
indicate that the intervaling effect is closely related to both firm size and market
liquidity. This suggests that investors in smaller or less liquid firms should pay
more attention to choosing the measurement interval in analysing systematic risk
exposure of a security.

Second, recent portfolio selection theory suggests that risk-averse investors
are attracted to securities with smaller betas and deltas, and with positive gammas
(for example, see Kostakis et al., 2012). However, according to our empirical re-
sults, the relative ranks of portfolio betas, gammas and deltas alter when the sam-
pling interval is lengthened. In particular, for MC portfolios, the 1-day betas are
increasing from 0.637 for MC1 to 0.998 for MC20, while the 20-day betas are de-
clining from 1.526 for MC1 to 0.956 for MC20. The estimated deltas also follow
this pattern. Moreover, gamma is the most sensitive to the measurement interval,
since not only the magnitudes but also the signs of gammas change. An asset that
is chosen based on its positive gamma using a particular sampling interval may
have negative gamma using another interval. Therefore, our results contend that
portfolio allocation using higher-order moments will be significantly influenced
by the sampling interval chosen. A security chosen for particular properties at one

interval may not be selected for a different choice of interval.
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4.5. Robustness Checks

This section complements the evidence detailing the intervaling effect in higher
order asset pricing by performing three further robustness checks.

First, as considered in previous literature such as Perron et al. (2013) and
Handa et al. (1989), we test the robustness of our findings using intervals longer
than one month. Table 8 presents estimated betas, gammas and deltas using re-
turns data for all firms on the CRSP monthly tape. Using intervals from 1 month
to 12 months, commonly considered by investors, results are found to be in keep-
ing with those detailed in Table 4. Considering market capitalization as a proxy
for price delay, the magnitude of the intervaling effect (measured by K-W tests
and SADs) for smaller securities is inversely related to market capitalization, and
vice versa. Securities in portfolio MC1 are still the most sensitive to the length
of intervals used in measuring returns, while those for firms in portfolios MC19
are least affected (with smallest SADs). Furthermore, estimated deltas also have
a similar pattern to betas, and gammas are the most significantly affected by the
measurement interval among the three systematic measures. The U-shape pattern
of gamma is even stronger than that witnessed at the shorter intervals detailed ear-
lier. A small caveat is that the results in Table 4 and Table 8 are not strictly com-
parable because the underlying sample periods (one-year non-overlapping win-
dows v.s. five-year moving windows) and stocks sources (from CRSP daily tape
v.s. monthly tape) are different.?’ However, both tables reject our Hypothesis 2,
suggesting that the intervaling effect is significant across a large range of mea-
surement intervals and highly related to friction in the trading process. Moreover,
it also suggests that investors considering longer intervals when making portfolio
allocation decisions are subject to similar estimation issues encountered by those

with shorter investment intervals.

20For example, those 20-day betas, gammas and deltas in Table 4 of the first five portfolios
are much larger than the corresponding 1-month estimates in Table 8, while these two groups of
MC16 to MC20 are actually consistent. This may be caused by two main reasons. First, different
measurement horizons may lead to significant difference in estimating parameters, referred to as
the horizon effect, which is stronger for securities with smaller market capitalizations (see Kamara
et al. (2015) for reference). Second, market-capitalization portfolios formed by stocks on CRSP
monthly tape and those on daily tape may be very different, especially for small-capitalization
portfolios.
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TABLE 8 ABOUT HERE

Second, avoidance of data problems due to the listing and delisting of se-
curities is essential in estimating and analysing systematic risks. We examine
securities selected on the basis of their continuous presence during the whole pe-
riod. We repeat our tests on 989 securities which have consecutive data spanning
24 years from 1990 to 2013. All results, as shown in Panel A of Table 9, still
significantly reject our Hypothesis 1. According to the W-M-W and signed rank
tests, all 8 samples of ratios are again significantly different from one. Although
non-parametric ANOVAL tests are statistically significant at the 99% level, these
figures are much smaller than those found in Table 3. Given that the standard de-
viations of the magnitudes are similar, this finding suggests that the estimates are
less effected by the sampling intervals when only the data of these 989 stocks are
used, as opposed to when all the other stocks are included. The lower sensitivity
of these stocks to the measurement interval also offers evidence for Hypothesis
2. We expect these 989 continuously traded firms to have relatively stable perfor-

mances, efficient financial structures, and high liquidity.
TABLE 9 ABOUT HERE

Third, we also check the robustness of the intervaling effect during differ-
ent market conditions. We collect the Chicago Board Options Exchange Market
Volatility Index (VIX) and TED spread which is defined as the difference in yields
between US Euro-dollar deposits and US Treasury bills. The VIX is widely used
to represent market risk and the TED spread is usually regarded as an indicator
of perceived credit risk. Simply, we separate our 24-year time window into years
with less-than-average risk and years with above average risk.>! Table 10 illus-
trates the sum of absolute differences for market-capitalization portfolios during
each period. We find that SADg, SADy, and SADg are all negatively related to
the market capitalization, rejecting H2. However, during high-risk periods, as

2! According to our calculations, the average VIX and TED spread during 1990 to 2013 are
20.188 and 0.525, respectively. For VIX, high-risk periods consist of 1990, 1991, 1995, 1997,
1998, 1999, 2000, 2007, 2008 and 2009, while the other years belong to low-risk periods. For
TED spread, high-risk periods include 1990, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2008,
2009, 2010 and 2011.
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shown in Panel A and Panel C, SADs are large relative to low risk periods. In
particular, SADs and SADg for securities with larger market capitalizations dur-
ing low-risk periods are considerably less than those during the other years. These
findings suggest that the intervaling effect is present during low risk periods, but it
is stronger during high-risk periods perhaps pointing to longer price transmission

delays during riskier periods.

TABLE 10 ABOUT HERE

5. Conclusion

Higher-order co-moments extend the Sharpe-Lintner CAPM, allowing for more
detailed characterization of individual asset risk. However, previous literature has
largely ignored the impact of the choice of return interval on estimation precision
for higher-order co-moments. Based on an extensive data sample of stocks from
CRSP for 1990 to 2013, this paper details the sensitivity of systematic skewness
and kurtosis to the return interval. We develop a system of consistent sequential
tests to measure the strength of the intervaling effect. The magnitude of the effect
is shown to depend on firm characteristics and relates to price adjustment delay.

Accordingly, this study has shed new light on the literature considering higher-
order asset pricing and portfolio selection theories, progressively, in two steps.
First, we show evidence that the magnitudes of the third and fourth moment-
related pricing factors (gamma and delta) are significantly influenced by the sam-
pling interval. Moreover, the sign of gamma also changes significantly when the
interval is lengthened. Second, we further refine the estimation of gammas and
deltas by using the returns of market-capitalization sorted portfolios and Amihud-
ratio sorted portfolios, respectively, measured over intervals from one day to one
month. Increasing firm market capitalizations and Amihud’s illiquidity ratio are
used as positive and inverse proxies for price adjustment delay. We find significant
changes as the return interval is lengthened. Gammas and deltas of securities with
similar delay in pricing adjustment, relative to the market portfolio, are usually
less affected by the measurement interval. Results are demonstrated to be robust
to the use of an equally weighted market index, to longer return intervals of up to

twelve months, and to performance during volatile and stable periods.
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We conclude with a word of caution to empirical researchers who use higher-
order asset pricing or portfolio selection theories in their empirical work. The
magnitudes and ranks of gammas and deltas may alter as the sampling interval
is changed. An asset which is chosen because of its positive systematic skewness
and low systematic kurtosis measured in one particular interval may have negative
gamma and larger-than-average delta when another interval is used. The interval-
ing effect may thus result in potential ambiguity in pricing and selecting assets for

different situations.
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Table 3: Sample Means of Individual Betas, Gammas and Deltas across Different Intervals, CRSP 1990-2013

Sampling Intervals

1-D 2-D 3-D 4-D 55D 10-D 20-D 65-D 125-D SAD
Panel A: Definition Betas, Gammas and Deltas
Beta 1.007 1.020 1.029 1.035 1.041 1.066 1.092 1.144 1.190 1.267*
Gamma 1.182 1.182 1.095 1.089 1.129 1.161 1.225 1.340 1.962 14.512%*
Delta 1.022 1.034 1.045 1.057 1.060 1.102 1.136 1.223 1.290 1.798***
Panel B: OLS Betas, Gammas and Deltas
Beta 1.007 1.020 1.029 1.035 1.041 1.066 1.093 1.144 1.190 1.266**
Gamma 1.182 1.182 1.095 1.088 1.129 1.161 1.225 1.341 1.963 14.514%
Delta 1.022 1.034 1.045 1.057 1.061 1.102 1.135 1.223 1.289 1.799***
Number ANOVAL Bartlett's W-M-W Signed Rank  Sign Variance o
of Stocks 95%  90% 95% 90% 95%  90%
Panel C: Measures for the Intervaling Effect
Beta 8088 0.633 0.000 8/8 8/8 8/8 8/8 0/8 0/8 11648.444**
Gamma 8088 0.665 0.000 8/8 8/8 8/8 8/8 5/8 5/8 12886.066***

Delta 8088 3.809%** 0.000 8/8 8/8 8/8 8/8 0/8 0/8 8142.973*

Note: The intervaling effect is tested for 8088 securities from 1990 and 2013 with a minimum of five years of
continuous data. Panel A illustrates the averages of individual betas, gammas and deltas across all nine intervals,
calculated using the definitions in Equation 4. In Panel B, individual estimates across all nine intervals based on the
linear combinations (Equation 8) of the estimated coefficients in OLS regressions on the cubic market model (Equation
7) are listed. SAD is the sum of the absolute differences between other interval estimates and monthly estimates as
shown in Equation 9. It will be calculated for individual betas, gammas and deltas, respectively. One-tailed tests
are run to check whether SAD in each case is significantly different from zero, according to Equation 11. Panel
C documents tests on the sensitivity of the intervaling effect. ANOVAL tests the variations of the magnitudes due
to the different sampling intervals, while "Bartlett's P — value = 0.000” indicates the equal variances assumption
is significantly rejected. We then use four non-parametric tests. The Wilcoxon-Mann-Whitney test and Wilcoxon
Signed-rank test compare the differences in medians of each sample of ratios and the sample of ones. For each 8
samples of ratios, the portions of significantly different observations are displayed under 95% and 90% confidence
levels. A simple sign variation test is used to identify whether the signs are also vary significantly. We compare the
signs of estimators measured by the monthly returns and those in the other eight samples. The Kruskal Wallis test
is a non-parametric version of ANOVAL to test the differences in medians among each nine samples. Chi-squared
statistics with the significant stars are presented. *, **, *** indicate statistical significance at the 90%, 95% and 99%
levels, respectively.
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Table 4: Estimated Co-moments of Market-Capitalization Sorted Portfolios across Different Return Measurement Intervals,
CRSP Daily Tape, 1990:1 - 2013:12.

Portfolio Mkt. Cap. (107$) 1-D 2-D 3-D 4-D 5-D  10-D  20-D K-W SAD
Panel A: Value-weighted Betas across Intervals
MCI1 2972 0.637 0.752 0.845 0919 0.994 1270 1.526 1147.938**  3.740***
MC2 5.942 0.725 0.828 0.903 0964 1.017 1.227 1459 1889.666**  3.092***
MC3 8.804 0.778 0.876 0946 1.004 1.056 1.234 1.431 1908.751"**  2.691***
MC4 12.041 0922 0994 1.054 1.103 1.149 1.327 1511 1210.728**  2.518***
MC5 15.440 1.070 1.119 1.165 1.202 1.234 1.359 1492  666.433*** 1.804***
MC16 191.260 1.078 1.130 1.154 1.167 1.178 1217 1.275  534.733**  0.729"*
MC17 272.091 1.049 1.094 1.112 1.121 1.127 1.151 1.182  290.955***  0.438"**
MC18 433.541 1.085 1.116 1.130 1.138 1.144 1.163 1.202  148.145**  0.433***
MCI19 852.800 1.061 1.073 1.076 1.077 1.080 1.085 1.103 16.163***  0.164***
MC20 4371.724 0.998 0981 0975 0971 0.969 0.964 0.956 88.457**  0.122***
Market 2979.998
Panel B: Value-weighted Gammas across Intervals
MCI1 2972 8.645 1407 2233 -1.576 2.185 1513 1.550 1694.338*** 11.719**
MC2 5.942 13252 1465 2242 -2.266 2278 1.787 1397 1515.836* 17.702***
MC3 8.804 11.976 1497 1929 -0.680 1.931 1.654 1.213 1488.520** 14.813***
MC4 12.041 7.838 1.429 1946 0.018 1.941 1.548 1.669 1343.736™*  8.730***
MC5 15.440 9.698 1.474 1596 0.534 1.755 1.688 1.487 1267.144**  9.754***
MC16 191.260 6304 1.285 1382 0.600 1303 1.370 1254  983.390"**  6.029***
MC17 272.091 5373 1191 1370 0.776 1.082 1.321 1.490 1088.959***  5.592***
MC18 433.541 4286 1.115 1417 0724 1.131 1.292 1.090 942970  4.156***
MC19 852.800 2963 1.086 1.166 1385 0.897 1.170 1.236  955.271%*  2.501"**
MC20 4371.724 0.672 0933 0923 0.018 0.994 0.960 1.004 1057.655"** 1.521%*
Market 2979.998
Panel C: Value-weighted Deltas across Intervals
MC1 2.972 0.715 0.780 0.896 0974 1.019 1.247 1507  321.520"*  3.413**
MC2 5.942 0.798 0.856 0949 1.017 1.054 1224 1.461 624.154*  2.869***
MC3 8.804 0.835 0.898 0979 1.040 1.074 1.229 1416 724417 2439
MC4 12.041 0954 1.000 1.077 1.134 1.174 1.321 1.523  552.743**  2.474**
MC5 15.440 1.102 1.117 1.183 1.214 1245 1.352 1501  254.872** 1.791**
MC16 191.260 1.073 1.125 1.156 1.176 1.178 1.210 1274  331.874**  0.723***
MC17 272.091 1.048 1.087 1.114 1.126 1.123 1.146 1.181 159.103***  0.439***
MC18 433.541 1.084 1.113 1.129 1.140 1.139 1.157 1.196 78.831"*  0.416"*
MCI19 852.800 1.056 1.069 1.072 1.076 1.075 1.086 1.089 9.939***  0.099***
MC20 4371.724 0.999 0986 0975 0970 0970 0.958 0.950 106.212**  0.161"**
Market 2979.998

Note: The value-weighted returns of all stocks during 1990 to 2013 on CRSP daily tape are used as the market index.
Each year securities are reassigned to 20 portfolios according to their average market capitalization rank. The first, MC1,
contains the smallest 5% of firms and the last, MC20, contains the largest 5%. For each MC portfolio, we compute all
individual estimates using each stock’s one-year returns and re-estimate them every year from 1990 to 2013 across seven
intervals. This table illustrates the averages of individual betas, gammas and deltas of the securities. The Kruskal Wallis
test (Chi-squared statistics) and the sums of absolute differences (see Equation 9) are used to test the magnitudes of the
intervaling effect. SADs are calculated for individual betas, gammas and deltas, respectively. One-tailed tests are run to
check whether SAD in each case is significantly different from zero, according to Equation 11. *, **, *** jndicate statistical
significance at the 90%, 95% and 99% levels, respectively.
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Table 5: Estimated Co-moments of Market-Capitalization Sorted Portfolio by Using Equal-weighted Returns as the
Market Index, CRSP Daily Tape, 1990:1 - 2013:12.

Portfolio Mkt. Cap. (107)  1-D 2-D 3-D 4-D 5-D 10-D  20-D K-W SAD
Panel A: Equal-weighted Betas across Intervals
MCl1 2.972 0992 1.080 1.147 1.192 1237 1.390 1.483  816.428** 1.579***
MC2 5.942 1.084 1.153 1.204 1237 1270 1371 1.449  825471"* 1.178***
MC3 8.804 1.129  1.189 1.228 1.255 1.282 1.359 1.410  644.757** 0.951***
MC9 35.842 1.439 1405 1382 1.366 1349 1.298 1.253  894.613** 0.580***
MC10 44.400 1.405 1369 1343 1325 1308 1.252 1207  999.506**  0.623***
MCl11 54.382 1.399 1362 1337 1316 1295 1.221 1.174 1220.336"* 0.692***
MCI12 67.659 1376 1.343 1316 1296 1274 1.204 1.145 1434.739** 0.679***
MCl18 433.541 1.192  1.152  1.115 1.089 1.064 0972 0.902 2379.484** 0.857***
MC19 852.800 1.119 1.059 1.018 0.989 0.963 0.870 0.796 2865.091"** 1.017***
MC20 4371.724 1.028 0958 0912 0.881 0.853 0.753 0.672 3831.174*** 1.135"**
Market 338.755
Panel B: Equal-weighted Gammas across Intervals
MC1 2972 1.502 1.283 7.679 1422 1.074 -0.438 1.025  593.303*** 9.320***
MC2 5.942 1.012 1467 6310 1571 1443 0510 0.619  472.286** 7.639"**
MC3 8.804 1.047 1397 4161 1322 1274 0.756 1.055  484.534** 4.262***
MC9 35.842 1.369 1.198 -1.576 1.165 1.176 0912 0.987  455.124**  4.354***
MC10 44.400 1.364 1.153 -1446 1.032 1.125 0922 0977  429.402"* 4.423**
MCI11 54.382 1.518 1.177 -2.122 1.175 1.167 0956 1347  377.148"* 5.406™**
MCI12 67.659 1.544 1.150 0321 1.159 1.122 0.753 1.587  376.583*** 3.259***
MCI18 433.541 2.180 0.986 -1.182 1.024 0943 0991 0.853  314.312"* 9.464***
MC19 852.800 1.506 0915 -0.309 1.029 0907 1.645 1.141  384.753** 3.985**
MC20 4371.724 1.606  0.795 -1.886 0.882 0.761 1.584 1.136  628.865"* 6.365"*
Market 338.755
Panel C: Equal-weighted Deltas across Intervals
MC1 2972 1.035 1.119 1.173 1209 1236 1366 1457  151.760** 1.349***
MC2 5.942 1.142  1.196 1.231 1.251 1276 1357 1430 162.180"* 0.890***
MC3 8.804 1.172 1219 1.241 1257 1278 1357 1399  162.729*** 0.718***
MC9 35.842 1.409 1373 1358 1.342 1328 1.295 1.269  510.320"* 0.493***
MCI10 44.400 1.371 1.338  1.321 1306 1.292 1.243 1.212  625.701** 0.515**
MCI11 54.382 1.358 1.326 1308 1.297 1.282 1.226 1.176  612.740"* 0.537***
MCI12 67.659 1324 1302 1.282 1273 1259 1204 1.152  744.738** 0.469***
MCI18 433.541 1.164 1.111 1.081 1.075 1.056 0988 0.921 1413.596*** 0.749***
MC19 852.800 1.099 1.019 0987 0978 0957 0.892 0.814 1684.049*** 0.948***
MC20 4371.724 1.015 0918 0.882 0.873 0.856 0.778 0.696 2647.580*** 1.090***
Market 338.755

Note: The equal-weighted returns of all stocks during 1990 to 2013 on CRSP daily tape are used as the market index.
Each year the securities are reassigned to 20 portfolios according to their average market capitalization rank. The first,
MC1, contains the smallest 5% of firms and the last, MC20, contains the largest 5%. For each MC portfolio, we compute
all individual estimates using each stock’s one-year returns and re-estimate them every year from 1990 to 2013 across
seven intervals. This table illustrates the averages of individual betas, gammas and deltas of the securities. The Kruskal
Wallis test (Chi-squared statistics) and the sums of absolute differences (see Equation 9) are used to test the magnitudes
of the intervaling effect. SADs are calculated for individual betas, gammas and deltas, respectively. One-tailed tests are
run to check whether SAD in each case is significantly different from zero, according to Equation 11. *, **, *¥* indicate
statistical significance at the 90%, 95% and 99% levels, respectively.
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Table 6: Estimated Co-moments of Sub-portfolio of MC19 and MC20 across Different Return Measurement
Intervals, CRSP Daily Tape, 1990:1 - 2013:12.

Portfolio Mkt. Cap. (10’$)  1-D 2-D 3-D 4-D 5-D 10-D  20-D SAD

Panel A: Value-weighted Betas across Intervals

MV20 -1 852.21 1.125 1.103 1.078 1.065 1.062 1.062 1.063 0.120***
MV20 -2 1094.935 1.086 1.092 1.085 1.082 1.081 1.085 1.092 0.041***
MV20 -3 1281.516 1.087 1.093 1.090 1.098 1.105 1.130 1.145 0.269***
MV20 -4 1481.352 1.061 1.061 1.056 1.059 1.065 1.085 1.098 0.201***
MV20 -5 1957.334 1.119 1.115 1121 1.128 1.136  1.165 1.178 0.283***
MV20 -6 2426.516 1.009 1.000 0.990 0.991 0.991 1.005 1.000 0.044***
MV20 -7 3035.294 1.049 1.040 1.031 1.030 1.029 1.040 1.051 0.088***
MV20 -8 3503.364 0970 0953 0943 0936 0.927 0.926 0947 0.086"**
MV20 -9 4048.152 0960 0947 0949 0944 0942 0.927 0919 0.154**
MV20-10 7195.334 1.030 1.000 0993 0985 0978 0970 0.953 0.239***
Market 2979.998
Panel B: Value-weighted Gammas across Intervals
MV20 -1 852.21 1.621 1.521 0274 0.683 0.811 1463 1917 5.130"*
MV20 -2 1094.935 1467 0994 1.014 1305 0.822 2.245 0.344 5.786"*
MV20 -3 1281.516 1.174  1.142  1.295 1.331 0.827 1.124 0.829 1.923**
MV20 -4 1481.352 1.141 1.761 1517 1.135 1312 0.024 2.164 6.092**
MV20 -5 1957.334 1.174 1419 -0.165 1.122 1.114 2749 0.234 6.808***
MV20 -6 2426.516 0.750 0920 1.164 0.928 0.948 1.512 2.188 6.905***
MV20 -7 3035.294 1.122 0.563 1336 1.051 0939 1468 0919 1.675*
MV20 -8 3503.364 0.877 1.029 1.183 0945 1.351 -0.268 0.672 2.966***
MV20 -9 4048.152 0.674 1.033 1.488 0.880 0.844 -0.213 1.401 3.875"*
MV20-10 7195.334 1442 0744 1734 0973 1.154 -0911 1.747 5.344*
Market 2979.998
Panel C: Value-weighted Deltas across Intervals
MV20 -1 852.21 1.096 1.062 1.027 1.006 1.016 1.029 1.062 0.202***
MV20 -2 1094.935 1.090 1.108 1.094 1.105 1.099 1.122 1.151 0.289***
MV20 -3 1281.516 1.105 1.105 1.086 1.106 1.116 1.170 1.201 0.519**
MV20 -4 1481.352 1.080 1.083 1.063 1.074 1.086 1.125 1.133 0.285"**
MV20 -5 1957.334 1.132 1.120 1.128 1.138 1.150 1.209 1.213 0.400***
MV20 -6 2426.516 1.029 0990 0980 0.985 0.990 1.024 1.026 0.163***
MV20 -7 3035.294 1.062 1.060 1.055 1.050 1.050 1.051 1.048 0.041***
MV20 -8 3503.364 0976 0970 0953 0924 0903 0.900 0916 0.188***
MV20 -9 4048.152 0968 0972 0979 0.961 0952 0.940 0911 0.307**
MV20-10 7195.334 1.051 1.048 1.028 1.021 0998 0.979 0.932 0.535"**
Market 2979.998

Note: The value-weighted returns of all stocks during 1990 to 2013 on CRSP daily tape are used as the
market index. Securities of MV 19 and MV 20 in Table 4 are reassigned into 5 sub-portfolios, respectively,
according to their average market capitalization rank. For each sub-portfolio, we compute all individual
estimates using each stock’s one-year returns and re-estimate them every year from 1990 to 2013 across
seven intervals. This table illustrates the averages of individual betas, gammas and deltas of the securities.
The Kruskal Wallis test (Chi-squared statistics) and the sums of absolute differences (see Equation 9) are
used to test the magnitudes of the intervaling effect. SADs are calculated for individual betas, gammas and
deltas, respectively. One-tailed tests are run to check whether SAD in each case is significantly different
from zero, according to Equation 11. *, #%_ *#%* indidhate statistical significance at the 90%, 95% and 99%
levels, respectively.



Table 7: Estimated Co-moments of Amihud-Ratio Sorted Portfolio across Different Return Measurement Intervals, CRSP Daily
Tape, 1990:1 - 2013:12.

Portfolio  Amihud Ratio (10710) 1-D 2-D 3-D 4-D 5-D 10-D 20-D K-W SAD
Panel A: Value-weighted Betas across Intervals
AR1 1.589 0.999 0981 0.974 0970 0.968 0.961 0.950 87.343**  0.152"**
AR2 4.298 1.042 1.047 1.048 1.046 1.047 1.052 1.078 7723 0.182%*
AR3 7.743 1.097 1.130 1.148 1.154 1.161 1.181 1.217 155.131%*  0.432***
AR4 12.002 1.100 1.143 1.162 1.169 1.174 1.193 1.224  374.794**  0.402***
ARS 17.561 1.098 1.151 1.179 1.190 1.200 1.224 1.269  396.734***  0.570***
AR16 474.763 1.094 1.111 1.137 1.164 1.187 1.290 1.381 410.080*** 1.302**
AR17 688.935 1.039 1.071 1.106 1.138 1.171 1.329 1465 732.619*** 1.934%*
AR18 1092.841 0959 1.005 1.041 1.078 1.110 1.248 1.425  990.758*** 2.106***
AR19 1999.162 0.850 0.909 0.963 1.007 1.042 1.208 1.393 1309.335"** 2.381%
AR20 8176.243 0.703 0.773 0.841 0904 0967 1.228 1.510  899.863*** 3.641%
Market 2.456
Panel B: Value-weighted Gammas across Intervals
AR1 1.589 0.690 0.935 0.923 0.049 0983 0.973 0.995 1031.853*** 2.040"*
AR2 4.298 3429 1.076 1.047 1.103 1.070 1.069 1.216 1021.187*** 2.926%*
AR3 7.743 5870 1.143 1455 0517 1.087 1273 1366  940.328*** 6.037**
AR4 12.002 8716 1207 1450 0918 0.876 1419 0.859 1032.803"*  9.431***
ARS 17.561 6.680 1.344 1291 1.193 1201 1.266 1.438  975.655"** 6.136"*
AR16 474.763 6.802 1.345 1.351 0.832 1465 1.528 1.340 1334.230*** 6.299***
AR17 688.935 7.537 1290 1.182 0.077 1480 1.699 1.906 1384.758***  9.435**
ARI18 1092.841 12.724 1306 1.627 0.521 1.393 1498 1.785 1412.509*** 13.517***
AR19 1999.162 11937 1.227 1.673 -1.712 1.760 1.593 1.311 1579.507*** 14.826***
AR20 8176.243 11.081 1377 1977 -2.156 1.803 1.331 1.865 1756.659*** 14.433***
Market 2.456
Panel C: Value-weighted Deltas across Intervals
AR1 1.589 1.000 0985 0.974 0969 0.969 0.956 0.944 89.673***  0.191"**
AR2 4.298 1.042 1.051 1.045 1.046 1.044 1.050 1.067 8.356"*  0.127**
AR3 7.743 1.091 1.125 1.143 1.152 1.154 1.185 1.223 94.249**  0.488***
AR4 12.002 1.084 1.130 1.158 1.171 1.171 1.196 1.231 200.869***  0.479***
AR5 17.561 1.094 1.140 1.177 1.194 1.195 1.213 1.249  238.008***  0.483***
AR16 474.763 1.101  1.105 1.136 1.155 1.185 1.278 1.369 175.356*** 1.256**
AR17 688.935 1.061 1.058 1.104 1.133 1.171 1.359 1.482  285.924*** 2.003**
AR18 1092.841 0998 1.014 1.070 1.097 1.129 1.251 1.422  362.497"* 1.973%
ARI19 1999.162 0.891 0923 0.991 1.041 1.063 1.202 1395 396.362*** 2.259%*
AR20 8176.243 0.781 0.792 0.874 0938 0980 1.191 1.479  235.174** 3.315%
Market 2.456

Note: The value-weighted returns of all stocks during 1990 to 2013 on CRSP daily tape are used as the market index. Each
year securities are reassigned to 20 portfolios according to their average Amihud (2002) ratio rank. The first, AR1, contains
the most liquid 5% of firms and the last, AR20, contains the least liquid 5%. For each AR portfolio, we compute all individual
estimates using each stock’s one-year returns and re-estimate them every year from 1990 to 2013 across seven intervals. This
table illustrates the averages of individual betas, gammas and deltas of the securities. The Kruskal Wallis test (Chi-squared
statistics) and the sums of absolute differences (see Equation 9) are used to test the magnitudes of the intervaling effect. SADs
are calculated for individual betas, gammas and deltas, respectively. One-tailed tests are run to check whether SAD in each case
is significantly different from zero, according to Equation 11. *, ** *¥** indicate statistical significance at the 90%, 95% and
99% levels, respectively.
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Table 8: Robustness Checks: Estimated Co-moments of Market-Capitalization Sorted Portfolio across Longer Return
Measurement Intervals, CRSP Monthly Tape, 1990:1 - 2013:12.

Portfolio Mkt. Cap. (107) 1-M 2-M  3-M 4M 5-M 6-M 12-M K-W SAD
Panel A: Value-weighted Betas across Intervals
MC1 1.070 0.888 1.078 1.201 1.308 1.382 1.409 1.511 700.945"*  2.482***
MC2 2.204 0.896 1.054 1.151 1233 1.289 1.284 1372 473.960**  2.047**
MC3 3.431 0926 1.085 1.186 1.265 1.327 1343 1373 465.160"** 1.877**
MC4 4.853 0.995 1.128 1.219 1.283 1.341 1.355 1.444 522592 1.604***
MC5 6.557 1.072 1.218 1.300 1.354 1397 1.387 1.398 393.959** 1.154%*
MCI16 142.297 1.213  1.273 1.269 1.252 1.256 1.209 1.237 134.405*  0.651***
MC17 210.980 1.173  1.224 1.217 1206 1.217 1.194 1.258  54.529"*  0.493***
MC18 343.880 1.140 1.191 1.185 1.171 1.178 1.163 1.224  58.334**  (.385"**
MCI19 714.240 1.068 1.102 1.103 1.099 1.109 1.103 1.142  22.466™*  0.125***

MC20 3820.635 0985 0969 0972 0981 0978 1.006 1.029  46.446™*  0.173**

Panel B: Value-weighted Gammas across Intervals

MClI 1.070 1.376  2.810 1.065 0912 1246 2.160 1.144 669.114°* 44557
MC2 2.204 1.346 2348 1290 0.774 -1.147 2.033 1.662 492418 72.609***
MC3 3.431 1.325 2394 1232 0536 -1476 2278 0475 580.221"™"  64.310"*
MC4 4.853 1.449 2368 1.175 0983 0354 1.505 2377 545.321"* 38.476"*
MC5 6.557 1.494 2117 1.234 0.607 -0.886 1.559 0.928 578.784™** 49.653***
MC16 142.297 1.367 1.636 1280 1.101 0.572 1.359 1.100 427.090**  30.628"**
MC17 210.980 1.370 1.667 1211 0.886 0.703 1.224 1.464 436.658"* 25.009***
MCI18 343.880 1.319 1322 1.162 1.103 1208 1.010 1.507 326281 18.944***
MC19 714.240 1.259 1.302 0988 1.030 1.005 0.792 1.142 326.742"* 10.838***

MC20 3820.635 0970 0381 0.759 1.014 1.668 1.003 1.595 338.154"*  2.107**

Panel C: Value-weighted Deltas across Intervals

MCI 1.070 0962 1.148 1.243 1320 1.378 1.448 1525  87.282"*  2.136"*
MC2 2.204 0949 1.136 1208 1258 1302 1320 1380  41.429" 1.775%*
MC3 3.431 0988 1.151 1.226 1.281 1.327 1381 1375 45235 1.625%**
MC4 4.853 1.050 1.199 1.261 1.298 1341 1380 1.451 38.461" 1.502%*
MC5 6.557 1.137 1.294 1336 1356 1378 1.406 1401  48.522"*  0.997***
MCI16 142.297 1.265 1335 1329 1300 1.288 1.251 1.226 155.622"**  (.683***
MC17 210.980 1.241 1.287 1.289 1260 1.254 1.239 1.253  41.249"*  0.487**
MCI8 343.880 1.208 1.248 1.254 1219 1209 1206 1.221 75403 0.372***
MC19 714.240 1.127 1.155 1.164 1.151 1.139 1.135 1.146  62.070™*  0.131"**
MC20 3820.635 1.001 0977 0985 1.008 0992 1.014 1.033 102.242***  0.185"**

Note: This table tests the robustness of results using longer intervals. The value-weighted returns of all stocks during
1990 to 2013 on CRSP monthly tape are used as the market index. Each year the securities are reassigned to 20
portfolios according to their average market capitalization rank. The first, MC1, contains the smallest 5% of firms and
the last, MC20, contains the largest 5%. For each MC portfolio, we compute all individual estimates using a five-year
moving window from 1990 to 2013 across seven intervals (30 estimations in total). This table illustrates the averages
of individual betas, gammas and deltas of the securities. The Kruskal Wallis test (Chi-squared statistics) and the sums
of absolute differences (see Equation 9) are used to test the magnitudes of the intervaling effect. SADs are calculated
for individual betas, gammas and deltas, respectively. One-tailed tests are run to check whether SAD in each case is
significantly different from zero, according to Equation 11. *, ** **%* indicate statistical significance at the 90%, 95%
and 99% levels, respectively.
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Table 9: Robustness Results for Testing the Intervaling effect on Individual Betas, Gammas and Deltas of Securities
with Continuous Presence, CRSP 1990-2013

Sampling Intervals

1-D 2-D 3-D 4-D 5-D 10-D 20-D 65-D 125-D SAD
Panel A: Value-weighted Betas, Gammas and Deltas
Beta 0.881 0.868 0.866 0.870 0.873 0.881 0.894 0.910 0.963 0.209***
Gamma 1.162 1.028 0.909 0904 0940 099 1.024 1.145 1.178 0.763*
Delta 0.930 0.918 0.915 0.929 0937 0963 0.988 1.001 1.100 0.459***
Number ANGVAL Bartlett's W-M-W Signed Rank  Sign Variance KW
of Stocks 9%5% 90% 95% 90% 95%  90%
Panel B: Measures for the Intervaling Effect
Beta 989 65.252%%* 0.000 8/8 8/8 8/8 8/8 0/8 0/8 450.703**
Gamma 989 0.503 0.000 8/8 8/8 8/8 8/8 0/8 0/8 292.597*
Delta 989 17.8527%%% 0.000 8/8 8/8 8/8 8/8 0/8 0/8 513.913*

Note: This table illustrates the robustness of results for stocks with continuous presence and for differing cohorts.
Panel A tests the intervaling effect on 989 stocks with continuous presence from 1990 through 2013. Nine sampling
intervals: 1,2, 3,4, 5, 10, 20, 65 and 125 days are formed using daily data from CRSP. Panel B Panel C documents
tests on the sensitivity of the intervaling effect. ANOVALI tests the variations of the magnitudes due to the different
sampling intervals, while ”Bartlett's P — value = 0.000” indicates the equal variances assumption is significantly
rejected. We then use four non-parametric tests. The Wilcoxon-Mann-Whitney test and Wilcoxon Signed-rank
test compare the differences in medians of each sample of ratios and the sample of ones. For each 8 samples of
ratios, the portions of significantly different observations are displayed under 95% and 90% confidence levels. A
simple sign variation test is used to identify whether the signs are also vary significantly. We compare the signs of
estimators measured by the monthly returns and those in the other eight samples. The Kruskal Wallis test is a non-
parametric version of ANOVAL to test the differences in medians among each nine samples. Chi-squared statistics
with the significant stars are presented. *, **, *** indicate statistical significance at the 90%, 95% and 99% levels,
respectively.
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Table 10: Robustness Results for Testing the Intervaling Effect during High-Risk versus Low-Risk Periods: SADs for
Market-Capitalization Portfolios

SAD MC1 MC2 MC3 MC4 MC5 MCl16 MC17 MC18 MCI19 MC20
Panel A: High-VIX Period: an average VIX of 25.389
Mkt. Cap. (107) 2.9 5.6 8.2 11.0 144 1712 2413 3785 768.4 4030.0

SADg 3756 3.807 3302 2927 2445 1.133  0.685 0.820 0.342 0212
SAD, 23773 37.545 32917 24794 27.130 14294 13.895 10.611 5.021 3.381
SAD; 3771 3946 3256 2974 2433 1.155 0.752  0.831 0.261  0.345

Panel B: Low-VIX Period: an average VIX of 14.994
Mkt. Cap. (107) 3.0 6.2 9.2 12.7 16.1 2045 2924 4699 908.7 4600.0

SADg 3731 2,660 2329  2.283 1426 0506 0303 0.228 0.064 0.071
SADy 5805 7.635 4705 2.676 1.959  3.739 1.711 1.279  1.632  1.003
SAD; 3.185 2218 1955  2.188 1411 0484 0268 0.195 0.022  0.055

Panel C: High-TED Period: an average TED of 0.792
Mkt. Cap. (107) 29 5.7 8.3 11.4 146 1790 2559  411.0 8214 4590.0

SADg 3734 3312 2985 2701 2107 0834 0.653 0614 0251 0.139
SAD, 19.513  29.220 25.092 21.523 22.045 10.630 9.133 8486 3.672  2.183
SADg 3466 3228 2775 2682 2115 0837 0.679 0.647 0210 0217
Panel D: Low-TED Period: an averaged TED at 0.333

Mkt. Cap. (107) 3.1 6.2 9.3 12.8 164 2047 2899 4584 8874 4130.0
SADg 3747  2.868 2400 2338 1.508 0.628 0.229 0255 0.075  0.102
SAD, 13319 16913 14202 10.612 6.630 5244 2.148 3870 1.882 2.324
SADg 3358 2503 2106 2.271 1472 0.613 0205 0.187 0.042  0.095

Note: This table checks the robustness of the intervaling effect, measured by the Sum of Absolute Differences, during
high-risk and low-risk periods. Seven sampling intervals: 1, 2, 3, 4, 5, 10, and 20 days are used to form returns. Each
year the securities are reassigned to 20 portfolios according to their average market capitalization rank. The first, MC1,
contains the smallest 5% of firms and the last, MC20, contains the largest 5%. For each MC portfolio, we compute
all individual estimates using each stock’s one-year returns and re-estimate them every year from 1990 to 2013 across
seven intervals. SAD is our measure for the magnitude of the intervaling effect, as the sum of the absolute differences
between other interval estimates and monthly estimates as shown in Equation 9.
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Figure 1: Sample Means of Definition Betas, Gammas and Deltas across Different Intervals, all
stocks 1990-2013
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Note: This figure displays the values in Table 3. In order to avoid data prob-
lems due to the listing and delisting of securities, 8088 securities with more
than 5-year returns are selected. The logarithmic returns of individual stocks
are calculated for nine sampling intervals: 1, 2, 3, 4, 5, 10, 20, 65 and 125
days using the data on the CRSP daily tape from 1990 to 2013. We compute
individual beta, gamma and delta for each stock using returns of each sam-
pling interval, based on the definitions in Equation 4. Then, we compute the
averages of individual betas, gammas and deltas across all nine intervals.
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