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Abstract 

 

Background: Difference-in-differences (DID) estimation has become increasingly popular 

as an approach to evaluate the effect of a group-level policy on individual-level outcomes. 

Several statistical methodologies have been proposed to correct for the within-group 

correlation of model errors resulting from the clustering of data. Little is known about how 

well these corrections perform with the often small number of groups observed in health 

research using longitudinal data.  

Methods: First, we review the most commonly used modelling solutions in DID estimation 

for panel data, including generalized estimating equations (GEE), permutation tests, 

clustered standard errors (CSE), wild cluster bootstrapping, and aggregation. Second, we 

compare the empirical coverage rates and power of these methods using a Monte Carlo 

simulation study in scenarios in which we vary the degree of error correlation, the group 

size balance, and the proportion of treated groups. Third, we provide an empirical example 

using the Survey of Health, Ageing and Retirement in Europe (SHARE). 

Results: When the number of groups is small, CSE are systematically biased downwards in 

scenarios when data are unbalanced or when there is a low proportion of treated groups. 

This can result in over-rejection of the null even when data are composed of up to 50 groups. 

Aggregation, permutation tests, bias-adjusted GEE and wild cluster bootstrap produce 

coverage rates close to the nominal rate for almost all scenarios, though GEE may suffer from 

low power.  

Conclusions: In DID estimation with a small number of groups, analysis using aggregation, 

permutation tests, wild cluster bootstrap, or bias-adjusted GEE is recommended. 

 

Keywords: difference-in-differences; clustered standard errors; inference; Monte Carlo 

simulation; GEE  
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Introduction 

Difference-in-differences (DID) estimation has become increasingly popular in the medical 

and epidemiological literature in recent years.1–6 DID is often used to evaluate the effect of a 

group-level policy on individual-level outcomes. Because observations are grouped, errors 

are correlated across individuals within groups; models that do not account for this 

correlation will result in misleadingly small standard errors (SEs) and incorrect inference.7,8 

DID estimation is often used to analyse the impact of specific policy experiments and 

interventions. Given that such changes generally occur only in few hospitals, districts, or 

states, the number of groups in most health-focused DID analyses is small. When the number 

of clusters is small (generally less than 50), recent literature has shown that common 

approaches to correct for correlated errors, such as the cluster-robust sandwich variance 

estimator, may be biased downwards9–11, resulting in standard errors that are too small and 

confidence intervals that are too narrow. 

A range of empirical approaches to deal with these challenges have been proposed, 

including bias-adjusted generalized estimating equations (GEE)12–15, bootstrapping 

methods16–18, permutation tests19–21 and aggregation.7,10 While prior work has shown the 

strength of each approach compared to one or two alternatives, we attempt to provide a 

more comprehensive picture of the relative advantages and disadvantages of each approach 

across a wide range of data scenarios in an effort to offer guidance to applied researchers. 

Additionally, most existing literature has focused on repeated cross-sectional data, which is 

mostly commonly used  for economic outcomes such as income or hours worked.7,16,17,22–24 

While some cross-sectional data is available for health research, medical and epidemiological 

research more typically focuses on a small number of units repeatedly observed over time 

in longitudinal data sets.3,6,25  

In this paper, we simulate such longitudinal data sets and assess the relative 

performance of correction methods in terms of coverage and power. We first review the 
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most commonly used modelling solutions in DID estimation for panel data, including GEE, 

permutation tests, clustered standard errors (CSE), wild cluster bootstrapping, and 

aggregation. Second, we compare the empirical performance of these methods using a Monte 

Carlo simulation study, testing scenarios in which we vary the degree of error correlation, 

group size balance, and the proportion of treated groups. We compare both empirical 

coverage rates and power across all methods. Third, to illustrate the generalizability of our 

findings to real world settings, we also provide an empirical example using longitudinal data 

from the Survey of Health, Ageing and Retirement in Europe (SHARE). 

 

Modelling approaches in difference-in-differences 

Conceptual Review 

The main idea of DID is to compare relative trends in treatment and control groups before 

and after group-level changes.1 The central aim of DID is causal inference; the basic 

assumption required for unbiased DID estimates is that of parallel trends in outcomes, that 

is, the treatment group would have had a trend parallel to the control group in the post-

treatment period, had it not been treated. In this article we assume this assumption holds 

(so that point estimates are unbiased) and then explore various serial correlation scenarios 

to assess the relative performance of standard error corrections proposed in the literature.  

Conceptually, the approaches used to account for within-group correlation in 

outcomes can be divided into three broad categories: (1) post-hoc adjustments such as CSE, 

bootstrapping, or permutation tests; (2) explicitly modelling the within cluster error 

correlation; and (3) aggregating the data to the group level, thereby eliminating the 

correlation. 

 

Post hoc Adjustments 
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Three common post hoc adjustments for standard errors in regression models are clustered 

standard errors (CSE), cluster bootstrapping, and permutation tests. CSE are a generalization 

of the White robust covariance sandwich estimator that allow for group-level correlation 

(clustering) in addition to heteroscedasticity.8,26 The technical details for estimating the 

cluster-robust variance matrix after an ordinary least squares (OLS) regression is shown in 

Appendix Table 1, Supplementary Digital Content 1. However, CSE have been shown to 

perform poorly in scenarios with a small number of clusters because the robust variance 

estimator is based on a sample variance estimate and residuals tend to underestimate the 

true error in small samples.9,27 

Wild cluster bootstrapping is a modification to the cluster bootstrapping resampling 

method. Cluster bootstrapping has been shown to be problematic in settings where the 

treatment variable of interest is binary and cluster invariant.16 Details of the wild cluster 

bootstrap procedure are provided in Appendix Table 1, Supplementary Digital Content 1. 

Permutation tests (also called randomization inference) are nonparametric 

resampling methods.19–21,28 They have been more recently applied to quasi-experimental 

settings.23,29–31 The procedure reassigns entire groups to either treatment or control and 

recalculates the treatment effect in each reassigned sample, generating a randomization 

distribution. An exact p-value can be calculated as the probability of obtaining a test statistic 

as far or further from the observed.31 

 

Modelling Within-Cluster Error Correlation  

There are a number of ways to model within-cluster error correlation including GEE, random 

effects (RE) models, and feasible generalized least squares (FGLS). While RE and FGLS 

depend on correctly specified error structures, the GEE sandwich estimator is robust with 

respect to misspecification of the generally unknown covariance structure.8,32,33 

There are two main problems with the GEE in small samples. First, as with CSE, 

variance estimates are biased downward; this bias gets larger as the number of groups gets 

smaller and can be estimated and adjusted for using a Taylor series approximation. Second, 
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the z-distribution is a poor approximation of the sampling distribution in small samples and 

leads to over-rejection of the null; a t-distribution has been shown to be a better 

approximation.12–15,34,35 

 

Aggregation 

In aggregation, data are collapsed into group cells pre-intervention and post-intervention, 

thus eliminating the error correlation. Parameters are estimated by first averaging residuals, 

at the group-time level, from a regression of the outcome on control variables, and using 

these averaged residuals as the outcome in a group-level DID regression model.7 OLS 

standard errors are obtained. 

 

The additional problem of unbalanced data 

Due to a variety of reasons such as differential sampling and attrition, virtually all data 

available to health researchers tends to be unbalanced, meaning that the number of 

observations varies across groups and individuals.36 Previous work suggests that in 

unbalanced data, false discovery rates may be  higher than in balanced data for CSE17,37,38 as 

well as for GEE.13 Carter et al.37 demonstrate that the effective number of clusters is reduced 

when the cluster size varies and provide a measure for calculating this effective number of 

clusters (G*) that scales down the true number of clusters (G). MacKinnon and Webb17 use 

this measure to produce critical values from the t(G*-1) distribution and compare false 

discovery rates to those from the usual t(G-1) distribution. They find that the t(G*-1) 

distribution frequently (though not always) reduces rates of false discovery. 

Additionally, Conley and Taber23 show that the proportion of treatment groups also 

impacts false discovery rates in simulation studies. They show that when this proportion is 

very low (or very high), the treatment effect, though unbiased, is no longer consistent (see 

full explanation and proof in Conley and Taber23). 
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Simulation study 

We investigated the accuracy of inference for these various approaches by conducting a set 

of Monte Carlo simulations across a range of scenarios.  

We assumed the data generating process was known with certainty and given by, 

 

                                                  𝑌𝑖𝑔𝑡 = 𝛽𝑇𝑟𝑡𝑔𝑡 +  𝑢𝑔 + 𝑣𝑖 + 𝑤𝑔𝑡+𝜀𝑖𝑔𝑡,                                      (1) 

with 

𝑢𝑔~𝑁(0, 𝜎𝑢
2);  𝑣𝑖~𝑁(0, 𝜎𝑣

2); 

𝑤𝑔𝑡~ 𝐴𝑅(1) with 𝑁(0, 𝜎𝑤
2 );  𝜀𝑖𝑔𝑡~𝑁(0, 𝜎𝜀

2) 

where 𝑌𝑖𝑔𝑡 is the outcome for individual i in group g at time t. 𝑇𝑟𝑡𝑔𝑡 is an indicator for whether 

the intervention affected group g at time t and 𝛽 is the DID estimand. 𝑢𝑔 and 𝑤𝑔𝑡 are group-

level random effects, while 𝑣𝑖is an individual-level random effect. Via this data generating 

process, the error is correlated within groups and within individuals as normally distributed 

disturbances, as well as within groups by a first-order autoregressive [AR(1)] process with 

normal disturbances and an autocorrelation parameter of 𝜌 = 0.8. The AR(1) process allows 

data to be serially correlated across time within groups, as in the way country-specific 

economic or health conditions evolve progressively over time. Bertrand et al. (2004) show 

that this AR(1) process is too simple to be realistic in panel data; however, they find it is 

illustrative of the problems in serial correlation and we follow the same process.7 

Note that if 𝜎𝑤
2  is 0 or near 0, then individual-level fixed effects will account fully for 

the within-cluster correlation as the correlation of errors is then driven solely by group- and 

individual-level processes. However, previous research has shown that the inclusion of group 

fixed effects in group-year panel data does not eliminate the within-group correlation of the 

error.7,9,24 Thus our data generating process induces correlation in the error even after 

accounting for individual fixed effects. 
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We tested both low and high correlation scenarios. Similar to Donald and Lang10, in 

the low correlation scenario, we set 𝜎𝜀
2 = 10𝜎𝑣

2 = 100𝜎𝑢
2 = 100𝜎𝑤

2 = 1. In the high 

correlation scenario, we set 𝜎𝑢
2 = 𝜎𝑤

2 = 0.05, and 𝜎𝑣
2 = 0.15. Although our data generating 

process is unique, our intraclass correlations are similar to those of other studies.10,13,39 

The list of simulation scenarios is shown in Table 1. We tested both short panels, 

where we set the number of time points per individual to 4 and long panels where we set the 

number of time points per individual to 20. The treatment was implemented at the halfway 

point. We began our simulations with balanced data, where the number of individuals per 

group was always 30 and the proportion of treated groups was 0.5. Next, we tested the case 

with unbalanced cluster sizes, where we allowed the number of individuals per group to vary 

on a uniform distribution between 1 and 59 (for a mean of 30, yielding a coefficient of 

variation of 0.56). Finally, we tested the case in which the proportion of treated groups was 

0.2.  

 

Table 1. Characteristics of Simulation Scenarios. 

Simulation 

Scenario 
Correlation 

Individuals 

per cluster 

Proportion of 

treated clusters 

Time points 

per individual 

Balanced data Low and High 30 0.5 4 and 20 

Unbalanced cluster size Low and High 1 – 59 0.5 4 and 20 

Low proportion of 

treated clusters 
Low and High 30 0.2 

4 and 20 

 

For each scenario, we simulated 1000 data sets under the null treatment effect. We evaluated 

the performance of the methods detailed below by the coverage rate, the fraction of 

simulations in which the 95% confidence interval for 𝛽 covers the null (in the permutation 

test and wild cluster bootstrap, we calculated the fraction of simulations in which the p-value 

is greater than or equal to 0.05). Coverage rates below 0.95 indicate underestimation of 

standard errors and p-values, while coverage rates above 0.95 indicate overestimation of 
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standard errors; satisfactory performance of models implies that actual coverage rates are 

close (within the Monte Carlo confidence intervals) to the nominal coverage rate of 0.95. 

Next, we imposed a treatment effect of 0.6 standard deviation. We again simulated 

1000 datasets and we evaluated the performance of the models by the measure of statistical 

power, the fraction of the simulations that resulted in a significant effect at the 0.05 level.  

 

We tested six estimation methods, as follows. We began with the basic DID model: 

     𝑌𝑖𝑔𝑡 = 𝑎 + 𝑏1(𝐺𝑟𝑜𝑢𝑝𝑇𝑟𝑡𝑔 ∗ 𝑃𝑜𝑠𝑡𝑇𝑟𝑡𝑡)+𝑏2𝐺𝑟𝑜𝑢𝑝𝑇𝑟𝑡𝑔 + 𝑏3𝑃𝑜𝑠𝑡𝑇𝑟𝑡𝑡 + 𝑒𝑖𝑔𝑡          (2) 

Where 𝐺𝑟𝑜𝑢𝑝𝑇𝑟𝑡𝑔 is an indicator for whether the group was treated, 𝑃𝑜𝑠𝑡𝑇𝑟𝑡𝑡 is an indicator 

for the post-treatment period, and 𝐺𝑟𝑜𝑢𝑝𝑇𝑟𝑡𝑔 ∗ 𝑃𝑜𝑠𝑡𝑇𝑟𝑡𝑡 is their interaction. Using this 

model, we estimated CSE at the group level, wild cluster bootstrap, and permutation tests 

(see Appendix Table 1, Supplemental Digital Content 1 for details). Next we included 

individual fixed effects, 𝐴𝑖 , instead of the intercept 𝑎, and again estimated CSE at the group 

level. We next collapsed the data into group-time cells and estimated OLS standard errors. 

Finally, we estimated a GEE with the same specification as Eq 2, assuming a normal 

distribution for the response, the identity as link function, the group as the cluster ID, and an 

exchangeable working correlation matrix. We adjusted the GEE with small sample bias 

adjustment and an F-distribution correction as per Fay and Graubard14.  

 All simulations were conducted using R, version 3.2.3. The R code needed to 

implement the methods tested is provided in Supplemental Digital Content 2. 

 

Results 

Simulation results for coverage rates 

Figure 1 presents the results of our simulations for all six methods in the high correlation 

scenario when the number of time points per individual is 4. The horizontal line is the 

nominal coverage of 0.95 and the horizontal dotted lines indicate the Monte Carlo confidence 

interval. The figure shows coverage rates as the number of groups increases from 5 to 50 for 
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data that are balanced with respect to cluster size, are unbalanced with respect to cluster 

size, and have a low proportion of treated clusters.  

When data were balanced, most models produced coverage rates close to 0.95 as long 

as the number of groups, G, was at least 7. With short panels (only 4 time points), individual 

fixed effects accounted for most of the variation at the group level and CSE with individual 

fixed effects produced satisfactory, though slightly conservative, coverage in the balanced 

case (panel B).   

However, results substantially changed when data were unbalanced and when there 

were a low proportion of treated clusters. In unbalanced data, CSE, even with individual fixed 

effects, had lower than nominal coverage up to G=10. In the low proportion of treated 

clusters scenario, CSE with fixed effects had lower than nominal coverage even up to G=18. 

It is important to note here that coverage rates do not increase monotonically with G because 

the finite number of groups did not allow us to keep the proportion of treated clusters 

constant. For example, when G was 7 the number of treated clusters was 2, resulting in a 

proportion of about 0.28, while when G was 10, the number of treated clusters was still 2 

and thus the proportion was 0.2. The results highlight that both the absolute number of 

clusters as well as proportion of treated clusters are significant influences on the 

performance of CSE.  
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Fig. 1.  Coverage for 6 models as the number of groups increases for data that are balanced, 
unbalanced, and with a low proportion of treated clusters, in the high correlation scenario 
with 4 time points per individual. Horizontal lines show 0.95, the nominal coverage, and 
Monte Carlo simulation confidence intervals. For the low proportion of treated case, 
coverage for CSE is off of the graph for G=5 and G=6, at 0.68 and 0.64, respectively, and for 
CSE with individual fixed effects at 0.72 and 0.70, respectively. CSE indicates clustered 
standard errors; GEE, generalized estimating equations 
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Aggregation (panel C) and permutation (panel F) consistently produced coverage 

rates very close to 0.95 regardless of balance of data or proportion of treated clusters, aside 

from permutation when G<7 which produced a coverage of 1 due to the limited number of 

permutations of the data resulting in p-values necessarily greater than 0.05. The adjusted 

GEE was also consistently satisfactory, aside from the case when G<7 in the low proportion 

of treated scenario (panel D). This occurred because there was only one treated cluster in 

those cases and the variance matrix estimate of the GEE relies on averaging residuals across 

clusters.  

The wild cluster bootstrap also performed well except in the low proportion of 

treated clusters scenario, where it produced conservative coverage rates when G<12 (panel 

E). This may be due to the limited possible number of transformations of bootstrap residuals 

when there are few (or almost all) clusters treated; Webb18 finds that a different weight 

distribution (such as the Webb 6-point distribution rather than the Rademacher 2-point 

distribution used here) performs better in very small G.  

Results were similar when we increased the number of time points to 20 per 

individual in the high correlation scenario (Figure 2). However, in this case, the data were 

more highly autocorrelated in the AR(1) group-time process, and thus individual fixed 

effects could no longer control for the correlation in the errors. CSE with fixed effects led to 

coverage rates considerably below nominal level in balanced data when G<9, in unbalanced 

data when G<22, and in data with low proportion of treated clusters when G<50.   
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Fig. 2.  Coverage for 6 models as the number of groups increases for data that are balanced, 
unbalanced, and with a low proportion of treated clusters, in the high correlation scenario 
with 20 time points per individual. Horizontal lines show 0.95, the nominal coverage, and 
Monte Carlo simulation confidence intervals. For low proportion of treated, coverage for 
CSE is off of the graph for G=5 and G=6, at 0.68 and 0.64, respectively, and for CSE with 
individual fixed effects at 0.69 and 0.65, respectively. CSE indicates clustered standard 
errors; GEE, generalized estimating equations. 
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Other models performed much better. Aggregation, the adjusted GEE, and 

permutation had coverage rates close to 0.95 regardless of balance of data or proportion of 

treated clusters, with the minor exceptions mentioned above. The results for the same 

scenarios with low correlation are shown in Appendix Figures 2 and 3, Supplemental Digital 

Content 1. 

 

Simulation results for statistical power 

We investigated the power of these models to detect a treatment effect at the 0.05 

level in scenarios in which the data are unbalanced (Figure 3, panel A) and have a low 

proportion of treated clusters (Figure 3, panel B). All methods resulted in unbiased 

treatment effects (see Appendix Figure 4, Supplemental Digital Content 1). The graphs show 

coverage rates on the x-axis and power on the y-axis for 5, 10, 15, and 20 groups. For both 

data scenarios, we found that aggregation and permutation provided the most power among 

those models that also met the coverage criterion, though permutation had no power to 

detect an effect at the 0.05 level when G=5 because of the limited number of total possible 

permutations. Because it is more conservative than the other methods14, the adjusted GEE 

was consistently underpowered compared to other methods.  
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Fig. 3. Power versus coverage for unbalanced data (panel A) and low proportion of treated 
clusters (Panel B), by number of groups (G). Number of time points for each individual is 
20. Dotted lines indicate Monte Carlo confidence intervals for nominal coverage. Monte 
Carlo confidence intervals for power are not shown to prevent obscurity of results; for each 
estimate the width of the 95% confidence interval is 0.0196. For Panel B, G=5, CSE with FE 
coverage is off the graph at 0.69. “CSE with FE” indicates clustered standard errors with 
individual fixed effects; “Wild Cluster BS”, wild cluster bootstrap ; "GEE w/bias adj," 
generalized estimating equations with bias adjustment. 
 

Empirical Example 

We investigate the generalizability of the results of our simulations to real world 

empirical settings using data from the Survey of Health, Ageing and Retirement in Europe 
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(SHARE).40–42 SHARE is a widely used and cited cross-national longitudinal survey of health 

and socio-economic status. The target population for SHARE is persons who are 50 years and 

older in the respective survey year and their partners of any age. The survey has a 

longitudinal dimension in that all respondents who have previously participated are eligible 

to be interviewed in future waves. Recently, DID analyses exploiting country-level 

differences using SHARE data have been conducted to examine the effect of the recession on 

elderly informal care receipt43,  maternity leave benefits on mental health44, and health 

service user fees implementation on health care utilization.45 In these analyses, we may be 

worried that institutional and cohort factors may drive country-level autocorrelation in DID 

model errors. 

We extract data from the easySHARE combined SHARE dataset and focus on the nine 

countries included in all 5 waves.40,42 The sample includes 129,764 observations from 

54,854 individuals after missing data is excluded.  

 We first assess the extent of autocorrelation in SHARE health outcomes as compared 

to our simulated data. Using the procedure outlined in Bertrand et al.7, we calculate mean 

country-wave residuals from a regression of each outcome on country and wave dummies; 

the autocorrelation coefficients are obtained from a linear regression of the residuals on the 

lagged residuals. For body mass index (BMI), word recall, and depression scale, the average 

estimated first-order autocorrelation coefficients are 0.36, 0.24, and 0.38, respectively (see 

Appendix Table 2, Supplementary Digital Content 1). These are quite comparable to the 

autocorrelation of our simulated data in the high correlation, unbalanced scenario estimated 
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at 0.37. Conversely, for grip strength and subjective wellbeing, the autocorrelation 

coefficients are near 0. This is perhaps because these measures are not as responsive to 

country-specific trends over time, so that country and wave fixed effects are effective at 

eliminating autocorrelation in the residuals. 

Next, we assess how similar our simulated results are to results from real data, 

focusing on the outcome of BMI. The procedure is as follows: we first re-sample countries 

with replacement to get a new sample of 9 countries (preserving the within-country error 

structure), then we sample 10% of individuals within each country (including all of each 

individual’s measurements). For each sample, we create a placebo intervention that occurs 

between waves 2 and 4 for some proportion of the countries, and run the same DID models 

as in the simulated data, but additionally adjusting for sex, age, years of education, and 

marital status. We evaluate an additional model where we include country and wave fixed 

effects in the DID regression before applying CSE. We conduct the procedure 1000 times and 

calculate coverage for all models. We vary the proportion of treated countries, r, from 0.11 

to 0.89. The results are shown in Figure 4. 
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Fig. 4. Coverage rates for 7 models as proportion of treated countries varies, using SHARE 
data for outcome of BMI. All models adjusted for sex, age, years of education, and marital 
status. "CSE" indicates clustered standard errors; "FE," fixed effects; "GEE", generalized 
estimating equations. 
 

Results are quite similar to those of the simulations with the short panel. CSE, even with 

country and wave fixed effects, produced lower than nominal coverage and was particularly 

poor when r was close to 0 or 1. Because the panel is relatively short, CSE performed much 

better when individual fixed effects were included, although coverage was still less than the 

nominal rate in cases when r<0.25 (i.e. number of treated countries<3). As in the simulations, 

aggregation and permutation produced coverage rates close to 0.95 regardless of proportion 

treated. The wild cluster bootstrap performed well, except in the case when r was close to 0 
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or 1 when it was conservative. GEE also performed well, except in the case of 1 treated or 1 

control cluster. 

 

Discussion 

In this paper, we reviewed a range of empirical strategies proposed in the recent statistics 

literature to address the likely high degree of within-group error correlation in longitudinal 

data used for DID estimation.  Our results suggest that CSE, one of the most commonly used 

strategies, yield confidence intervals that are systematically too narrow in scenarios when 

data are unbalanced or when there is a low proportion of treated groups. Inclusion of 

individual fixed effects can somewhat improve coverage rates when applying CSE in short 

panels; however, they are not effective in longer panels. On the other hand, aggregation, the 

adjusted GEE, and permutation tests consistently produce coverage rates close to the 

nominal rate of 0.95 regardless of balance of data, aside from the adjusted GEE in the case 

when there is only one treated cluster and permutation in the case when number of groups 

is less than 7. With a very small number of groups (<12), the wild cluster bootstrap yields 

slightly lower than nominal coverage in balanced and unbalanced data, and higher than 

nominal coverage in the low proportion of treated scenario.  

To illustrate the practical relevance of our results, we estimated the same range of 

models using real data from the SHARE study. We found very similar results for the outcome 

of BMI: CSE consistently resulted in over-rejection of the null. Because the panel was 

relatively short, individual fixed effects were able to reduce the error correlation. However, 

CSE still resulted in severe over-rejection when the proportion of treated countries was low. 

In contrast, aggregation and permutation resulted in correct coverage rates in all scenarios.   

The main challenge with all methods that seem to work well is power, especially when 

the number of groups is 10 or less. In relative terms, aggregation and permutation appear to 

perform best in this setting, while the power of the bias-adjusted GEE is limited. 

This analysis has some limitations. In all simulation studies it is necessary to specify 

a data generating process (DGP); we can only be sure that our results hold under the 
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conditions of that unique process. Since in real data we do not observe what the DGP is, we 

are cautious about generalizing our results. Our empirical example using SHARE data 

provides some evidence that even under alternative DGPs with different error structures, 

our results in short panels hold. However, more empirical work using longer panels with 

more diverse health outcomes and treatment scenarios is necessary. 

Nevertheless, these results have important implications for medical and 

epidemiological research. In real data, it is not possible to know what the true DGP is; 

researchers should therefore err on the side of caution when applying clustered standard 

errors in DID estimation using longitudinal data, particularly when data are not balanced or 

when there is a low proportion of treated clusters. Reviewers of articles that include small 

sample clustering should request that authors use appropriate methods, or at minimum 

compare their findings to either aggregation, permutation tests, GEE with bias adjustment, 

or the wild cluster bootstrap. Second, although the adjusted GEE provides accurate coverage, 

it appears to have low power in DID estimation in small samples; researchers may consider 

permutation or aggregation as alternative methods. Third, since randomized controlled 

trials are increasingly analysed using DID, researchers can maximize power and avoid low 

coverage by designing cluster-randomized trials with equally sized clusters.36,39 

Lastly, these findings also have important implications for public policy. Correctly 

adjusting for correlated data is critical for rigorous evaluation of public programs. 

Evaluations that find a spurious positive or negative effect of a policy due to inappropriate 

methodology may promote poor public policy-making.  
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Supplemental Digital Content 1 

 

Table 1. Details of estimation methods 

Method Estimation 

Clustered 

Standard Errors 

Model: 𝑌𝑖𝑔𝑡 = 𝛼 + 𝛽𝐺𝑟𝑜𝑢𝑝𝑇𝑟𝑡_𝑃𝑜𝑠𝑡𝑇𝑟𝑡𝑔𝑡+𝛿𝐺𝑟𝑜𝑢𝑝𝑇𝑟𝑡𝑔𝑡 + 𝛾𝑃𝑜𝑠𝑡𝑇𝑟𝑡𝑔𝑡 + 𝜀𝑖𝑔𝑡 

Where 𝐺𝑟𝑜𝑢𝑝𝑇𝑟𝑡 is an indicator for whether the group was ever treated, 

𝑃𝑜𝑠𝑡𝑇𝑟𝑡 is an indicator for time in the post-treatment period, and 

𝐺𝑟𝑜𝑢𝑝𝑇𝑟𝑡_𝑃𝑜𝑠𝑡𝑇𝑟𝑡 is an indicator for their interaction. 

*With individual fixed effects, model includes individual intercepts 𝐴𝑖, instead of 

the overall intercept 𝛼 

Variance estimate: �̂�𝑐𝑙𝑢[�̂�] = (𝑋′𝑋)−1�̂�𝑐𝑙𝑢(𝑋′𝑋)−1 

Where �̂�𝑐𝑙𝑢 = ∑ 𝑋′𝑔�̂�𝑔�̂�′𝑔𝑋𝑔
𝐺
𝑔=1   and �̂�𝑔 = 𝑦𝑔 − 𝑋𝑔�̂� 

All simulations include finite sample adjustment: √𝑐�̂�𝑔 instead of �̂�𝑔, where 𝑐 =
𝐺

𝐺−1

𝑁−1

𝑁−𝑘
 as in the Stata command reg, vce(cluster) 

Hypothesis test uses a Wald test with t(G-1) degrees of freedom 

Wild cluster 

bootstrap  

Wild cluster bootstrapping randomly transforms the residuals by multiplying them 

by 1 with probability 0.5 or -1 with probability 0.5 (varying at the group level), 

and re-estimates the treatment effect and Wald test statistic. The observed test 

statistic is then compared to the resulting bootstrapped distribution. The advantage 

of this approach is that the within-cluster error correlation structure is preserved 

and the expected value of the transformed residuals is still 0. 

Procedure: 

1. Re-estimate OLS subject to the restriction that 𝛽 = 0.  

2. Estimate the bth resample by randomly assigning each cluster with the weight 

vg where vg is a random variable that takes on 1 with probability 0.5 and -1 

with probability 0.5 (Rademacher 2-point distribution).  

3. With the new residuals, generate a new y-vector, re-estimate OLS with the 

new y-vector, and calculate the Wald-statistic, wb*.  

4. Conduct this procedure B=400 times.  

5. The p-value for the test is then 1 minus the proportion |w|>|wb*|  , b=1,…,B. 
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Permutation Variance algorithm: 

1. Permute treatment and control clusters with R=max(400, total number of 

permutations possible) 

2. Calculate test statistic, t 

3. Repeat R times; obtain distribution of all test statistics 

4. The p-value for the test is then the proportion |t|>|t*|  where t* is the test 

statistic of the original data 

Aggregation Model:  

𝑅𝑒𝑠̅̅ ̅̅ ̅
𝑔𝑡 = 𝛼 + 𝛽𝐺𝑟𝑜𝑢𝑝𝑇𝑟𝑡_𝑃𝑜𝑠𝑡𝑇𝑟𝑡𝑔𝑡 + 𝛿𝐺𝑟𝑜𝑢𝑝𝑔 + 𝛾𝑃𝑜𝑠𝑡𝑇𝑟𝑡𝑔𝑡+𝜀𝑔𝑡 

Variance estimate: 𝑉[�̂�] = �̂�2(𝑋′𝑋)−1 

With variables defined as above, 𝐺𝑟𝑜𝑢𝑝𝑔 is a group indicator, and  

𝑅𝑒𝑠̅̅ ̅̅ ̅
𝑔𝑡 is the average residual by group and time from the regression: 

𝑌𝑖𝑔𝑡 = 𝛼 + 𝑍𝑖𝑔𝑡 + 𝜀𝑖𝑔𝑡, where 𝑍𝑖𝑔𝑡 is a matrix of controls (if any) 

GEE with bias 

adjustment 

Model: 

∑ 𝑈𝑔(𝛽)
𝐺

𝑔=1
= 0 

Where 𝛽 is a p x 1 parameter vector (that includes the variables as in the model 

for clustered standard errors, above). Then 

𝑈𝑔 ≈ �̂�𝑔 − Ω̂𝑔(𝛽 − �̂�) 

Where Ω̂𝑔 is an estimator of −𝜕𝑈𝑔/𝜕𝛽 evaluated at �̂�. Summing over all clusters 

G:  

�̂� − 𝛽 ≈ 𝑉𝑚(∑ 𝑈𝑔
𝐺
𝑔=1 ), and where 𝑉𝑚 = (∑ Ω̂𝑔

𝐺
𝑔=1 )

−1
 

𝑉𝑚, the model-based variance, may be estimated with the GEE robust variance 

sandwich estimator: 

𝑉𝑠 = 𝑉𝑚 (∑ �̂�𝑔�̂�𝑔
𝑇

𝐺

𝑔=1
) 𝑉𝑚 

Bias adjusted variance sandwich estimator (see Fay and Graubard 2001 for full 

proof): 
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𝑉𝑎 = 𝑉𝑚 (∑ 𝐻𝑔�̂�𝑔�̂�𝑔
𝑇𝐻𝑔

𝐺

𝑔=1
) 𝑉𝑚 

Where 𝐻𝑔 is a p x p diagonal matrix with jjth element equal to: 

 {1 − min (𝑏, {Ω̂𝑔𝑉𝑚}
𝑗𝑗

)}
−1/2

 

Degree of freedom adjustment using �̃�𝐻 (d3 and d5 options in R function saws, 

from the saws package):  

�̂�𝑔 = 𝐻𝑔�̂�𝑔�̂�𝑔
𝑇𝐻𝑔

𝑇 

�̃�𝐻 =
{𝑡𝑟𝑎𝑐𝑒(�̃�𝐵1}

2

𝑡𝑟𝑎𝑐𝑒(�̃�𝐵1�̃�𝐵1)
 

Simulations use the R package saws and an exchangeable working correlation 

matrix 

*Note that for the low proportion of treated case when G<7, GEE degrees of 

freedom uses �̂�𝐻 rather than the usual �̃�𝐻 because the latter has multicollinearity 

problems in the smoothing formula due to inclusion of only one treated cluster 

(see Fay and Graubard 2001). For G≥ 7, �̃�𝐻 is used, however, results were similar 

using �̂�𝐻. 
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Table 2. Autocorrelation coefficients of SHARE outcomes compared to simulated data 

 
Simulated 

data 
BMI 

Depression 

Scale 

(EUROD) 

Verbal 

recall 

Grip 

strength 

Subjective 

well-being 

(CASP) 

Mean (SD) 
-0.01 

(1.2) 

26.5 

(4.5) 

2.2 

(2.1) 

5.4 

(1.8) 

34.2 

(11.9) 

38.4 

(5.9) 

Autocorrelation lag 1 

(SE) after adjusting for 

country and time fixed 

effects 

0.38 

(0.07) 

0.36 

(0.14) 

0.24 

(0.15) 

0.38 

(0.14) 

-0.07 

(0.15) 

-0.08 

(0.15) 

Notes: Simulated is unbalanced scenario, with 9 groups and 20 time points per individual.  
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Figure 1. Coverage for adjustments on GEE model for unbalanced cluster sizes. “GEE w/robust SEs” is 

the GEE with the robust sandwich variance estimator. “GEE w/F-dist only” is the GEE using the F-

distribution instead of the normal for the Wald test. “GEE w/bias adj” is the GEE with the small sample 

bias adjustment and using the F-distribution.  
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Figure 2.  Coverage for 6 models in the low correlation scenario when the number of time points is 4 for data that is 

balanced, unbalanced, and with a low proportion of treated clusters:: A) clustered standard errors (CSE), B) CSE 

with fixed effects, C) aggregation, D) GEE with bias adjustment, E) wild cluster bootstrap, and F) permutation. 

Horizontal lines show 0.95, the nominal coverage, and Monte Carlo simulation standard errors. For low proportion 
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of treated, coverage for CSE is off of the graph for G=5 and G=6, at 0.71 and 0.67, respectively, and for CSE with 

individual fixed effects at 0.76 and 0.73, respectively. For G<7, GEE degrees of freedom using �̂�𝐻 rather than the 

usual �̃�𝐻 because the latter has multicollinearity problems in the smoothing formula due to inclusion of only one 

treated cluster (see Fay and Graubard 2001). For G≥ 7, �̃�𝐻 is used, however, results were similar using �̂�𝐻.  



 

This draft paper is intended for review and comments only. It is not intended for citation, 

quotation, or other use in any form. A revised final version of this paper will appear in a 

forthcoming issue of Medical Care. 

35 
 

 

Figure 3.  Coverage for 6 models in the low correlation scenario when the number of time points is 20 for data that 

is balanced, unbalanced, and with a low proportion of treated clusters: A) clustered standard errors (CSE), B) CSE 

with fixed effects, C) aggregation, D) GEE with bias adjustment, E) wild cluster bootstrap, and F) permutation. 
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Horizontal lines show 0.95, the nominal coverage, and Monte Carlo simulation standard errors. For low proportion 

of treated, coverage for CSE is off of the graph for G=5 and G=6, at 0.68 and 0.65, respectively, and for CSE with 

individual fixed effects at 0.69 and 0.67, respectively. For G<7, GEE degrees of freedom using �̂�𝐻 rather than the 

usual �̃�𝐻 because the latter has multicollinearity problems in the smoothing formula due to inclusion of only one 

treated cluster (see Fay and Graubard 2001). For G≥ 7, �̃�𝐻 is used, however, results were similar using �̂�𝐻. 

 

 

 

Figure 4. Histograms of treatment effect across models in unbalanced data  
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