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Abstract

Household surveys often suffer from nonresponse on variables such as income, savings or
wealth. Recent work by Manski shows how bounds on conditional quantiles of the variable of
interest can be derived, allowing for any type of nonrandom item nonresponse. The width
between these bounds can be reduced using follow up questionsin theform of unfolding brackets
for initial item nonrespondents. Recent evidence, however, suggests that such a design is
vulnerable to anchoring effects. In this paper Manski’ s bounds are extended to incorporate the
information provided by the bracket respondents allowing for different forms of anchoring. The
new bounds are applied to earningsin the 1996 wave of the Health and Retirement Survey. The
results show that the categorical questions can be useful toincrease precision of the bounds, even
if anchoring is allowed for.
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1 Introduction

Household surveys are often plagued by item nonresponse on variables of interest like income,
savings or the amount of wealth. For example, in the 1996 wave of the Health and Retirement
Survey (HRS), aUS panel often used to study socio-economic behavior of the elderly, 12.4% of
those who say they have some earnings, do not give the amount of these earnings. Questionson
amounts of certain types of wealth often lead to even larger nonresponse rates. Manski (1989,
1994, 1995) shows how bounds on conditional quantiles of the variable of interest can be
derived, alowing for any type of nonrandom response behavior. Manski’s framework is
intuitively appealing, easy to apply, and very flexible, but has the drawback that the resulting
bounds are often too wide to draw meaningful economic conclusions. In Manski’ s framework
the precision with which features of the distribution of the variable of interest (such as its
guantiles) can be determined, i.e., the width between the bounds, depends on the probability of
nonresponse. If item nonresponse is substantial, the approach cannot lead to accurate estimates
of the parameters of interest without additional information or additional assumptions.

Including follow-up questions in the form of unfolding brackets for initial item
nonrespondentsiis an effective way to reduce compl ete item nonresponse. In the HRS example
given above, 73% of theinitial nonrespondents answer the question whether or not their earnings
exceed $25,000, and most of these also answer a second question on either $50,000 (if the first
answer was ‘yes') or $5,000 (if the first answer was ‘no’). Recent evidence, however, suggests
that the follow-up design that is used here leads to an “anchoring effect,” a phenomenon well
documented in the psychological literature: the distribution of the categorical answersisaffected
by the amounts in the questions (“bids” become “anchors”). Experimental studies have shown
that even an anchor that is arbitrary and uninformative can have large effects on the responses
(see, for example, Jacowitz and Kahneman (1995)). Using a specia survey with randomized
initial bids, Hurd et al. (1998) show that the distribution is biased towards the categories close
totheinitial bid. They estimate a parametric model to capture the anchoring phenomenon. Their
results confirm that the anchoring effect can bias the conclusions on the parameters of interest
if not properly accounted for. Alternative parametric models for anchoring are introduced by
Cameron and Quiggin (1994) and Herriges and Shogren (1996).

This paper extends the approach by Manski, incorporating the information provided by
the bracket respondents. From the existing anchoring models, three different nonparametric
assumptions on the anchoring effects are derived, which are used to construct bounds allowing
for anchoring. These bounds are compared to the bounds that do not allow for anchoring, i.e.,
bounds based on the assumption that the bracket information is aways correct. Thus, the main
goal of the paper isto use the information provided in follow-up unfolding bracket questions,
allowing for nonrandom response behavior as well as anchoring.



The bounds are applied to earnings in the 1996 wave of the Health and Retirement
Survey. Theresults show that the categorical questions can be useful to increase precision of the
bounds, even if anchoring isallowed for. They also help to improve the power of statistical tests
for equality of earnings quantiles in subpopulations. This is shown by comparing bounds for
respondents with low and high education levels. The bounds that take account of bracket
information are able to detect differences that are not revealed by the bounds based upon full
respondents’ information only.

The remainder of this paper is organized as follows. Section 2 discusses the problems
associated with item nonresponse in economic surveys and compares different waysto deal with
such problems. Section 3 derives bounding intervals using the unfolding bracket questions
information, accounting and not accounting for anchoring effects. Section 4 describesthe HRS
data used in the empirical work. Section 5 presents the empirical results. Section 6 concludes.

2 Item Nonresponse in Household Surveys

We analyze item nonresponse on one specific variable of interest and do not consider problems
such as unit nonresponse or nonresponse on conditioning variables.® The problem of item
nonresponse is often associated with questions on exact amounts of variables such as income,
expenditure, or wealth. Unless item nonresponse is completely random, the sample of (item)
respondents is not representative for the population of interest. This can affect the estimates of
parameters describing the distribution of the variable of interest, such as the conditional mean
or conditional quantiles given some covariates.

There are several waysto handle this problem. Thefirst isto use as many covariates (X)
as possible and to assume that, conditional on X, the response process is independent of the
variable of interest. This makes it possible to use parametric or nonparametric regression
techniquestoimputeval uesfor nonrespondents, leading to, for exampl e, the hot-deck imputation
approach. Thekey assumption of thisapproachisthat item nonrespondentsare not systematically
different from respondents with the same values of X. See Rao and Shao (1992) for an overview
of hot-deck imputation and Juster and Smith (1997) for an application and the use of bracket
response information in this context.

Since the seminal work by Heckman (for example, Heckman, 1979), the common view
In many economic examplesisthat the assumption of random item nonresponse conditional on
observed X is often unrealistic and may lead to serious selection bias. Heckman proposed to use
aselection model instead. Thisisajoint limited dependent variable model of response behavior

'See Horowitz and Manski (1998) and Manski and Tamer (2000) for bounding intervals
in the more general case of incompl ete information on outcomes and regressors.
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and the variable of interest, conditional on covariates. See, for example, the survey of Vella
(1998). Parametric and semiparametric selection models avoid the assumption that item
nonresponse is random conditional on X, but require alternative assumptions such as a single
index assumption or independence between covariates and error terms,

A new approach to deal with nonrandom item nonresponse was introduced by Manski
(1989, 1990). It makes no assumptions on the response process and uses the concept of
identification up to a bounding interval. Manski (1989) shows that in the presence of item
nonresponse, the sampling process alone does not fully identify most features of the conditional
distribution of avariable Y given a vector of covariates X. In many cases, however, lower and
upper bounds for the feature of interest (such as a value of the distribution function of Y given
X) can be derived. Manski callsthese bounds “worst case bounds.” Manski (1994, 1995) shows
how these bounds can be tightened by adding nonparametric assumptions on monotonicity of
the relation between Y and response behavior, or exclusion restrictions on the conditional
distribution of Y. See Lee and Melenberg (1998) for an empirical application. Manski (1990),
Manski et a. (1992), and Lechner (1999) apply the bounds to analyze treatment effects.

The problem of item nonresponse can be reduced at the data collection level by, for
example, carefully designed surveys, careful coding of responses by the interviewer, reducing
guestion ambiguity, guaranteeing privacy protection, giving respondents the opportunity to
consult tax files, etc. A more direct method to reduce item nonresponse isto include categorical
guestions to obtain partial information from initial nonrespondents. Thisis often motivated by
the argument that cognitive factors such as confidentiality or the belief that the interviewer
requires a perfectly precise answer, can make people reluctant to answer open-ended questions
(see, for example, Juster and Smith (1997)).

Two typesof categorical questionsare common. In some surveys, initial nonrespondents
arerouted to arange card categorical question, where they are asked to choose the category that
contains the amount (YY) from a given set of categories. The alternative is unfolding brackets.
Thisisused inwell-known USlongitudinal studies such asthe Panel Study of Income Dynamics
(PSID), the Health and Retirement Survey (HRS), and the Asset and Health Dynamics Among
the Oldest Old (AHEAD). In an unfolding brackets design, those who initially answer the open
guestionwith ‘don’t know’ or ‘refuse’, are asked aquestion such as‘isthe amount $B or more?’,
with possibleanswers‘yes', ‘no’, ‘don’t know’, and ‘refuse’ . They typically get two or three such
consecutive questions, with changing bids $B: a‘yes' isfollowed by alarger bid and a‘no’ by
asmaller bid. Thosewho answer ‘don’t know’ or ‘refuse’ onthefirst bid arefull nonrespondents.
Theothersare called bracket respondents. They arereferred to ascomplete or incomplete bracket
respondents, depending on whether they answer all the bracket questions presented to them by
‘yes or ‘no’, or endwitha‘don’t know’ or ‘refuse’ answer. An unfolding bracket designismuch



easier to use in atelephone interview than arange card question. Moreover, unfolding brackets
can elicit partia information even if the sequence is not completed, while arange card question
might lead to one simple ‘don’t know’ or ‘refuse’.

A problem with unfolding brackets questions is the phenomenon of anchoring (see
Jacowitz and Kahneman (1995), Rabin (1998), and Hurd et al. (1998)). A psychological
explanation for anchoring effects is that the bid creates a fictitious belief in the respondent’s
mind: faced with a question related to an unknown quantity, the respondent treats the question
as aproblem solving situation, and the given bid is used as a cue to solve the problem. This can
result in responsesthat areinfluenced by the design of the unfolding sequence. Hurd et al. (1998)
formulate a parametric model which can explain observed anchoring patternsin their data. This
model will be discussed in detail in Section 3.3. Hurd et al. (1998) estimate their model using
experimental data in which respondents are randomly assigned to different starting bids of an
unfolding bracket sequence. They find strong evidence of anchoring effects. Other parametric
models for anchoring effects are introduced by Cameron and Quiggin (1994) and Herriges and
Shogren (1996).

The results of Hurd et a. (1998) and others imply that answers to unfolding bracket
guestions may often beincorrect. They also imply that unfolding bracket questions may not give
the same answers as range card questions. In the next section, Manski’ s worst case bounds are
extended to account for unfolding bracket questions. Nonparametric versions of the assumptions
underlying models for anchoring are then introduced, and the worst case bounds are extended
to allow for anchoring under these assumptions.

3 Theoretical framework

3.1 Worst case bounds; no bracket respondents

First, Manski’ s (1989) worst case bounds are reviewed for the conditional distribution function
of a variable Y at a given yeR and given X=xcR". It is assumed that there is neither unit
nonresponse, nor item nonresponse on X. Reported (exact) values of Y and X are assumed to be
correct; thereisno under- or overreporting. Let FR (full response) indicatethat Y isobserved and
let NR indicate (full) nonresponse on Y. F(y|X), the conditional distribution function of Y given
X=xin the complete population, can be written as follows:

F(yX) =F(yx,FR)P(FR[X) +F(y[x,NR)P(NRJX) (1)

The assumptions imply that F(y|x,FR) isidentified for all x in the support of X, and can
be estimated using some nonparametric regression technique. The samehol dsfor the conditional
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probabilities P(FRJx) and P(NRJX) . If the assumption were added that, conditional on X, response
behavior is independent of Y, then all expressions in the right hand side of (1) would be
identified, since F(y[x,FR)=F(y[x,NR) . Thisisthe assumption of exogenous selection. In general,
however, response behavior can berelated to Y, and F(y[x,NR) is not identified, so that F(y[x)is
not identified either. Without additional assumptions, all that is known about F(y|x,NR) is that
it is between 0 and 1. Applying thisto (1) gives,

Fyx,FRIP(FR]X) < F(y)x) < F(yx,FR)P(FR]X) + P(NRX) 2

These are Manski’ sworst case bounds for the distribution function. The difference between the
upper and the lower boundisequal to P(NR|X). Thus, alow nonresponserate |eadsto narrow and
informative bounds. Additional assumptions can tighten the bounds. Examples are monotonicity
and exclusion restrictions, see Manski (1994, 1995).

3.2 Partial information from an unfolding bracket sequence

In this paper, the bounds in (2) are extended to incorporate information from a follow-up
unfolding bracket sequence. Let B1 betheinitial bid. Thisisassumed to bethesamefor al initial
nonrespondents, as is the case in the HRS data. The first bracket question is thus given by

Is the amount $B1 or more ? 3

Individuals can answer ‘yes', ‘no’, or ‘don’t know’.? Those who answer ‘don’t know’ become
full nonrespondents. Those who answer ‘yes' get the same question with a new bid B21, with
B21>BL1. If theanswer is‘no’, the next bid is B20, with B20<B1. For many questionsinthe HRS,
this second question is the final bracket question. In some cases athird question is asked, again
with anew bid. Our study islimited to the case of two bracket questions, |eaving more than two
guestions as an extension that can be treated along the same lines. For the sake of the exposition,
the case where only one bracket question is asked is considered first.

3.3 Bounds and unfolding bracket response: One bracket question
In this case, three types of respondents can be distinguished: full respondents (FR), bracket

2 In this study, no distinction is made between the answers ‘don’t know’ and ‘refuse' . Both are referred
toas‘don’t know’.



respondents (BR) and (full) nonrespondents (NR), so that F(y|x) can be written as

F(y¥) = F(yl)x,FRP(FRIX) + F(yx,BR)IP(BR]X) + F(y[x,NR)P(NR) (4)

Full respondentsidentify F(y|x,FR), as before. Nonrespondents answer ‘don’t know’ to
theinitial question and the bracket question and, as before, all that is known about F(y|x,NR) is
that it isbetween 0 and 1. The new issueiswhat the answers of the bracket respondents say about
F(y|x,BR).

Bracket respondents report whether Y>B1 or not. Define avariable Q1 by Q1=1 if the
answer to (3) is‘yes,” and O if it is‘no’. Then the bracket respondents identify P(Q1=1|x,BR).
For deriving the bounds, it will be useful to write this as

P(Q1=1j,BR) = P(Q1=1|Y<B1,x,BR)P(Y<B1[x,BR) +

5
P(Q1-1|Y=B1x,BR)P(Y=B1x,BR) )

Not allowing for an Anchoring effect

If there is no anchoring, all bracket respondents answer (3) correctly. This implies that
P(Q1=1]Y<B1,x,BR)=0 and P(Q1=1Jx,BR) =P(Y>B1Jx,BR), and thusP(Y<B1|x,BR) isidentified
by the data on bracket respondents. It leads to the following bounds on F(y|x,BR):

for y< Bl 0 < F(yBRX) < P(Q1=0BRX)
6
for y> Bl P(Q1=0BRX) < F(yBRX) < 1 ©
Combining this with the bounds on F(y|FRx) and F(y|NR,X) yields, for y < B1,
F(YIFRX)P(FRIX)
< F(yl) < ()

F(YIFRX)P(FR|X) + P(Q1=0jx,BR)P(BRX) + P(NRIX)

andfory > B1,

F(YFRX)P(FR|X) + P(Q1=0Jx,BR)P(BR|x)
< F(y) < (8)
F(YFRX)P(FRIX) + P(BRX) + P(NRIX)



The bounds in (7) and (8) are sharper than the worst case bounds in (2) if there are bracket
respondents answering ‘yes as well as bracket respondents answering ‘no’.

Allowing for an Anchoring Effect

If responsesto (3) suffer from anchoring, (6) isnolonger valid, sinceanswersto (3) can bewrong
and P(Q1=1|Y<B1,x,BR) and P(Q1=0|Y>B1,x,BR) can be nonzero. In Hurd et al. (1998), Qlis
based upon comparing Y to B1+¢, where ¢ isthe perception error. Hurd et al. (1998) assume that
¢ isnormally distributed with zero mean and is independent of Y and X. In our nonparametric
framework the following weaker distributional assumption with respect to £ is used:

Assumption 1: Q1=1if Y>B1+eand Q1=0if Y<B1+ ¢ where the perception error ¢ satisfies
For all (x,y) in the support of (X,Y), Median(&X=x,Y=y,BR)=0.

This assumption impliesthat the conditional probability that an individua answers question Q1
correctly is at least 0.5:

P(Q1-1|Y<B1,x,BR) = P(¢<Y-B1B1-Y>0,xBR) < 0.5

9
P(Q1=1]Y>B1,x,BR) = P(e<Y-B1|B1-Y<0xBR) > 0.5 )
Applying (9) to (5) gives:
P(Q1=1jx,BR) < 0.5P(Y<B1[|x,BR) + P(Y>B1[x,BR)
10
P(Q1=1jx,BR) > 0.5P(Y>B1|x,BR). (0
Thisimplies
P(Y<B1[x,BR) < 2P(Q1=0[x,BR)
(11)

P(Y>B1[xBR) < 2P(Q1=1x,BR).

A

In other words: the fraction with Y smaller than B1 isat most twice the fraction reporting Y<BL,

thefraction with Y at least B1 is at most twice the fraction reporting Y>B1. Compared to the no-

anchoring case, the factor 2 reflects the loss of information due to allowing for anchoring.
The bounds on F(y|x,BR) follow immediately:



for y<Bl 0 < F(yx,BR) < 2P(Q1=0jx,BR)
12
for y> Bl 1-2P(Q1=1x,BR) < F(y|xBR) < 1 (12

This implies either a nontrivial lower bound or a nontrivial upper bound, unless
P(Q1=1|x,BR)=0.5. If P(Q1=1|x,BR)<0.5, the fraction of bracket respondents with ahigh value
of Yisbounded. Thisleadsto alower bound on F(y|BR,X). If P(Q1=1|x,BR)>0.5, not all bracket
respondents have alow value of Y. Thisleadsto an upper bound on F(y|BR,X) . Replacing (6) by
(12) and applying thisto (4) straightforwardly leads to bounds on F(y|x):

fory< Bl
F(y|[FRX)P(FR[X)
< RO < (13)
FY[FRX)P(FR]X) + min[1,2P(Q1=0[x,BR)]P(BR]X) + P(NR|X)
for y > B1,

F(YFRX)P(FRX) + max[0,1-2P(Q1=1x,BR)]P(BRJX)
< F(yx) < (14
F(yx,FRP(FRIx) + P(BRX) + P(NRIX)

These bounds are sharper than Manski’s worst case bounds in (2) unless P(BR|x)=0 or
P(Q1=1|x,BR)=0.5. On the other hand, they are wider than the bounds in (7)-(8), which were
constructed under the stronger assumption of no anchoring.

Alternative Modelsfor Anchoring
Although the model Hurd et al. (1998) use can explain the anchoring phenomenain their data,
it may not be the intuitively most appealing way to model anchoring, and it seems worthwhile
to consider somealternative anchoring models. Herrigesand Shogren (1996) allow for anchoring
in follow-up questions only, implying the no-anchoring assumption in (6) and (7) for the one
bracket question case. Themodel of Cameronand Quiggin (1994) isspecifically designed for two
bracket questions. It is straightforward, however, to show that this model is equivaent to the
parametric Hurd et a. (1998) model for the case of two bracket questions, although the
interpretation of Cameron and Quiggin is different.

The motivation of the Hurd et al. (1998) model stems from Green et a. (1998) and
Jacowitz and Kahneman (1995). These studiesfind that, if ahigh anchor isused, respondentstoo
often report that the amount exceeds the anchor. In terms of our notation this would mean



P(Q1=1)>P(Y>B1) if Blislarge. Jacowitz and Kahneman (1995) report that thisfinding is not
symmetric for their case study, and could well be reversed if the amounts have a natural upper
instead of lower bound. An operational version of the phenomenon discussed by Jacowitz and
Kahneman for one bracket question would be

P(Q1-1jBR) > P(Y>B1x,BR) if P(Ql-1jBR)<0.5

15
P(Q1-1jBR) < P(Y>B1x,BR) if P(Ql-1jBR)>0.5 1)

Here'Blislarge’ isspecified as‘at most half of the respondentsreport an amount of at least B1.’
Itiseasily shown that (15) isstronger than (11), and that (15) is satisfied in the parametric model
of Hurd et al. (1998). The underlying intuition is that adding noise to B1 before comparing it to
Y, increases the tail probabilitiesin the distribution of the difference.

Constructing bounds on P(Y>B1|x,BR) from (15) is straightforward. If P(Q1=1|x,BR) <
0.5, the first inequality in (15) leads to an upper bound; if P(Q1=1|x,BR) > 0.5, the other
inequality leadsto alower bound. A practical problem with estimating these bounds arisesif the
estimate of P(Q1=1|x,BR) in agiven sampleis not significantly different from 0.5.

Finally, arobust finding in the literature is that dichotomous questions usually shift the
distribution to the right, compared to open-ended questions. Thisis particularly so if thereisa
clear lower bound but no obvious upper bound to the amountsin question. In the willingness-to-
pay (WTP) literature where the amounts are subjective (reflecting, for example, how much
respondents would be willing to pay for some public good), this phenomenon is known as yea-
saying. Green et a. (1998) find evidence of yea-saying for objective quantitiesrather than WTP
data. Y ea-saying implies an asymmetric inequality between reported and true fractions:

P(Q1-1jx,BR) > P(Y=B1x,BR) (16)

Thisimmediately gives an upper bound on P(Y>B1|x,BR). *

3.4 Two unfolding bracket questions
With two unfolding bracket questions, those who answer ‘yes' to question (3) are given asecond

A commonteston yea-sayingisto comparetheestimated distribution for the open-ended respondentswith
the (upper and lower bound of the) distribution function for the bracket respondents. In absence of selectivity
effects, yearsaying would imply that the latter distribution isto the right of the former. In the present framework,
however, selectivity effects can play arole, and thistest is not atest on yea-saying only.
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question with bid B21>B1, and those who answer ‘no’ get asecond question with bid B20<BL1.
Again, they can answer ‘yes’, ‘no’ or ‘don’t know’. In this subsection it is assumed that every
bracket respondent answers the second question with ‘yes’ or ‘no’. The ‘don’t know’ answers
will be considered in the next subsection.

Not allowing for an anchoring effect

If the assumption is made that those who answer the bracket questions do this correctly, then, for
each bracket respondent, it is known whether Yisin [0, B20], [B20, B1],[B1, B21], or [B21, .
Theinformation isthe same as the information provided by arange card question with the same
four categories.? Boundson F(y|x) for thiscaseare astraightforward generalization of the bounds
in (7) and (8). Denoting the category containing y by [L(y), U(y)) (for example, for B20<y<B1,
L(y)=B20 and U(y)=B1), the bounds on F(y|BR,x) are given by

F(L(y)BRX) < F(yBRX) < F(U(y)|BRX) a7

Combined with (4), this gives bounds on F(y|x) similar to the one bracket question case.

Allowing for anchoring

Similar to Q1, define dummy variables Q20 and Q21 for those who answer the second bracket
guestion on B20 and B21, i.e., those with Q1=0 and Q1=1, respectively. Thus, Q20=1 if the
respondent reports that the amount is at least B20, etc. On top of P(Q1=1|x,BR) two other
probabilities are now also directly identified by the data P(Q20=1JQ1=0,x,BR) and
P(Q21=1|Q1=1,x,BR). To derive the bounds, Assumption 1 needs to be generaized. Again, the
starting point is Hurd et al. (1998). Their model assumes that the answers Q1, Q20 and Q21 to
the three bracket questions are based upon comparing Y with Bl+e,, with B20+ ¢, , and with
B21+ ¢,,. The perception errors ¢, €, , and ¢, , are assumed to be independent of each other
and of X and Y, and normally distributed with zero means. The anchoring effectsin the dataare
captured if ¢, , and €, , have smaller variancesthan e, . Thefollowing extension of Assumption
1 isanonparametric, lessrestrictive, version of the Hurd et al. assumptions:

Assumption 2: Q1=1if Y>Bl+e, and Q1=0if Y<B1l+e,; Q20=1if Y>B20+¢,, and Q20=0 if
Y<B20+¢,, Q21=1if Y>B21+e¢,, and Q21=0if Y<B21+e,, wherethe perception errorse, €,

%See Vazquez et al. (1999) for an application of Manski boundsincorporating information from follow-up
range card questions.
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and e, , satisfy:
For dl (x,y) in the support of (X,Y): Median[e,|Y=y,X=x,BR]=0;
Median[e, |[Y=y,X=x,BR,Q1=0] =0; Median[e, ,|Y=y,X=X,BR Q1=1] =0.

A stronger version of thisassumption that may be more natural isthe assumption that each of the
three perception errors has median zero, isindependent of being abracket respondent or not, and
isindependent of Y, X, and the other two error terms.

Assumption 2 is weaker than the assumptions of Hurd et al (1998). It implies that each
bracket question is answered correctly with probability at least 0.5:

P(Q1-1]Y<B1xBR) < 0.5 P(Q1-1|Y>B1xBR) > 05
P(Q20-1]Y<B20,Q1-0,x,BR) < 0.5; P(Q20-=1|Y>B20,Q1=0x,BR) > 05 (18)
P(Q21-1]Y<B21,Q1-1x,BR) < 0.5; P(Q21-1|Y>B21,Q1-1xBR) > 05

Inaddition to (11), theimplication of (18) for those who answer ‘no’ to thefirst question, isthat

P(Y<B20|Q1=0,x,BR) < 2P(Q20-0jQ1-0,x,BR)

(19)
P(Y>B20|Q1=0,x,BR) < 2P(Q20=1|Q1=0,x,BR)
and for those who answer ‘yes' to the first question, the implication is that
P(Y<B21|Q1-1,xBR) < 2P(Q21-0|Q1=1xBR)
(20)

P(Y>B21|Q1=1,x,BR) < 2P(Q21-1|Q1-1BR)

Assumption 2 and the bounds in (11), (19) and (20) can be used to derive bounds on the
distribution function for bracket respondents. See Appendix A1 for derivations and the results.
To illustrate, one exampleis presented here: the upper bound on P(Y<B20|x,BR) is given by:

P(Y<B20x,BR) < [1, 2P(Q20-0]Q1=0,x,BR)]min[1, 2P(Q1=0Jx,BR] (21)

If many peoplesay theirincomeexceedsBL (i.e., P(Q1=0|x,BR) islow), thislimitsthe maximum
number of people whose incomeislower than B20. If the majority of those who report that their
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incomeislower than B1 report that their incomeishigher than B20, thisal so limitsthe maximum
number of people with income below B20.

Alternative Modelsfor Anchoring

In the previous subsection some alternative assumptions on anchoring for the one bracket
question casewerediscussed. Theassumptionsfollowing thefindingsof Jacowitz and Kahneman
(1995) basically treat every bracket question separately. In addition to (15), they are, for k=0,1.

P(Q2k=1x,BR.Q1-k) > P(Y=B1jxBRQ1-K) if P(Q2k=1jxBRQ1L-k) < 0.5
22
P(Q2k=1x,BR.Q1-k) < P(Y=B1jxBRQ1-K) if P(Q2k=1jxBRQ1L=k) > 0.5 @

From these assumptions, bounds can be derived on the distribution function for bracket
respondentsinasimilar way asfor the Hurd et al. model. The results depend on whether the bids
are‘small’ or ‘large’. Appendix A2 presents the formulas for the relevant case for our data.

Anintuitively appealingway of allowingfor anchoringinthe second questionisprovided
by Herriges and Shogren (1996). They formulate a simple model which explicitly allowsfor an
effect of the first bid on the respondent’s subjective opinion on the amount Y. The essential
feature of their model isthat thereisno anchoring effect in thefirst bracket question, but thefirst
bid B1 serves as an anchor for the second bid B2 (which is either B20 or B21). Thus, in the
second bracket question the respondent does not compare B2to Y, but to Y "=(1-g) +gB1. This
reflectsthe intuition behind anchoring: the respondent is uncertain about thetruevalue of Y. The
bid B1 istaken to be informative about Y, and the respondent’s new estimate Y* of Y isdrawn
towards B1. Herriges and Shogren (1996) assume that g is afixed parameter, but also discuss an
extension in which g can vary with B1. They apply their model to data on willingnessto pay for
water quality improvement, and find an estimate for g of 0.36, with standard error 0.14. In
another application, O’ Connor et al. (1999) find a similar significantly positive value of g.

The Herriges and Shogren (1996) model offers an alternative explanation for the shift in
the estimated distribution based upon unfolding bracket questions due to the order of the bids,
themainfinding in Hurd et al. (1998). On the other hand, the Herriges and Shogren model cannot
explain the main finding of Jacowitz and Kahneman (1995), since that finding isrelated to the
first bid, for whichtheHerrigesand Shogren (1996) model imposesthe no anchoring assumption.

A natura way to relax the Herriges and Shogren (1996) assumptionsis to replace them
by the following nonparametric assumptions:
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P(Q1=1jx,BR) = P(Y>B1jx,BR)
P(Q20-1Jx,BR,Q1=0) > P(Y>B20|x,BRQ1=0) 23)
P(Q21-1jx,BRQ1-1) < P(Y>B21[x,BRQ1=1)

The first assumption says that there is no anchoring in the first question, the other two
assumptions say that anchoring in the second question istowards B1. These assumptions can be
used to derive bounds on the distribution function for bracket respondentsin the sameway asin
the other models. The results are presented in Appendix A3.

3.5 Complete and incomplete bracket respondents
Until now it wasassumed that all bracket respondents answered both bracket questionswith‘yes
or ‘no’. In practice, however, some of them answer ‘don’t know’ to the second bracket question.
Thus, there are two types of bracket respondents: those who answer both questions with ‘yes’ or
‘no’ (CBR, complete bracket respondents), and those who answer the first question with *yes' or
‘no,” but thesecond questionwith*don’tknow’ (IBR, incompl ete bracket respondents). Wemake
no assumptions on the relation between response behavior and Y, so that incomplete bracket
respondents can be a selective subsample of all bracket respondents.

The conditional distribution function for bracket respondents can be written as follows:

F(yBRX) = F(YICBRX)P(CBRBRX) + F(ylIBRX)P(IBRBRX) (24)

The probabilities P(CBR|BR,x) and P(IBR|BR x) are both identified, sinceit is observed whether
bracket respondents are complete or incomplete bracket respondents. Bounds (allowing or not
allowing for anchoring) on F(y|CBR,X) can be derived asin Section 3.4, using complete bracket
respondents only. Bounds on F(y|IBR,x) can be derived as in Section 3.3, using incomplete
bracket respondents only. Combining these bounds and inserting them into (24) leadsto bounds
on F(y|BRx). The bounds on F(y|BR) can be combined with F(y|FR,x) and bounds on F(y|NR x)
in the same way asin (13)-(14) , yielding bounds on F(y|x).

3.6 Bounds on Quantiles

Distributions of income, savings, etc., are often described in terms of (conditional) quantiles. For
a € [0,1], the a-quantile of the conditional distribution of Y given X=X, is defined as

14



g(a,x) = inf {y:F(yX)>a} (25)

For a>1, g(a,X)=«, and for a<0, g(a,X)=--. Following Manski (1994), bounds on these
guantiles can be derived by ‘inverting’ the bounds on the distribution function. All the bounds
in Sections 3.1-3.5 can be written as

Ib(y,X) < F(y|X) < ub(y,X) (26)

for functions Ib(y,x) and ub(y,x) that are nondecreasing iny. Inverting (26) gives the following
bounds on the quantiles:

inf {y: Ib(y,x)>a} > inf {y: F(y])>a} > inf {y: ub(y,X)>a} (27

Thisiseasly illustrated using a graph of the distribution function, with y along the horizontal
axisand F(y|x) along the vertical axis. The bounds on the distribution function squeeze F(y|x) in
between two curves; the vertical distance between these curvesisthe width between the bounds
(at each given valuey of Y). Reading the same graph horizontally gives, for a given probability
valuea € [0,1], alower and an upper bound on the a-quantile.

4 Data

The data comes from the 1996 wave of the Health and Retirement Survey (HRS). Thisis a
longitudinal study conducted by the University of Michigan for the US National Institute of
Aging. It focuses mainly on aspects of health, retirement and economic status of UScitizensborn
between 1931 and 1941, collecting individual and household information from arepresentative
sample of this cohort. The datais collected every two years, starting in the Summer of 1992.
Initially the panel consisted of approximately 7,600 households. The respondents arethe
household representatives that satisfy the age criteria, and their partners, regardless of their age
(second household respondents). Thisleads to approximately 12,600 individual respondentsin
the first wave. Each individual answers questions on health and retirement issues. Household
representatives also answer questions on past and current income and pension plans (including
those of their partner) and questions at the household level, on, for example, housing conditions,
household assets, and family structure. If health problems prevent the household representative
from responding, someone el se (for example, the spouse) will answer on their behalf. All follow
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up interviewsare conducted over the phone, unlessthe household hasno phone, or health reasons
prevent the household representative and the spouse from answering over the phone, in which
a face to face interview is held. If respondents die, they are replaced by another household
member (if possible). This reduces attrition in the panel at the household level.

The 1996 wave hasdatafrom 6,739 householdswith 10,887 individuals. In 4,148 of these
households, two respondents gave interviews. The remaining 2,591 are single respondent
households. To get some insight in the nature of the data, Table 1 shows sample statistics for
some background variables. Thefirst column refersto thefull sample, whilethe second and third
refer to the sub-samples of household representatives and second household respondents,
respectively. The statistics show that 51% of the household representatives are women, and 62%
of the second household respondents (usually the spouse) are women. Thereislittle difference
between educational achievement of household representatives and second household
respondents. The shares of Whites, Blacks and Hispanics reflect the ethnic composition of the
cohort. About 62% of the respondents participate in the labor market, most of them are
employees. Approximately 80% of al households are home owners.

All household representativesare asked to provideinformation on employment statusand
earnedincomesfor themselvesand their partners. Initially, each househol d representativeisasked
if he or she worked for pay during the last calendar year. Each of the 4,145 who answered ‘yes
was asked if the earnings during the last calendar year came from self-employment, wages and
salaries, or acombination of these sources. The 3,608 individualswho reported that all or some
of their earnings came from wages and salaries were asked the following question:

‘ About how much wages and salary income did you receive during the last
calendar year?’

“any amount’ (in USdollars)

‘Don’t know

‘Refuse’

3,160 individuals answered this question with an exact amount in US dollars, ranging
from $ 0,00 to $350,000, with a mean of $29,430 and standard deviation $26,430. The median
was $25,000. The remaining 448 individuals answered ‘don’t know’ (or ‘refuse’), implying a
12.4% initial nonresponse rate. The latter were routed to a sequence of unfolding bracket
guestionsasformulated in (3), with starting bid B1=%$25,000. At thisinitial stage of theunfolding
sequence, 119 individuals answered ‘don’t know’ (or ‘refuse’). Thus, the full nonresponse rate
is 3.3%. The remaining 329 individuals form the sample of bracket respondents.

The unfolding sequence for the wages and salaries question consists of two steps. Those
who answered ‘yes' to the initial bid of $25,000 were routed to a second question with bid
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B21=%$50,000. Thosewho answered ‘ no’ wererouted to aquestion with bid B20=$5,000. In each
case, the question was the same asthat in (3) - only the bid changed. The second question of the
unfolding sequence could again be answered with ‘don’t know’ (or ‘refuse’), leading to
incomplete bracket respondents (IBR). For the earnings variable considered, 320 individuals
completed the sequence of unfolding brackets (CBR). The other 9 bracket respondents are
incompl ete bracket respondents.

Table 1. Sample statistics of some background variables
M eans (with standard deviation) and Per centages (with standard error); complete sample

All Units Household Second Household
Representatives Respondents

Number of Observations 10,887 6,739 4,148
Age 59.6 (5.62) 60.7 (5.07) 58.6 (6.41)
Percentage males 45 (0.5) 49 (0.6) 38(0.8)
Education 2.32(1.02) 2.36 (1.03) 2.25(0.98)
Percentage home owners - 79 (0.5) -
Percentage whites 71 (0.4) 69 (0.6) 76 (0.7)
Percentage Hispanics 9(0.3) 8(0.3) 11 (0.5)
Percentage Afro-Americans 16 (0.4) 19 (0.5) 9(0.4)
Percentage other Races 4(0.2) 4(0.3) 4(0.3)
Percentage working 62 (0.5) 62 (0.6) 64 (0.7)

Working for wage/salary 47 (0.5) 46 (0.6) 50 (0.8)

Self-employed 9(0.3) 8(0.3) 10 (0.5)

Both working for wage/salary & 6 (0.2) 8(0.3) 4(0.3)

self-employed
Explanation: Education: educational achievement on ascale of 1to 4; 1: has completed primary education (up to
the 10" grade in the USA education system), 2: has completed high school (up to the 12" grade); 3: some form of
college or post-high school education; 4: has completed at least afirst degree at university level.

Table 2 shows some statistics for the sample with nonzero household respondent wages
and salaries. Comparing it with Table 1 shows that those who received wages and salaries |ess
often own their home and are, on average, somewhat younger. The subsample of complete
bracket respondents contains alarger percentage of females than the other samples. Likewise,
complete bracket respondents have lower educational achievement, are less likely to own their
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home, and are less often white. The statistics of the incomplete bracket respondents are very
different from those of the other groups, but thisis based upon only 9 observations.

Table 2: Sample statistics of somebackground variablesfor household respondentswho received
wages and salariesin the past calendar year
Means (with standard deviation) and Per centages (with standard error);

All employed with wages Full Respondents (FR) Full Nonrespondents

(NR)

Number of Observations 3602 3160 113

Average age 58.6 (4.7) 58.6 (4.7) 59 (4.9)

Percentage Maes 50 (0.8) 52 (0.9) 45 (4.7)

Education 2.52 (1.01) 2.6 (1.03) 2.6 (0.99)

% Home owners 73 (0.7) 74 (0.8) 83 (3.5)

% White 72 (0.7) 75 (0.8) 72 (4.2)

% Hispanics 8 (0.5) 7 (0.5) 5 (2.1

% Afro-American 18 (0.6) 16 (0.7) 21 (3.8)

% Other races 2 (0.2 2 (0.3) 3 (1.6)

Complete Bracket Respondents Incomplete Bracket Respondents
(CBR) (IBR)

Number of Observations 320 9

Average age 58.8 (4.7) 55.7 (3.2)

Percentage Maes 38 (2.7) 78 (14)

Education 2.2 (1.02) 3.1 (1.01)

% Home owners 65 (2.7) 89 (10.0)

% White 58 (2.8) 78 (14)

% Hispanics 9 (1.6) 0 (0)

% Afro-American 32 (2.6) 12 (11)

% Other races 2 (0.8) 10 (10)

Note: See Table 1 for explanations of the variables.
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5 Estimates of the Bounds

This section applies the bounds derived in Section 3 to wages and salaries of the household
representative, as described in Section 4. In Section 5.1, thereis no conditioning on covariates.
In Section 5.2, the bounds are estimated separately for high and low educated wage earners, and
theresultsare used to test for differencesin the quantilesfor the two education levels. Sincethis
involves conditioning on discrete variables only, these estimates are based upon (sub-)sample
fractions and do not require nonparametric smoothing.

Thewidth between point estimates of upper and lower bound reflectsthe uncertainty due
to item nonresponse. Both point estimates and confidence bands are presented, to measure
uncertainty due to sampling error. These confidence bands are estimated using a bootstrap
method, based on 500 (re-)samples drawn with replacement from the original data. The lower
and upper bounds are estimated 500 times, and the confidence bands areformed by the 2.5% and
97.5% percentilesin these 500 estimates, resulting in two-sided 95% confidence bandsfor both
the upper and the lower bound. The figures present the lower confidence band for the lower
bound and the upper confidence band for the upper bound. The gap between these reflects both
the uncertainty due to sampling error and the uncertainty due to item nonresponse.

5.1 Boundsfor all wage earners

If item nonresponse is compl etely random, the full respondents are a representative sample and
the quantiles in the sample of full respondents are consistent estimates of the population
guantiles. These estimates are shown in Figure 1a. The solid curve connects the point estimates
of thelog earnings quantiles, thedashed curvesgive (point-wise) 95% confidence bands. Bracket
respondents and nonrespondents are discarded. Table 3 provides similar information as Figure
1a, giving the point estimates of some selected quantiles for the full respondents and their
standard errors, but now in earnings levels instead of logs.

Figure 1b shows the estimates of Manski’s (1995) worst case bounds, not using the
bracket response information. Bracket respondents are treated as nonrespondents, and the
relevant nonresponse rate in this case is 12.4%. The solid curves are the estimated upper and
lower bounds, and the dashed curves are the confidence bands. The horizontal distance between
the upper and lower bound equals 0.124, the initial nonresponse rate. To make a comparison
possible, the confidence bands for the full respondents quantiles depicted in Figure 1 are aso
included. These are contained intheworst case bounds, sincethelatter allow for the possibility
that nonresponse is completely random. The uncertainty due to nonresponse appearsto be much
larger than the uncertainty due to finite sampling errors.

Table 4 shows selected point estimates and confidence bands for the worst case bounds.
For example, with at |east 95% confidence, the median of wagesand salariesis between $19,500
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and $29,900. Due to the high percentage of initial item nonresponse, the difference between
upper and lower bound is quite large. This makes it hard to draw meaningful economic
conclusions. The width between the curvesin Figure 1awas much smaller, but this came at the
cost of the strong assumption of random nonresponse.

Fig.1a: Quantile distribution, Full Response sample

Fig.1b: Worst case bounds & no bracket respondents
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Table 3: Selected quantilesfor thefull response sample (n=3,160) (cf. Figure 1a).

Quantile Point estimate Standard error
25" Percentile $11,900 $352
40" Percentile $19,500 $373
50" Percentile $25,000 $361
60" Percentile $29,900 $346
75" Percentile $39,400 $389

Table 4: Worst case bounds not using bracket information (cf. Figure 1b)

Quantile Confidence band Point estimate Point estimate Confidence band
lower bound lower bound Upper bound Upper bound
25" Percentile $5,800 $7,700 $13,700 $14,700
40" Percentile $13,700 $14,700 $22,500 $24,500
50" Percentile $19,500 $20,800 $27,900 $29,900
60™ Percentile $25,000 $26,000 $34,600 $37,000
75" Percentile $35,600 $36,900 $50,000 $55,000

Note: Lower bound and upper bound are the lower end of the 95% confidence interval for the lower bound and the upper end
of the 95% confidence interval for the upper bound, respectively.

20



The next step isto incorporate the information provided by the 329 bracket respondents,
summarized in Table 5. To illustrate how the assumptions on anchoring affect the bounds,
estimates of the boundsfor the bracket respondents only are presented first. Figure 2 is based on
the assumption of no anchoring (AQ inthefigures). Figures3A1to 3A3 allow for thethreetypes
of anchoring discussed in Section 3, following Hurd et a. (Al inthefigures, (11), (19) and (20)
in Section 3), Jacowitz and Kahneman (A2 inthefigures, (15) and (22) in Section 3) or Herriges
and Shogren (A3 in the figure, (23) in Section 3). In each figure, the confidence bands for the
full respondents are also included. The no anchoring assumption AOQ is stronger than all three
anchoring assumptions, and thus leads to the narrowest bounds. Under the no anchoring
assumption, the distribution function for complete bracket respondents is exactly identified at
the three bids $5,000, $25,000 and $50,000. Due to the incomplete bracket respondents,
however, theupper and lower point estimatesfor all bracket respondentsat $50,000 aredifferent.

Table5: Information provided by bracket respondents

Group Bid 1: B1 answer Bid 2: B21/B20 answer Resulting bracket Number
bounds
Yes $50,000 — max 30
Yes > $50,000 ? No $25,000 — $50,000 86
CBR >$25,000 ?
No > $5,000 ? Yes $5,000 — $25,000 170
No $0 — $5,000 34
Yes > $50,000 ? DK > $25,000 9
IBR >$25,000 ?
No > $5,000 ? DK < $25,000 0

Explanation: CBR=Complete Bracket Response; IBR=Incomplete Bracket Response; DK=Don’t know (or refused to answer).

Comparing the bounds for bracket respondents in Figure 2 with the full respondents
curvessuggeststhat equality of P(Y<BJ|FR) and P(Y<B|BR) isrejected for B=$25,000 but maybe
not for B=$5,000 or B=$50,000. The results of the corresponding formal (point-wise) tests are
reported in Table 6. The null hypothesis would be valid if there was no anchoring and no
selective response behavior. Rejecting this hypothesis at $25,000 and $50,000 suggests that at
least one of these conditionsisviolated. The fact that the bracket respondents more often report
an income below $25,000 (or $50,000) than full respondents, suggests that rejecting the null is
not due to yea-saying (see Section 3). It could be, for example, that workers with low earnings
tend not to know their exact income level and, therefore, answer the bracket questions only.
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Table 6: Testsfor differences between full and bracket respondents

B P(Y<BJFR) standard P(Y<B|BR) standard Test
error error Statistic
$5,000 0.101 0.005 0.104 0.017 -0.11
$25,000 0.529 0.0083 0.62 0.027 -3.22
$50,000 0.853 0.006 0.901 0.016 -2.81

Test statistic: difference between point estimates (Full Response - Bracket Response) normalized by its estimated standard
error (equal to the square root of the sum of the variances corresponding to the two point estimates); under the hypothesis

P(Y<B|FR)=P(Y <B|BR), the test statistic is asymptotically standard normal.
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Allowingfor anchoring widensthe bounds. Under theHurd et al. (1998) assumptionsthe
bracket response data provides some information on P(Y<y|BR) for al y, in the form of either
alower bound or an upper bound . Under the Jacowitz and Kahneman assumptions, the bracket
response data does not say anything about P(Y<y|BR) for y between $5,000 and $25,000. The
figures make clear that the three different assumptions on anchoring are nonnested: none of the
three is uniformly more informative than any of the others. Figure 4 and Figures 5A1 - 5A3
combinethe boundsfor bracket respondentswith theinformationfor full respondents, and show
the bounds on the quantilesfor all respondentsin the population. As expected, the bounds under
no anchoring are narrower than the bounds allowing for anchoring, and all bounds allowing for
anchoring are narrower than the worst case bounds in Figure 1b.

Fig.4: Worst case bounds & bracket respondents (A0)
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Table 7: Upper and lower boundsincor porating bracket responses; 95% confidence level
(c.f. Figure4 and FiguresAlto A3)

Quantiles No anchoring (A0Q) Anchoring A1 Anchoring A2 Anchoring A3
25" Percentile
Lower Bound $9,800 $6,800 $6,800 $8,000
Upper Bound $13,700 $14,700 $14,700 $13,700
Difference $3,900 $7,900 $7,900 $5,700
40" Percentile
Lower Bound $17,900 $14,700 $14,500 $16,900
Upper Bound $22,800 $23,900 $23,900 $22,800
Difference $4,900 $9,200 $9,400 $6,000
50" Percentile
Lower Bound $23,900 $19,500 $19,500 $21,900
Upper Bound $25,000 $27,900 $25,000 $25,000
Difference $1,100 $8,400 $5,500 $3,100
60™ Percentile
Lower Bound $27,900 $25,000 $25,000 $26,900
Upper Bound $31,500 $34,600 $31,500 $31,500
Difference $3,600 $9,600 $6,500 $4,600
75" Percentile
Lower Bound $39,400 $35,600 $35,600 $37,900
Upper Bound $45,000 $49,700 $46,800 $48,000
Difference $5,600 $14,100 $11,200 $8,100
80" Percentile
Lower Bound $44,500 $39,400 $39,400 $43,500
Upper Bound $50,000 $52,500 $50,000 $51,000
Difference $5,500 $13,100 $10,600 $7,500

Note: Lower bound and upper bound are the lower end of the 95% confidence interval for the lower bound and the upper end

of the 95% confidence interval for the upper bound, respectively.

More precise information is given in Table 7. For example, under the assumption of random
nonresponse, the 95% confidence interval for the 40" percentile is rather precisely determined
with width about $ 1,450 (Table 3). Allowing for nonrandom nonresponse and ignoring bracket
information reduces the precision enormously, giving an interval width of $ 10,800 (Table 4).
Allowing for nonrandom nonresponse and using the bracket information gives a precision in
between these two: $ 4,900 if no anchoring effects are allowed for; $ 9,200, $ 9,400 and $ 6,000
under the three types of anchoring (Table 7). The precision under no anchoring is particularly
large for the median since the sample median for full-respondentsis close to one of the bids ($
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25,000), where, under the no anchoring assumption, the distribution function for bracket
respondents is exactly identified.

5.2 Comparing Earnings of the High and L ow Educated

Table 8 presents some details on the response behavior of the lower educated (at most high
school; levels 1 and 2 in Table 1) and higher educated (more than high school; levels3and 4in
Table 2) separately. Thelatter have adightly lower initial nonresponse rate than theformer. On
the other hand, the low educated are more often willing to answer the bracket questions, so that
their full nonresponserate islower than that of the high educated. Mean and median incomes of
full respondents are clearly higher for the higher educated than for the lower educated.

Figures6aand 7ashow the confidenceinterval s of the quantilesfor full respondentswith
low and high education level. These are consistent estimatesfor the quantilesof al low and high
educated wage and salary earnersif, conditional on education level, nonresponse is not related
to the level of earnings. This assumption is again quite strong, athough conditioning on
education level makes it different from the unconditional random nonresponse assumption
underlying Figure 1a. Table 9 presents details for some selected quantiles.

Figure 8a compares the 95% confidence bands for the high and low educated full
respondents. It suggests that most quantiles are significantly different. Thisis confirmed by the
formal test results presented in thefinal column of Table 9. Thusif response behavior israndom
conditional on education level, the quantiles of the high and low educated are significantly
different. Theissuein the remainder iswhether this conclusion can still be drawn if nonrandom
response behavior is allowed for.

Figures6b (low educated) and 7b (high educated) present confidence bandsfor theworst
case bounds allowing for nonrandom nonresponse and not using the bracket information. Figure
8b compares these for the two education levels. The latter figure suggests that the null of equal
guantilesis rejected only for quantilesin the range from about 0.3 to about 0.8.

Table10 presentstheformal (point-wise) test resultsof the one-sided null hypothesisthat
the upper bound of the lower educated is at least as high as the lower bound of the higher
educated. The null is rejected for the 40%, 50%, 60% and 75% quantiles, but not for the 20%,
25%, 30% and 80% quantiles. Thisagain illustrates that item nonresponse particularly reduces
the information on the quantilesin the tails, where the distribution function is rather flat.
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Table 8: Sample statistics and response behavior by education level of household respondent

All Low education High education
Observations in complete 6,739 4,110 2,629
sample
Observations with wages 3,602 1,978 1,624
and salaries
Number of full respondents 3,160 1,713 1,447
(88%) (86.6%) (89.1%)
Mean $29,430 $22,813 $38,298
Standard Deviation $26,430 $18,080 $31,765
Median $25,000 $19,000 $33,000
Initial nonrespondents 442 265 177
(number and percentage) (12.3%) (13.4%) (10.9%)
Bracket respondents 329 212 117
(number and percentage) (9.1%) (10.7%) (7.2%)
Nonrespondents 113 53 60
(number and percentage) (3.1%) (2.3%) (3.7%)

Explanation: Low education: education levels 1 and 2, i.e., at most high school; High education: education levels
3 and 4, i.e., more than high school.
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Fig.7(a): Quantiles using full respondents only (High edu) Fig.7(b): Wost case bounds & no brackets (High edu)
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Table 9: Quantilesof full respondents by education level (cf. Figures6(a) and 7(a)).

L ow education level (n=1979) High education level (n=1623) Test Statistic
Quantile Point estimate  Standard error  Point estimate Standard error
25" Percentile $9,800 $439 $17,900 $790 8.96
40" Percentile $14,700 $542 $27,900 $784 13.85
50" Percentile $18,700 $503 $32,500 $923 13.13
60" Percentile $23,400 $620 $39,400 $601 18.53
75" Percentile $29,900 $537 $49,700 $623 24.07
90" Percentile $44,500 $1,279 $69,000 $1,660 12.17

Test statistic: difference between point estimates (High educated - Low educated) normalized by its estimated standard error;
under the null that quantiles of high and low educated are equal, the test statistic is asymptotically standard normal.
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Fig.8(a): Comparing Low & high education: full respondents Fig.8(b): Comparing Low & high education: worst case bounds
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Table 10: Worst case bounds by education level not using bracket responses

Low Education High Education Test Statistic
Quantile Point estimate Standard error Point estimate Standard error
20" Percentile $9,800 $337 $6,800 $761 -3.6
25" Percentile $11,900 $408 $9,800 $1,050 -1.87
30" Percentile $13,000 $505 $14,700 $960 157
40" Percentile $17,900 $390 $23,900 $1,138 4.99
50" Percentile $22,500 $572 $29,900 $707 8.14
60" Percentile $27,400 $863 $35,600 $885 6.64
75" Percentile $39,400 $1,189 $48,600 $863 6.26
80™ Percentile $49,700 $1,732 $52,500 $1,692 117

Note: Thetest statistic is (Q - Q,)/4), where Q,, is the lower bound point estimate for the high educated and Q,
isthe upper bound point estimate for the low educated, and 4 is the estimated standard deviation of Q,, - Q,. If the
assumption that the lower bound of the high educated equals the upper bound of the low educated, the test is
asymptotically normal. The null isregjected if thetest statistic is larger than 1.645.

Information on bracket response of high and low educated respondents is included in
Tables 11 and 12. High educated bracket respondents much more often report that their income
exceedsthefirst bid thanlow educated bracket respondents. This suggeststhat using the bracket
respondents may lead to more rejectionsin the tests for equality of quantiles.
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Table 11: Bracket responses of the low educated (212 obser vations)

Group Bid 1: B1 answer Bid 2: B21/B20  answer Resulting bracket Number
bounds
Yes $50,000 — max 6
Yes > $50,000 ? No $25,000 — $50,000 a7
CBR >$25,000 ?
No > $ 5,000 ? Yes $5,000 — $25,000 133
No $0 — $5,000 22
Yes > $50,000 ? DK > $25,000 4
IBR >$25,000 ?
No > $ 5,000 ? DK < $25,000 0
Note: See Table 5 for explanation.
Table 12: Bracket responses of the high educated (117 observations)
Group Bid 1: B1 answer Bid 2: B21/B20  answer Resulting bracket Number
bounds
Yes $50,000 — max 24
Yes > $50,000 ? No $25,000 — $50,000 39
CBR >$25,000 ?
No > $ 5,000 ? Yes $5,000 — $25,000 37
No $0 — $5,000 12
Yes > $50,000 ? DK > $25,000 5
IBR >$25,000 ?
No > $ 5,000 ? DK < $25,000 0

Note: See Table 5 for explanation.

Figures 13 and 14 compare the results for the low and high educated including the
bracket information, allowing for selective nonresponse and making two different assumptions
about anchoring: no anchoring (A0) and anchoring followingHurd et a. (1998) (A1). Theresults
for the other two forms of anchoring lead to similar conclusions. The formal tests (of the null
hypothesis that the upper bound of the lower educated is at least as high as the lower bound of
the higher educated, against the alternative that thisis not the case) are presented in Table 13.
Under the no anchoring assumption, the differences between the quantiles in this table are all
significant. Allowing for anchoring reduces some of the significance levels, and the lowest
guantiles are no longer significantly different. But, in general, the point-wise tests reject much
more often and with higher significance levelsthan if the bracket information isnot used at al.
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Fig.13: Comparing low & high education, worst case bounds Fig.14: Comparing low and high education with Anchoring A1
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Table 13: differences between ear nings quantiles of high and low educated respondents;
wor st case boundswith bracket responses

No Anchoring (A0) Anchoring following Hurd et al. (A1)

Low High Test Low High Test

education education Statistic education education Statistic
20" Percentile $8,900 $12,750 353 $9,800 $7,700 -2.21
25" Percentile $10,800 $17,500 6.17 $11,900 $11,900 0
30" Percentile $12,750 $20,800 6.54 $13,000 $15,800 219
40" Percentile $17,500 $25,900 7.98 $17,900 $25,000 7.42
50" Percentile $21,900 $32,500 9.29 $22,500 $29,900 7.42
60" Percentile $25,000 $39,400 21.58 $25,000 $35,600 11.31
75" Percentile $31,500 $50,000 13.21 $34,600 $48,600 10.31
80" Percentile $36,900 $56,400 10.79 $39,400 $52,500 6.42
90" Percentile $50,000 $76,000 9.70 $50,000 $66,000 0.24

Note: See Table 10 for the test statistic.

6 Conclusions

Manski’ sapproach to deal withitem nonresponse avoidstheassumptionsusually associated with
parametric and semi-parametric methods. On the other hand, it identifies the unknown
parameters up to an upper and alower bound only. In this paper, these bounds are extended to
take account of the information contained in follow up categorical questions for initial
nonrespondents. Such questionsareincluded in many current household surveys. Several studies
have shown that responses to such questions can be subject to response errors due to anchoring
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effects. Some existing studies model this response error with a parametric set up. We have
extended the bounds to allow for anchoring in a nonparametric way, starting from various
nonparametric anchoring assumptionsinspired by the existing parametric models. Thesebounds
simultaneously allow for any type of selective nonresponse and various forms of anchoring.

Using the variable wages and salary of the household representative taken from the 1996
wave of the Household and Retirement Survey, the empirical section shows estimates of
Manski’s basic worst case bounds that do not use the bracket respondents information and
compares these with estimates of the new bounds. For the wages and salaries variable
considered, the initial nonresponse rate is 12.4%. Most of the initial nonrespondents answer
unfolding bracket questions, and the percentage of full nonresponse is 3.3%. Incorporating
information provided by bracket respondentstightensthe bounds. Allowing for anchoring effects
reducesthe gain in information but still leads to bounds that are substantially more informative
than the bounds not using the bracket information. Thisisillustrated by using the boundsto test
for equality of quantilesof high and low educated respondents. Adding theinformation provided
by bracket respondents improves the power of the tests, and leads to rejecting the null more
often. How much the power of the tests increases depends on whether and how anchoring is
allowed for.

Manski’ sboundsarean elegant, intuitively plausibleand extremely flexibleway to allow
for selective nonresponse. Their flexibility is at the same time their main weakness: the bounds
are often so wide that they do not provide enough information for the economic issue under
consideration. This paper shows that additional information on bracket responses by initial
nonrespondents can be useful to makethebounds moreinformative. Thisisstill trueif anchoring
isalowed for, though to alesser extent.

The bounds are estimated allowing for different types of anchoring each generdizing a
different parametric model in the existing literature. The paper does not analyze which model
of anchoring is most appropriate: thisis not arelevant question for this framework. With the
current data, however, selective nonresponse and anchoring interact, and it is hard to say
something about anchoring without making strong assumptionsabout the nature of nonresponse.
For an analysis of anchoring itself, therefore, experimental data where all respondents get bids
that vary randomly across the sample, such asin the experimental HRS module used by Hurd
et al. (1998), is more appropriate. With more knowledge about the nature of the anchoring
process, the analysis here could be refined.
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Appendix: Boundsin Case of Two Bracket Questionswith Anchoring

This appendix derives the bounds for the case of two bracket questions allowing for anchoring
along thelinesof Hurd et al. (1998), Jacowitz and Kahneman (1995), and Herriges and Shogren
(1996). The bounds are “worst case” in the sense that any type of selective nonresponse or
bracket response is allowed for. This implies that the data on full respondents carry no
information on the bracket respondents, complete bracket respondents provide no information
on incomplete bracket respondents, etc. Bounds on incomplete bracket respondents are
straightforward, using the assumptionsfor the one bracket question case. This appendix focuses
on compl ete bracket respondents. Using (24) and (4), these can be used to obtain boundsfor the
distribution in the complete population.

Al: TheHurd et al. (1998) model

It is easy to show that, apart from (18), Assumption 2 also implies the following monotonicity
condition:

P(Q1-1|Y<tx,BR) < P(Q1=1jxBR) for each t (MON)

Together with (11), (19), and (20), this property will be used to determine what the three
probabilities P(Q1=1|x,BR), P(Q20=1|Q1=0,x,BR), and P(Q21=1|Q1=1x,BR) that can be
identified from the data, imply for the conditional distribution of Y given X=x among bracket
respondents. First, bounds are derived on the values of the distribution function at the bids B20,
B1, and B21. The bounds on the value of the conditional distribution function at an arbitrary
value y of Y then follow straightforwardly, as in the no anchoring case. For notational
convenience, we abbreviate conditioning on X=xand BR, using PcwherePc(...)=P(...|x,BR) and
Pc(...|...)=P(...]...x,BR).

Upper bound on Pc(Y<B20):

Pc(Y<B20) = Pc(Y<B20|Q1=0)Pc(Q1=0) + Pc(Y<B20|Q1=1)Pc(Q1-1)
< min[1,2Pc(Q20-0[Q1=0)]Pc(Q1=0) + Pc(Y<B20)min[0.5,Pc(Q1=1)]

Here (19) is used to obtain an upper bound on the first term; the second term uses
Pc(Y<B20|Q1=1)Pc(Q1=1)=Pc(Y<B20)Pc(Q1=1|Y<B20) together with (18) and (MON).
Thus,



Pc(Y<B20) < min[1, 2Pc(Q20-0|Q1-0)]Pc(Q1-0)/(1-min[0.5Pc(Q1=1)])  (A.2)

Considering the two cases Pc(Q1=1)>0.5 and Pc(Q1=1)<0.5 separately, it is easy to see that
(A.2) can also be written as

Pc(Y<B20) < min[1, 2Pc(Q20-0[Q1=0)]min[1,2Pc(Q1=0)] (A.3)

Upper bound on Pc(Y<B1):
Inequality (11) directly gives Pc(Y<BL1) <2Pc(Q1=0). The second question givesthefollowing
additional information.

Pc(Y<Bl) = Pc(Y<B1|Q1=0)Pc(Q1=0) + Pc(Y<B1|Q1l=1)Pc(Q1=1)
< Pc(Q1=0) + Pc(Y<B21|Q1=1)Pc(Q1=1) (A.9)
< Pc(Q1=0) + min[1, 2Pc(Q21=0|Q1=1)]Pc(Q1=1)

Taken together, the first and second question lead to the bound

Pc(Y<B1) < min[1, 2Pc(Q1-0), Pc(Q1=0) + 2Pc(Q21-0[Q1-1)Pc(Q1=1)]  (A.5)

If Pc(Q1=0) > 0.5 and Pc(Q21=0|Q1=0) > 0.5, the upper bound in (A.5) is 1. If at least one of
the two probabilitiesis less than 0.5, the upper bound is smaller than one.

Upper bound on Pc(Y<B21):

Pc(Y<B21) = Pc(Y<B21|Q1=0)Pc(Q1=0) + Pc(Y<B21|Q1=1)Pc(Q1-1)

(A.6)
< Pc(Q1=0) + min[1, 2Pc(Q21-0[Q1-1)]Pc(Q1=1)

The lower bounds follow by symmetry from (A.3), (A.5), and (A.6):
L ower bound on Pc(Y<B20):

Pc(Y<B20) = 1 - Pc(Y>B20); an upper bound on Pc(Y>B20) is obtained in the sameway asthe
upper bound on Pc(Y<B21) givenin (A.6). Thisgives:
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Pc(Y>B20) < Pc(Q1=1) + min[1, 2Pc(Q20=1/Q1=0)]Pc(Q1=0) (A.7)

And, thus,

Pc(Y<B20) > 1 — Pc(Q1=1) — min[1,2Pc(Q20=1|Q1=0)]Pc(Q1=0)

(A.8)
= max[0, {1 — 2Pc(Q20-1jQ1-0)} Pc(Q1=0)]

L ower bound on Pc(Y<B1):
Pc(Y<B1) = 1 - Pc(Y>B1); an upper bound on Pc(Y>B1) is obtained in the same way as the
upper bound on Pc(Y<B1) givenin (A.5)

Pc(Y>B1) < min[2Pc(Q1=1), Pc(Q1l=1) + 2Pc(Q20=1|Q1=0)Pc(Q1=0)] (A.9)

and (A.9) implies

Pc(Y<B1) > 1 — min[2Pc(Q1=1), Pc(Q1=1) + 2Pc(Q20-=1/Q1=0)Pc(Q1=0)]
- max[1 — 2Pc(Q1=1), Pc(Q1=0)(1 — 2Pc(Q20-1/Q1=0)]

Lower bound on Pc(Y<B21):
Pc(Y<B21) = 1—-Pc(Y>B21); an upper bound on Pc(Y >B21) is obtained in the sameway asthe
upper bound on Pc(Y<B20) givenin (A.3),

Pc(Y>B21) < min[1, 2Pc(Q21=1|Q1=1)] min[1, 2Pc(Q1=1)] (A.11)

and thus a lower bound is obtained as

Pc(Y<B21) > 1 — min[1, 2Pc(Q21=1|Q1=1)] min[1, 2Pc(Q1=1)] (A.12)

A2: The Jacowitz and Kahneman (1995) Assumption
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In this case, expressions (15), (22) and (MON) are the basis for deriving the bounds. The
sample analogues of Pc(Q1=1) and Pc(Q21=1|Q1=1) in our case are smaller than 0.5, while
that of Pc(Q20=1|Q1=0) islarger than 0.5. Thus B1 and B21 are “large” and B20 is “small.”
Ignoring sampling error, this means that (15) and (22) imply

Pc(Y=B1) < Pc(Ql-1)
Pc(Y=B21jQ1-1) < Pc(Q21-1jQ1-1) (JK)
Pc(Y=B20|Q1-0) > Pc(Q20-1jQ1-0)

Upper bound on Pc(Y<B20):

Pc(Y<B20) = Pc(Y<B20|Q1-0)Pc(Q1=0) + Pc(Y<B20|Q1-1)Pc(Q1-1)

IA

Pc(Q20-0[Q1=0)Pc(Q1=0) + Pc(Y<B20)P(Q1-1[Y<B20) (A.13)

A

< Pc(Q20-0[Q1=0)Pc(Q1=0) + Pc(Y<B20)P(Q1=1)

where (MON) was used in the last step. Rewriting (A.13) and dividing by P(Q1=0) yields

Pc(Y<B20) < Pc(Q20-0jQ1=0) (A.14)

Upper bound on Pc(Y<B1):
None of the three assumptionsin (JK) help to find a nontrivial upper bound, either directly or
using the same decomposition used above. Thus, all that can be said is

Pc(Y<B1) < 1 (A.15)

Upper bound on Pc(Y<B21):
Thisimmediately follows from (A.15):

Pc(Y<B21) < 1 (A.16)

L ower bound on Pc(Y<B20):
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None of the three assumptionsin (JK) help to find a nontrivial lower bound, so that all can be
saidis

Pc(Y<B20) > 0 (A.17)

L ower bound on Pc(Y<B1):
The first assumption in (JK) immediately gives:

Pc(Y<B1) > Pc(Q1-0) (A.18)

The other two assumptions do not add anything here.

Lower bound on Pc(Y<B21):

Pc(Y<B21) = Pc(Y<B21|Q1=0)Pc(Q1=0) + Pc(Y<B21|Q1=1)Pc(Q1-=1)
Pc(Y<B21)Pc(Q1-=0[Y<B21) + Pc(Q21-0[Q1-1)Pc(Q1=1) (A.19)
Pc(Y<B21)Pc(Q1=0) + Pc(Q21-0jQ1=0)Pc(Q1=1)

vV

v

where (MON) isused in the last step. Rewriting (A.19) and dividing it by Pc(Q1=1) gives:

Pc(Y<B21) > Pc(Q21-0/Q1-0) (A.20)

Moreover, thefirst inequality in (JK) directly implies

Pc(Y<B21) > Pc(Y<B1) > Pc(Q1=0) (A.21)

Combining (A.20) and (A.21) yields the lower bound

Pc(Y<B21) > max[Pc(Q1=0), Pc(Q21-0jQ1=0)] (A.22)

A3: TheHerrigesand Shogren (1996) M odel
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The assumptions about anchoring in this model can be summarized as

Pc(Y<B1)=Pc(Q1=0)
Pc(Y<B21|Q1=1)<Pc(Q21=0|Q1=1) (HS)
Pc(Y<B20|Q1=0)>Pc(Q20=0|Q1=0)

The derivations are much easier than in the previous two cases.

Upper bound on Pc(Y<B20):

Pc(Y<B20) < Pc(Y<B1) = Pc(Q1=0) (A.23)

Upper and lower bound on Pc(Y<B1):

Pc(Y<B1) = Pc(Q1-0) (A.24)

Upper bound on Pc(Y<B21):

Pc(Y<B21) = Pc(Y<B21|Q1-0)Pc(Q1=0) + Pc(Y<B21|Q1-1)Pc(Q1-1)

(A.25)
< Pc(Q1=0) + Pc(Q21=0/Q1=1)Pc(Q1=1)
L ower bound on Pc(Y<B20):
Pc(Y<B20) = Pc(Y<B20|Q1=0)Pc(Q1=0) + Pc(Y<B20|Q1=1)Pc(Q1=1)
(A.26)

> Pc(Q20-0[Q1=0)Pc(Q1-0)

The lower bounds on B1 and B21 are also given by (A.24). Thus, the set of nontrivial upper
boundsis given by (A.23) to (A.25), whereas the nontrivial lower bounds are given by (A.26)
and (A.24). Only (HS) isused, (MON) is not needed.
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