GEOMETRY

Dr. Richard Ellard

School of Mathematical Sciences

University College Dublin,

Standard notations for a triangle $A B C$:

$$
\begin{gathered}
a=B C, \quad b=C A, \quad c=A B \\
h_{a}=\text { the altitude from } A \\
h_{b}=\text { the altitude from } B \\
h_{c}=\text { the altitude from } C
\end{gathered}
$$

The 3 altitudes of a triangle meet at the same point. This point is called the orthocenter of the triangle.

Area of a triangle $A B C$ is given by

$$
\begin{gathered}
{[A B C]=\frac{B C \cdot h_{a}}{2}=\frac{C A \cdot h_{b}}{2}=\frac{A B \cdot h_{c}}{2}} \\
{[A B C]=\frac{A B \cdot A C \cdot \sin \angle B A C}{2}}
\end{gathered}
$$

Proposition. The median of a triangle divides it into two triangles of the same area.

Proof. Indeed, if M is the midpoint of $B C$ then

$$
[A B M]=\frac{B M \cdot h_{a}}{2}=\frac{C M \cdot h_{a}}{2}=[A C M]
$$

The 3 medians of a triangle meet at the same point. This point is called the centroid of the triangle.

Problem 1. Let G be the centroid of a triangle $[A B C]$ (that is, the point of intersection of all its three medians). Then

$$
[G A B]=[G B C]=[G C A] .
$$

Problem 1. Let G be the centroid of a triangle $[A B C]$ (that is, the point of intersection of all its three medians). Then

$$
[G A B]=[G B C]=[G C A] .
$$

Solution. Let M, N, P be the midpoints of $B C, C A$ and $A B$ respectively. Denote

$$
[G M B]=x, \quad[G N A]=y, \quad[G P B]=z .
$$

Problem 1. Let G be the centroid of a triangle $[A B C]$ (that is, the point of intersection of all its three medians). Then

$$
[G A B]=[G B C]=[G C A] .
$$

Solution. Let M, N, P be the midpoints of $B C, C A$ and $A B$ respectively. Denote

$$
[G M B]=x, \quad[G N A]=y, \quad[G P B]=z
$$

Note that $G M$ is median in triangle $G B C$ so

$$
[G M C]=[G M B]=x
$$

Similarly $[G N C]=[G N A]=y$ and $[G P A]=[G P B]=z$.
Now $[A B M]=[A C M]$ implies $2 z+x=2 y+x$ so $z=y$.
From $[B N C]=[B N A]$ we obtain $x=z$, so $x=y=z$

Problem 2. Let M be a point inside a triangle $A B C$ such that

$$
[M A B]=[M B C]=[M C A] .
$$

Prove that M is the centroid of the triangle $A B C$.

Problem 2. Let M be a point inside a triangle $A B C$ such that

$$
[M A B]=[M B C]=[M C A] .
$$

Prove that M is the centroid of the triangle $A B C$.
Solution. Let G be the centroid of the triangle.
Then (by Problem 1):

$$
[G A B]=[G B C]=[G C A]=\frac{[A B C]}{3} .
$$

We will show that $M=G$.

- In order to have $[M B C]=\frac{[A B C]}{3}=[G B C]$, we must have that M belongs to the unique parallel line to $B C$ passing from G.

- In order to have $[M B C]=\frac{[A B C]}{3}=[G B C]$, we must have that M belongs to the unique parallel line to $B C$ passing from G.
- In order to have $[M A B]=\frac{[A B C]}{3}=[G A B]$, we must have that M belongs to the unique parallel line to $A B$ passing from G.
- Hence M belongs in the intersection of these 2 lines, which is the point G. Hence $M=G$.

SIMILAR TRIANGLES

Let $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ be two similar triangles, that is,

$$
\frac{A^{\prime} B^{\prime}}{A B}=\frac{C^{\prime} A^{\prime}}{C A}=\frac{B^{\prime} C^{\prime}}{B C}=\text { ratio of similarity }
$$

Then

$$
\frac{\left[A^{\prime} B^{\prime} C^{\prime}\right]}{[A B C]}=\left(\frac{A^{\prime} B^{\prime}}{A B}\right)^{2}=\left(\frac{C^{\prime} A^{\prime}}{C A}\right)^{2}=\left(\frac{B^{\prime} C^{\prime}}{B C}\right)^{2} .
$$

Proposition. The ratio of areas of two similar triangles equals the square of ratio of similarity.

Example. Consider the median triangle $A^{\prime} B^{\prime} C^{\prime}$ of a triangle $A B C$ (A^{\prime}, B^{\prime} and C^{\prime} are the midpoints of the sides of triangle $A B C$).
Then:

- $A^{\prime} B^{\prime}$ parallel to $A B$ and equal to $\frac{A B}{2}$
- $A^{\prime} C^{\prime}$ parallel to $A C$ and equal to $\frac{A C}{2}$
- $B^{\prime} C^{\prime}$ parallel to $B C$ and equal to $\frac{B C}{2}$

The similarity ratio is

$$
\frac{A^{\prime} B^{\prime}}{A B}=\frac{A^{\prime} C^{\prime}}{A C}=\frac{B^{\prime} C^{\prime}}{B C}=\frac{1}{2}
$$

SO

$$
\frac{\left[A^{\prime} B^{\prime} C^{\prime}\right]}{[A B C]}=\left(\frac{A^{\prime} B^{\prime}}{A B}\right)^{2}=\frac{1}{4} \quad \text { that is, } \quad\left[A^{\prime} B^{\prime} C^{\prime}\right]=\frac{1}{4}[A B C] .
$$

Problem 3. Let $A^{\prime} B^{\prime} C^{\prime}$ be the median triangle of $A B C$ and denote by H_{1}, H_{2} and H_{3} the orthocenters of triangles $C A^{\prime} B^{\prime}$, $A B^{\prime} C^{\prime}$ and $B C^{\prime} A^{\prime}$ respectively.

Prove that:
(i) $\left[A^{\prime} H_{1} B^{\prime} H_{2} C^{\prime} H_{3}\right]=\frac{1}{2}[A B C]$.
(ii) If we extend the line segments $A H_{2}, B H_{3}$ and $C H_{1}$, then they will all 3 meet at a point.

Problem 3. Let $A^{\prime} B^{\prime} C^{\prime}$ be the median triangle of $A B C$ and denote by H_{1}, H_{2} and H_{3} the orthocenters of triangles $C A^{\prime} B^{\prime}$, $A B^{\prime} C^{\prime}$ and $B C^{\prime} A^{\prime}$ respectively.

Prove that:
(i) $\left[A^{\prime} H_{1} B^{\prime} H_{2} C^{\prime} H_{3}\right]=\frac{1}{2}[A B C]$.
(ii) If we extend the line segments $A H_{2}, B H_{3}$ and $C H_{1}$, then they will all 3 meet at a point.

Solution.

(i) First remark that $A^{\prime} B^{\prime} C^{\prime}$ and $A B C$ are similar triangles with the similarity ratio $B^{\prime} C^{\prime}: B C=1: 2$. Therefore

$$
\left[A^{\prime} B^{\prime} C^{\prime}\right]=\frac{1}{4}[A B C] .
$$

Let H be the orthocenter of $A B C$. Then A, H_{2} and H are on the same line. Also triangles $H_{2} C^{\prime} B^{\prime}$ and $H B C$ are similar with the same similarity ratio, thus

$$
\left[H_{2} B^{\prime} C^{\prime}\right]=\frac{1}{4}[H B C] .
$$

In the same way we obtain

$$
\left[H_{1} A^{\prime} B^{\prime}\right]=\frac{1}{4}[H A B] \quad \text { and } \quad\left[H_{3} C^{\prime} A^{\prime}\right]=\frac{1}{4}[H C A] .
$$

We now obtain

$$
\begin{gathered}
{\left[A^{\prime} H_{1} B^{\prime} H_{2} C^{\prime} H_{3}\right]=\left[A^{\prime} B^{\prime} C^{\prime}\right]+\left[H_{1} A^{\prime} B^{\prime}\right]+\left[H_{2} B^{\prime} C^{\prime}\right]+\left[H_{3} C^{\prime} A^{\prime}\right]} \\
=\frac{1}{4}[A B C]+\frac{[H A B]+[H B C]+[H C A]}{4} \\
=\frac{1}{4}[A B C]+\frac{1}{4}[A B C]=\frac{1}{2}[A B C] .
\end{gathered}
$$

(*This is a different solution from the one given in class)
(ii)Remark that the extensions of $\mathrm{AH}_{2}, \mathrm{BH}_{3}$ and CH_{1} are the altitudes of the triangle $A B C$. Hence they all meet at a point (namely the orthocenter of $A B C$).

Problem 4. Let Q be a point inside a triangle $A B C$. Three lines pass through Q and are parallel with the sides of the triangle.

These lines divide the initial triangle into six parts, three of which are triangles of areas S_{1}, S_{2} and S_{3}. Prove that

$$
\sqrt{[A B C]}=\sqrt{S_{1}}+\sqrt{S_{2}}+\sqrt{S_{3}} .
$$

Solution.

Let D, E, F, G, H, I be the points of intersection between the three lines and the sides of the triangle.

Then triangles $D G Q, H Q F, Q I E$ and $A B C$ are similar so

$$
\frac{S_{1}}{[A B C]}=\left(\frac{G Q}{B C}\right)^{2}=\left(\frac{B I}{B C}\right)^{2}
$$

Similarly

$$
\frac{S_{2}}{[A B C]}=\left(\frac{I E}{B C}\right)^{2}, \quad \frac{S_{3}}{[A B C]}=\left(\frac{Q F}{B C}\right)^{2}=\left(\frac{C E}{B C}\right)^{2} .
$$

Then

$$
\sqrt{\frac{S_{1}}{[A B C]}}+\sqrt{\frac{S_{2}}{[A B C]}}+\sqrt{\frac{S_{3}}{[A B C]}}=\frac{B I}{B C}+\frac{I E}{B C}+\frac{E C}{B C}=1 .
$$

This yields

$$
\sqrt{[A B C]}=\sqrt{S_{1}}+\sqrt{S_{2}}+\sqrt{S_{3}} .
$$

Problem 5. Let $A B C$ be a triangle. On the line BC , beyond the point C we take the point A^{\prime} such that $B C=C A^{\prime}$. On the line $C A$ beyond the point A we take the point B^{\prime} such that $A C=A B^{\prime}$. On the line $A B$, beyond the point B we take the point C^{\prime} such that $A B=B C^{\prime}$. Prove that

$$
\left[A^{\prime} B^{\prime} C^{\prime}\right]=7[A B C] .
$$

Solution. We bring the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ so that we split the big triangle $A^{\prime} B^{\prime} C^{\prime}$ into 7 triangles. We will show that all 7 triangles have area equal to $[A B C]$.

- $\left[B^{\prime} B A\right]=[A B C]$ (since $A B$ is a median of the triangle $\left.C B B^{\prime}\right)$.
- $\left[B^{\prime} B C^{\prime}\right]=\left[B^{\prime} B A\right]=[A B C]$ (since $B B^{\prime}$ is a median of the triangle $\left.C^{\prime} A B^{\prime}\right)$.
- $\left[A^{\prime} C A\right]=[A B C]$ (since $A C$ is a median of the triangle $\left.A^{\prime} A B\right)$.
- $\left[A^{\prime} A B^{\prime}\right]=\left[A^{\prime} C A\right]=[A B C]$ (since $A A^{\prime}$ is a median of the triangle $\left.A^{\prime} B^{\prime} C\right)$.
- $\left[C B C^{\prime}\right]=[A B C]$ (since $C B$ is a median of the triangle $C A C^{\prime}$).
- $\left[C C^{\prime} A^{\prime}\right]=\left[C B C^{\prime}\right]=[A B C]$ (since $C C^{\prime}$ is a median of the triangle $B A^{\prime} C^{\prime}$).

Homework

6. Let $A B C D$ be a quadrilateral. On the line $A B$, beyond the point B we take the point A^{\prime} such that $A B=B A^{\prime}$. On the line $B C$ beyond the point C we take the point B^{\prime} such that $B C=C B^{\prime}$. On the line $C D$ beyond the point D we take the point C^{\prime} such that $C D=D C^{\prime}$. On the line $D A$ beyond the point A we take the point D^{\prime} such that $D A=A D^{\prime}$. Prove that

$$
\left[A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right]=5[A B C D]
$$

7. Let G be the centroid of triangle $A B C$. Denote by G_{1}, G_{2} and G_{3} the centroids of triangles $A B G, B C G$ and $C A G$. Prove that

$$
\left[G_{1} G_{2} G_{3}\right]=\frac{1}{9}[A B C] .
$$

Hint: Let T be the midpoint of $A G$. Then G_{1} belongs to the line $B T$ and divides it in the ration $2: 1$. Similarly G_{3} belongs to the line $C T$ and divides it in the ratio 2:1. Deduce that $G_{1} G_{3}$ is parallel to $B C$ and $G_{1} G_{3}=\frac{1}{3} B C$. Using this argument, deduce that triangles $G_{1} G_{2} G_{3}$ and $A B C$ are similar with ratio of similarity of $1 / 3$.
8. Let A^{\prime}, B^{\prime} and C^{\prime} be the midpoints of the sides $B C, C A$ and $A B$ of triangle $A B C$. Denote by G_{1}, G_{2} and G_{3} the centroids of triangles $A B^{\prime} C^{\prime}, B A^{\prime} C^{\prime}$ and $C A^{\prime} B^{\prime}$. Prove that

$$
\left[A^{\prime} G_{2} B^{\prime} G_{1} C^{\prime} G_{3}\right]=\frac{1}{2}[A B C] .
$$

9. Let $A B C D$ be a convex quadrilateral. On the line $A C$ we take the point C_{1} such that $C A=C C_{1}$ and on the line $B D$ we take the point D_{1} such that $B D=D D_{1}$. Prove

$$
\left[A B C_{1} D_{1}\right]=4[A B C D] .
$$

10. Let M be a point inside a triangle $A B C$ whose altitudes are h_{a}, h_{b} and h_{c}. Denote by d_{a}, d_{b} and d_{c} the distances from M to the sides $B C, C A$ and $A B$ respectively. Prove that

$$
\min \left\{h_{a}, h_{b}, h_{c}\right\} \leq d_{a}+d_{b}+d_{c} \leq \max \left\{h_{a}, h_{b}, h_{c}\right\}
$$

