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1 Introduction

1.1 Prime Numbers

Let n be a positive integer.

Another positive integer f is a factor of n if n
f is an integer, or

equivalently, if n can be expressed as the product of f and another

positive integer.

A proper factor is a factor of n not equal to 1 or itself.

A prime number is an integer p ≥ 2 whose only factors are 1

and itself. Equivalently, p ≥ 2 is prime if it has no proper factors.

The first few primes are 2, 3, 5, 7, 11, 13, 17, 19.

By convention, 1 is not a prime number.
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1.2 Sieve of Eratosthenes
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2 Some Facts about Prime Numbers

2.1 There are Infinitely Many Prime Num-
bers

This is a fact you might know, but how do we prove it is true?

Euclid’s proof (around 300 BCE) by contradiction.

Suppose the number of primes, k, is finite Write those primes

as p1, p2, p3, . . . pk.

Define a positive integer q by the product:

q = p1 × p2 × p3 × . . .× pk

Then, either

• q + 1 is a prime, not equal to one on the list.

• q + 1 is not a prime, in which case it has a smallest proper

factor which is a prime, but also cannot be on the list since

ever prime on the list divides q.

This is a contradiction. Therefore there cannot be a finite list

of primes.

2.2 A Positive Integer is a Product of Primes

But the primes are not necessarily distinct. For example

18 = 2× 3× 3

Why does a prime factorisation always exist?
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2.3 Primes modulo 4

Suppose p is a prime number. What can the remainder be when

we divide p by 4?

• No prime is a multiple of 4.

• If p has a remainder of 2 (modulo 4) then p is an even num-

ber, so must be equal to 2, the only even prime.

• Odd primes must have a remainder of either 1 or 3 when

divided by 4.

2.4 A Fact About Numbers Congruent to 1
Mod 4

If we have two integers a and b both of which have a remainder of

1 on division by 4, then their product ab also has a remainder of

1 on division by 4.

Proof:

a = 4m + 1

b = 4n + 1

ab = (4m + 1)(4n + 1)

= 16mn + 4m + 4n + 1

= 4(4mn + m + n) + 1
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2.5 Infinitely Many Primes of the form 4n+3

Suppose (for a contradiction) there are only finitely many primes

that are also of the form 4n+3. Let q the product of these primes.

Now decompose 4q − 1 into prime factors. All the prime factors

are odd, and none are in the list of primes of the form 4n+ 3 since

all on the list are factors of 4q. Therefore all the prime factors of

4q− 1 are of the form 4n+ 1. But then so must there product be,

implying that 4q − 1 is of the form 4n + 1, a contradiction.

2.6 Infinitely Many Primes of the form 4n+1

True, but significantly harder to prove. The proof uses the concept

of quadratic reciprocity, which you will see later this semester.

2.7 Infinitely Many Primes of the form 6n+5

Adapt Euclid’s proof but consider 6q − 1.

2.8 Dirichlet’s Theorem

Suppose a and d are positive integers with no common factors

(except 1). Then the sequence

a, a + d, a + 2d, a + 3d, a + 4d . . .

contains infinitely many prime numbers.

Proof requires advanced methods.
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3 Gaps between Primes

We know much about multiplication of prime numbers. Differ-

ences between primes are less well understood.

For example, 523 and 541 are primes, but the 17 numbers

between contain no primes. This is an unusually large gap. Are

there arbitrarily large and small gaps between primes?

3.1 The Twin Prime Conjecture

The twin prime conjecture is that there are infinitely many primes

p such that p + 2 is also prime. Pairs such as (3, 5) and (11, 13)

are twin primes.

It is widely believed to be true; many large twin primes have

been computed. But is is still a conjecture. We do not know how

to prove it.

3.2 Prime-Free Intervals

There are arbitrarily long integer intervals containing no prime

numbers.

For a positive integer n, define n!, called factorial by

n! = 1× 2× 3× . . .× n

Why are there no primes in the interval from n! + 2 to n! + n

inclusive?
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3.3 Harmonic Numbers

There is no simple formula for the nth prime but there are some

approximations when n is large.

Define the harmonic numbers Hn by:

Hn = 1 +
1

2
+

1

3
+ . . . +

1

n
=

n∑
r=1

1

r

Although the changes 1/n get smaller and smaller, the har-

monic numbers keep getting larger, without limit, as n grows. At

least they do in theory, even though on your computer the har-

monic numbers stop increasing when 1/n is indistinguishable from

zero.

Let pn be the nth prime. We tabulate pn relative to nHn:

n pn Hn
pn
nHn

1 1 2 2

2 3 3
2 1

3 5 11
6

10
11

4 7 25
12

21
25

5 11 137
60

132
137

6 13 49
20

130
147
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Here is a plot of pn (the blobs) and nHn (the curve) for 1 ≤
n ≤ 200. About 1-in-6 integers from 0 to 1200 are prime.

3.4 Legendre’s Conjecture

Named after Adrien-Marie Legendre (1752 – 1833) who claimed

there is always at least one prime between consecutive perfect

squares.

It is still thought to be true, with evidence checked up the first

109 squares, but we have no proof.

Legendre’s conjecture implies that pn < (n + 1)2, which is

known to be true (hard to prove).
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3.5 The Prime Number Theorem

Now let us compute the ratio pn
nHn

for the first 10,000 primes.

Although the ratio seems to stabilise around 1.07, for suffi-

ciently large primes it does in fact tend back down to 1 when n is

large enough.

Then the prime number theorem states that:

lim
n↑∞

pn
nHn

= 1

The proof is complex and you won’t be expected to know this.

One implication is that gaps between primes can get arbitrarily

large.
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4 Unique Factorisation

Consider the number 17,120,443. We know we can break it up

into prime factors. Is that factorisation unique (apart from the

order) or are there numbers we can factorise into primes in more

than one way.

In fact we have

17, 120, 443 = 3599× 4757 = 3953× 4331 = 4087× 4189

These are distinct factorisations. But are they prime?

If you check carefully, it turns out that none of these factors

are primes. The prime factors are

17, 120, 443 = 59× 61× 67× 71

4.1 Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic states that the repre-

sentation as a prime product is unique (up to the order of the

prime factors).

Can you explain why this is true?

It is not obvious. The proof has several steps but can be fol-

lowed with school level mathematics. You can quote the theorem

in maths competitions.
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5 Factorising Large Numbers

5.1 Testing if a Number is Prime

The brute force way to test if a number n is to check all integers

between 1 and
√
n to see if they are factors. It is not necessary to

test possible factors greater than
√
n (why?).

This calculation is very tedious if n is large. For example, the

largest known prime number is 282,589,933 − 1. This is an example

of a Mersenne number (one less than a power of 2). Think of the

amount of calculation needed to check all those cases.

Although 282,589,933 − 1 is (at the time of writing) the largest

known prime, we also know it is not the largest prime. There must

be even bigger primes but we have not discovered them yet.

5.2 Fermat’s Little Theorem

Suppose that p is an odd prime number. Then Fermat’s little

theorem states that 2p−1− 1 is divisible by p. We can use this as

a test whether an odd number p is prime.
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p Remainder of [2p−1 − 1]÷ p Prime?

3 0 TRUE

5 0 TRUE

7 0 TRUE

9 3 FALSE

11 0 TRUE

13 0 TRUE

15 3 FALSE

17 0 TRUE

19 0 TRUE

21 3 FALSE

23 0 TRUE

25 15 FALSE

27 12 FALSE

29 0 TRUE

31 0 TRUE

33 3 FALSE

35 8 FALSE

37 0 TRUE

39 3 FALSE

This is an easier test to compute for large p than testing all

factors up to
√
p (why?).

5.3 Pseudoprimes

Unfortunately, Fermat’s little theorem is a necessary but not suffi-

cient condition for p to be prime. Exceptions (composite numbers
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that still pass the test) are called pseudoprimes.

There are infinitely many pseudoprimes. The pseudoprimes

less than 10000 are 341, 561, 645, 1105, 1387, 1729, 1905, 2047,

2465, 2701, 2821, 3277, 4033, 4369, 4371, 4681, 5461, 6601, 7957,

8321, 8481, 8911.

We do not have a perfect way to test an arbitrary large num-

ber for primality, but we have tests which have very low rates of

pseudoprimes.

We have rigorous proofs of primality for large numbers with

particular forms. The current largest known prime is a Mersenne

number, which is one less than a power of 2. There are clever ways

for testing the primality of Mersenne numbers which do not work

on arbitrary large odd numbers.

5.4 Factorising Large Numbers

For practical purposes we have ways to generate large primes (with

a very small rate of pseudoprimes).

It is much more difficult to factorise large composite numbers

n into primes, especially if the prime factors are large. The best

methods we know are not much better than searching possible

factors between 1 and
√
n.

Some public-key crypto-systems (including the RSA algorithm)

exploit the difficulty of factorising large numbers. Someone can tell

everyone exactly how to encrypt a message using the product of

two primes. Decryption requires knowledge of the factorisation.
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