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1 Example Problems

(a) Write down your age and multiply it by 9. Take the digits

of the product and add them together. If that number has

more than one digit, then add the digits together and repeat

until you have a single digit. Subtract that number from 11

and square the difference. Now pick a letter of the alphabet

according to A = 1, B = 2, C=3 and so on, looping back to

A = 27 etc if your number was more than 26. Think of a

country beginning with that letter. Now look at the second

letter of that country, and think of an animal beginning with

that letter.
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(b) For positive integers n, define the factorial, n!, by

n! = 1× 2× 3× . . .× n

What is the smallest n for which n! ends in ten zeroes?

(c) For a positive integer n, let h(n) be the sum of the squares

of the digits of n when written in decimal notation. We say

n is happy if the sequence

n, h(n), h(h(n)), h(h(h(n))), . . .

eventually gets stuck at 1. We say n is sad if the sequence

contains infinitely many instances of the number 4. Show

that every positive integer is either happy or sad.

(d) (EGMO Selection 2022, Q1) Letm and n be positive integers

with

3m = 7n + 2.

Show that n must be an odd number.

2 Number Bases

2.1 Base 10

Our usual way of writing numbers is called base ten. For an integer

up to 999, we can write it as a certain number of units, a certain

number of tens and a certain number of hundreds.
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Base ten is a convention linked to the number of digits on our

hands. On the planet Neptune, intelligent creatures might have

nine digits, and express numbers as units, nines and eighty-ones.

How would arithmetic look there?

2.2 Base 9

Converting number bases uses the concept of division with remain-

der.

For example what we call 34510 would be written as 4239 be-

cause (look at the last column)

345 ÷ 9 = 38 remainder 3

38 ÷ 9 = 4 remainder 2

4 ÷ 9 = 0 remainder 4

We can write

34510 = 4× 81 + 2× 9 + 3 = 4239

2.3 Base 2

If you had only two fingers (or you are computer) you could count

in base 2, also known as binary. We have 34510 = 1010110012
because

345 = 1× 28 + 0× 27 + 1× 26 + 0× 25

+ 1× 24 + 1× 23 + 0× 22 + 0× 21 + 1× 20
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Operations in other number bases follow analogous rules to

operations in base 10. Long division is much easier in base 2

(why?).

2.4 A Number Base Trick

Suppose you have a number written in base 10 and you want to

figure out if it is divisible by 9. There is a trick, which is to add

up all the digits, and if that sum is divisible by 9 then so was the

original.

The same applies in base b. The sum of the digits of a number

n in base b is a multiple of b − 1 if and only if n is a multiple of

b− 1. This works because any power of b has a remainder of 1 on

division by b− 1.

3 Sets of Integers

We the set of (positive, negative and zero) integers is convention-

ally written Z. Associated with this set are operations of addition,

subtraction and multiplication.

3.1 Integer Division

Division in the set of integers sometimes works and sometimes does

not. If we have to solve 3x = 18 then the solution is x = 18÷3 = 6.

But the equation 3x = 17 has no integer solution in x. To find
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a solution we have to broaden our search to rational numbers,

written Q.

We can instead perform integer divisions with remainders:

17÷ 3 = 5 remainder 2

The integer part of the quotient can be written:

5 =

⌊
17

3

⌋
where bxc means round down to the nearest integer, also the

largest integer not exceeding x.

The remainder part is also called modulo and we write:

2 = 17 mod 3

If the remainder on division of a by b is zero, we say b is a

factor of a, or that b is a divisor of a, or that b divides a.

We write this in symbols with a vertical bar, so that:

a mod b = 0 ⇐⇒ b | a
If b does not divide a then we put a slash through the vertical

line, so that, for example 3 - 17.

We say two integers m and n are congruent modulo b, denoted

by a triple equals ≡, if their difference is n−m is a multiple of b,

so that the following are equivalent:

m ≡ n mod b ⇐⇒ m mod b = n mod b ⇐⇒ b | n−m
We can also apply division to negative numerators, where we

have, for example:

−17 ≡ 1 mod 3
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3.2 The Set Zb
There are two ways to think of the set Zb. It could be

(a) The set of possible remainders on division by b, that is

{0, 1, 2, . . . b− 1}, or;

(b) The set of congruence classes in Z, when we say two integers

are in the same congruence class if their difference is a

multiple of b

According to the first definition, the elements of Zb are the integers

0, 1, 2, . . . b − 1. Under the second definition, the elements of Z
are themselves sets of integers. We sometimes write [b] for the

congruence class containing b.

The concept of congruence classes is important in higher math-

ematical algebra, underpinning the concept of a quotient group

in group theory.

We can define addition in Zb as addition modulo b. If b = 3

then, for example, we have

2 + 2 = 1 mod 3

3.3 Multiplication Mod b

What does it mean to add or multiply two congruence classes [x]

and [y] modulo a base b? Remember, each congruence class is a

set of integers. Their sums and products are also sets of integers.
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We can define sums of congruence classes by adding represen-

tatives of each class. But for this to make sense, we have to be

sure that the sum ends up in the same congruence class regardless

of which representatives we chose.

For example, to add the congruence classes [1] + [2] modulo 3,

we might guess the answer is [0], but for this to work we have to

know that if we take any two numbers x ≡ 1 mod 3 and y ≡ 2

mod 3 then the sum x + y is divisible by 3.

We can prove this by writing x = 3u + 1 and y = 3v + 2 for

integers u and v, in which case

x + y = 3(u + v + 1)

A product of congruence classes is defined the same way, by

multiplying representatives of each class. As before, we have to

check that the way we pick the representatives does not change

the equivalence class of the product. For example, module 3 we

have [1]× [2] = [2] because the product:

(3u + 1)(3v + 2) = 9u2 + 6u + 3v + 2 = 3(3uv + 2u + v) + 2

is always congruent to 2 mod 3.

3.4 Sums of Digits in Base b

Suppose n has a representation with k+1 digits in base b, so that:

n = dkb
k + dk−1b

k−1 + . . . + d2b
2 + d1b + d0
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We can prove by induction on j that for j = 0, 1, 2 . . .:

bj ≡ 1 mod b− 1

That is why adding the digits in base b gives a test of divisibility

by b− 1.

3.5 Division Mod b

Can we define division modulo b?

It seems to work modulo 3. Of course, we cannot divide by

zero. But otherwise, we have the division table:

Numerator ÷[1] ÷[2]

[0] [0] [0]

[1] [1] [2]

[2] [2] [1]

For example, the equation [2] ÷ [2] = [1] arises because [1] ×
[2] = [2]. Algebraists say that Z3 is a field.

This does not work for all modular bases. For example with

b = 12 we have:

[2]× [3] = [6]

[2]× [9] = [6]

Therefore, we cannot assign a unique meaning to [6]÷ [2].
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4 Primes and Relative Primality

4.1 Primes

A positive integer p is prime if it has exactly two positive factors,

namely 1 and p.

All positive integers are either 1 (which does not count as a

prime), prime, or composite, that is a product of two or more

primes, not necessarily distinct.

In an integer n is composite, then it must have at least one

prime factor between 2 and
√
n inclusive. To so why, suppose

there is a factor b >
√
n; then n/b is also a factor and is less than√

n.

4.2 Relative Primality

We say two positive integers a and b are relatively prime if they

have no common prime factor.

Bézout’s Lemma states that if a and b are relatively prime

integers, then there are integers x and y so that:

ax + by = 1

The converse is also true. If we have integers a, b, x, y with

ax+ by = 1, then a and b must be relatively prime (as any prime

factor should also divide 1, a contradiction).

The representation in Bézout’s lemma is not unique. For ex-

ample, we could replace a by a+ y and replace b by b−x and the

result still holds.
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We will not prove Bézout’s lemma here. The proof, which uses

Euclid’s greatest common divisor algorithm, is not difficult. It is

also constructive, in other words, method of the proof not only

sohws that x and y exist, but gives an algorithm for finding them.

Bézout’s lemma implies Euclid’s lemma, that if a, b are integers

and p | ab then either p | a or p | b (or both). To see why, let us

suppose that p | ab but p - a. Then p and a are relatively prime

and Bézout’s lemma implies there are x and y such that:

ax + py = 1

Now multiply each side by b which gives:

abx + pby = b

Now p is a factor of both terms on the left hand side, and so is

a factor of their sum on the right hand side, which completes the

proof.

This was not Euclid’s original proof, partly because Euclid

lived around 300BC, while Bézout lived in the 18th century.

Some students think Euclid’s lemma is obvious from writing

down the prime factorisations of a and b, noting that if a prime

p fails to appear in either factorisation then it also absent from

the product. However, this apparent proof requires the unique

factorisation of integers into primes, which is true but the proof

requires Euclid’s lemma. So this student proof is not a proof at

all; it is a circular argument.
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4.3 The Set Z×b
We define the set Z×b , sometimes called the multiplicative group

modulo b, to be the subset of {1, 2, 3, . . . b−1} which are relatively

prime to b.

The number of such elements of Z×b is written φ(b), and called

Euler’s totient function. If b is prime then φ(b) = b − 1. If b is

composite then φ(b) < b− 1.

The set Z×b is not closed under addition. A counterexample is

that 1, 2 ∈ Z×3 but 1 + 2 ≡ 0 /∈ Z×3 .

The set Z×b is, however, closed under multiplication. The proof

involves a slight generalisation of Euclid’s lemma (also derivable

from Bézout’s lemma) that if a and c are relatively prime to b,

then so is the product ac.

More importantly, each element a of Z×b has a unique multi-

plicative inverse which we can write a−1. To see why this works,

let us use Bézout’s lemma to write:

ax + by = 1

Then ax ≡ 1 mod b so x is the multiplicative inverse a−1. We can

then use the inverse to define division within Z×b by c÷ a = a−1c.

4.4 Cyclic Groups

A group is said to be cyclic if there is an element to which we

can repeatedly apply the group operation and generate the whole

group.
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The additive group Zb is always cyclic, because we can consider

the elements 1, 1 + 1, 1 + 1 + 1 and so on, which passes through

all congruence classes before returning to zero after b steps.

What about the multiplicative group Z×b ? Take the example

of b = 9 and start with the element 2. Repeated multiplications

give:

Exponent Power Mod 9

0 1 1

1 2 2

2 4 4

3 8 8

4 16 7

5 32 5

6 64 1

This covers all φ(9) = 6 elements of Z9. In that case, we say

that 2 is a primitive root of 9.

Not all elements of Z9 are primitive roots. For example, 4 is

not a primitive root.

4.5 Classification of Z×b
With a lot more effort (not involving new concepts) it can be

proved that:

• If b is prime, then Z×b = Zb\{0}, Zb is a field and its multi-

plicative group is cyclic.
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• If b is 4, a power pk of an odd prime or twice a power 2pk

of an odd prime, Zb is not a field (some non-zero elements

have no inverse) but Z×b is cyclic under multiplication.

• There is no other b for which Z×b is cyclic under multiplica-

tion.

Artin’s conjecture is that any integer a which is neither -1 nor

a square is a primitive root of Z×p for infinitely many primes p. It

is widely believed to be true but at the time of writing (2023) has

not been proved.

5 Primes Among Large Integers

In this advanced section, we explore some facts about primes, par-

ticularly large primes. Euclid proved there are infinitely many

primes by supposing (for a contradiction) there are finitely many.

If there are finitely many primes, multiply them together and add

one, calling that number x. Now x cannot be prime as it exceeds

all the primes in the product. However, it is not composite ei-

ther, because none of the primes in the list divides x. This is the

contradiction.

Primes appear to become sparser for larger numbers, but never

die out completely. The twin prime conjecture asserts that there

are infinitely many pairs (p, p+ 2) of primes that differ by 2. This

is widely believed to be true but, at the time of writing (2023) has

not been proved. Bertrand’s postulate states that for each integer
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n ≥ 2 there is always a prime p with n < p < 2n. This is proven

to be true (the proof is fiddly but not intrinsically hard).

5.1 Importance of Heuristics

A heuristic argument is a sequence of plausible guesses or conjec-

tures that fall short of a rigorous proofs. They indicate why a

statement might be true. Sometimes numerical analysis gives fur-

ther weight to heuristic arguments. When a heuristic argument is

well-supported numerically, mathematicians conclude it is proba-

bly true, and invest more effort in trying to prove it. This can

avoid wasted effort trying to prove conjectures that are false. A

good heuristic argument can sometimes be turned into a proof by

filling the gaps.

There are many heuristic arguments in the theory of prime

numbers. There is a heuristic argument about twin primes, esti-

mating how many there should be, which accords closely to the

number of twin primes we see from calculations.

We have seen Artin’s conjecture about primitive roots. This

is also backed up by heuristic arguments and also by numerical

evidence. We will now look at some simpler heuristic arguments

about the distribution of primes.

5.2 Some Interesting Questions

Let N be a very large integer. Let X be a random draw from the

set 1 to N , with all choices equally likely.
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(a) What is the probability that X is prime?

(b) Let Y be an independent draw from the same distribution

as X . What is the probability that x and y are relatively

prime?

5.3 The Average Gap Function

Let k ≥ 1 be an integer. We define g(k) to be the number of

integers p in the range 2k < p ≤ 2k+1, divided by the number of

prime integers in the same range. We call this the average gap

between primes in that range. The number of primes in that range

is then 2k/g(k).

5.4 Estimating Proportions of Primes

Some values are tabulated below

k Gap g(k) List of primes

1 2 3

2 2 5, 7

3 4 11, 13

4 3.2 17, 19, 23, 29, 31

5 4.57... 37, 41, 43, 47, 53, 59, 61

We look at two ways of estimating the proportion of primes

between 22k and 22k+2. The direct method is the number of primes
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divided by the length of the interval, which is a weighted average:

22k

g(2k) + 22k+1

g(2k+1)

3× 22k
=

1

3
× 1

g(2k)
+

2

3
× 1

g(2k + 1)

The second way is to count all the numbers from 22k + 1 to

22k+2, knocking out first those divisible by 2 (half of them), then

those divisible by 3 (a third of those remaining) and so on, for all

relevant primes. The relevant primes are those up to 2k+1 since

every composite number up to 22k+2 has a prime factor at most

2k+1. Heuristically, we might guess that:

1

3

(
1

g(2k)
+

2

g(2k + 1)

)
≈
∏

p≤2k+1

(
1− 1

p

)
Replacing k by k − 1 also gives:

1

3

(
1

g(2k − 2)
+

2

g(2k − 1)

)
≈
∏
p≤2k

(
1− 1

p

)
Dividing these equations gives:

1
g(2k) + 2

g(2k+1)

1
g(2k−2) + 2

g(2k−1)
≈

∏
2k<p≤2k+1

(
1− 1

p

)
Now we can estimate the right hand side, knowing that a pro-

portion 1/g(k) of numbers in that range are prime, so assuming

primes are evenly distributed over that interval, we have:∏
2k<p≤2k+1

(
1− 1

p

)
≈

2k+1∏
j=2k+1

(
j − 1

j

)1/g(k)

=

(
2k

2k+1

)1/g(k)
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Putting this together, and introducing a temporary function

u(2k), we have:

3

u(2k)
=

1

g(2k)
+

2

g(2k + 1)

≈
(

1

g(2k − 2)
+

2

g(2k − 1)

)
× 2−1/g(k)

=
3

u(2k − 2)
× 2−1/g(k)

so:

u(2k) ≈ 21/g(k)u(k − 2)

We propose the formulas:

g(2k) =
g(2k − 1)

4
+
u(2k)

3

+
1

12

√
9g(2k − 1)2 + 16u(2k)2

g(2k + 1) = −g(2k − 1)

2
+ 2

u(2k)

3

+
1

6

√
9g(2k − 1)2 + 16u(2k)2

This (with some algebra) satisfies the definition of u(2k). It

also produces a smooth sequence of values as g(2k−1), g(2k) and

g(2k + 1) are in arithmetic progression.

This gives us two ways of guessing g(k) for large k:

• Calculating directly by enumerating the primes (very hard

work)
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• Applying the heuristic argument, which is much easier but

is at best approximately true.

It is much easier to prove results from the heuristic argument.

For example, the heuristic approximation implies (with some work,

involving logarithms) that, for large k, the average gap g(k) be-

tween prime numbers from 2k + 1 to 2k+1 is proportional to k.

This prime number theorem can also be proved for rigorously for

actual primes rather than some heuristic approximation, but that

proof is very much more difficult.

5.5 Probability of Relative Primality

Let us take a single prime p1. What is the probability that a

random positive integer is divisible by p1? The answer must be
1
p1

.

The probability that two independent integers X and Y are

both divisible by p1 is 1
p21

, for similar reasons.

So the probability that at most one of X and Y is divisible by

p1 is 1− 1
p21

.

Now suppose we have a finite sequence p1, p2, . . . pk of primes.

The probability that for all of these primes at most one of X and

Y is a multiple of p is the product:

k∏
j=1

(
1− 1

p2j

)
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Now if we consider a large enough set of primes, this is the

probability that X and Y are relatively prime. The probability of

relative primality is then the infinite product over all primes:∏
p

(
1− 1

p2

)
=

6

π2

You are not expected to prove the right hand side of this equation.

6 Problem Solutions

6.1 Elephant Problem

Is your animal grey, with big ears and a trunk?

How does it work?

Multiplying your age by 9 gives a multiple of 9. So the process

of adding digits ends up with 9 whatever your age.

Then the trick relies on there not being many countries begin-

ning with D (Dominican Republic, Djibouti?) and few animals

beginning with E.

6.2 Factorial Problem

We seek the smallest n such that n! ends in ten zeroes. We could

do this by brute force, but there are easier ways.

To end in 10 zeroes, n! must be divisible by 1010, which means

it must be divisible both by 510 and by 210.
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The highest power of 5 that divides n! is (close to) the number

of multiples of 5 in the set {1, 2, 3, . . . n}, which is
⌊
n
5

⌋
. That

suggests we need n = 50 to have 510 dividing n!. But this argu-

ment is not quite right, because one of those factors is 25, which

is divisible by 52. So 510 is a factor of 45!, but not of any smaller

factorial. By the same logic, 210 certainly divides 45!.

More generally, the highest power of a prime p dividing n! is:⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+

⌊
n

p4

⌋
+ . . . =

∞∑
j=1

⌊
n

pj

⌋
Remark: One proof of Bertrand’s postulate uses this expression

and considers the highest power of p that divides the integer

(2n)!

(n!)2

After many lines of work, the assumption of no primes between n

and 2n leads to a contradiction.

6.3 Happy Numbers Problem

We need to search all positive integers n to see what happens to

the sequence n, h(n), h(h(n)) etc. The challenge is to reduce this

to a finite problem we can search by hand.

Start with some test calculations on numbers up to 100.

The happy numbers up to 100 are 1, 7, 10, 13, 19, 23, 28, 31,

32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100.
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All others are unhappy and eventually lead to the cycle 4, 16,

37, 58, 89, 145, 42, 20, 4 ....

What about numbers bigger than 100? It turns out then that

h(n) < n for n ≥ 100 so all of these reduce to below 100 which

we have checked manually.

We will show that h(n) < n for all n ≥ 100 in several steps,

starting with n ≥ 1000.

Suppose a number n has d digits. Then

10d−1 ≤ n < 10d

In that case, as all digits are at most 9, we have:

h(n) ≤ 81× d

Now I claim the following lemma. Let d ≥ 4. Then 81d <

10d−1. To prove this, the result clearly holds for d = 4 as 324 <

1000. But then if the result holds for some d, it holds for d+ 1 as:

81(d + 1) ≤ 81(d + 1) + 81(9d− 1) = 10× 81d < 10d

The last equation holds on multiplying the relation 81d < 10d−1

by 10.

From this lemma, then for n ≥ 1000 we have h(n) ≤ 81d <

10d−1 ≤ n, so h(n) < n.

Now consider three-digit numbers

n = 100a + 10b + c

h(n) = a2 + b2 + c2 ≤ 9a + 9b + 9c
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As a ≥ 1, we have 8c ≤ 72 ≤ 72a and so

9a + 9b + 9c ≤ 9a + 9b + c + 72a < 100a + 10b + c

So h(n) < n which completes the proof. The only cases we

have to check manually are starting with n ≤ 99, which we have

already done.

Question: Can you generalise the result to arbitrary base b?

6.4 EGMO Selection 2022 Q1

The question concerns solutions to:

3m = 7n + 2

in positive integers n. We have to show that n is odd.

Most students spotted the solution 32 = 7 + 2 where n = 1,

which is of course odd. As powers of 3 are few and far between,

while powers of 7 spread out rapidly, it seems very unlikely that

7n + 2 would again be a power of 3. So, most likely, the only

solution is m = 2, n = 1 in which case of course it follows that n

is odd. Sadly, it is very hard to prove that is the only solution.
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Some students considered the last digit, or the last two digits

of 3m and 7n. We have the following tables, which imply either

m ≡ 2 mod 20 and n ≡ 1 mod 4, or m ≡ 1 mod 20 and n ≡ 0

mod 4. We cannot from this conclude n is odd.

m 3m n 7n 7n + 2

mod 20 mod 100 mod 4 mod 100 mod 100

0 1 0 1 3

1 3 1 7 9

2 9 2 49 51

3 27 3 43 45

4 81

5 43

6 29

7 87

8 61

9 83

10 49

11 47

12 41

13 23

14 69

15 7

16 21

17 63

18 89

19 67
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Solution: Look at other number bases, specifically base 4 and

base 7.

Suppose for a contradiction that n is even. Then 7n ≡ 1

mod 4, which implies 3m ≡ 3 mod 4 and m is odd.

Calculating modulo 7, odd powers 3m mod 7 are 3, 6, 5, 3, . . .

contradicting the implication of the given equation that 3m ≡ 2

mod 7.

Variant on Proof: We prove the result by looking at congru-

ences, first modulo 7 and then modulo 4.

Working modulo 7, we have 3m ≡ 2 mod 7. Working through

powers of 3 modulo 7, this is equivalent to m ≡ 2 mod 6, so we

can write m = 6a + 2.

Now suppose for a contradiction that n = 2b is even. In that

case we must have:

2 = 3m − 7n = 36a+2 − 72b = (33a+1 − 7b)(33a+1 + 7b)

The right hand side is the product of two even numbers so must

be a multiple of 4, which is a contradiction.

The final contradiction can be phrased on other ways. Viewing

the original equation modulo 4, given that m is even, we have

1 ≡ (−1)n + 2 mod 4 which implies n is odd.

Equivalently, we can interpret the whole equation modulo 28

from the beginning, to find the same result.
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