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Abstract 

As houses become more energy efficient due to highly thermal 

resistant fabrics, the impact of natural ventilation on indoor comfort 

and on transient heating and cooling loads increases. These two 

constraints must be integrated within building performance simulation 

models when assessing the potential for electrical load shifting 

strategies in residential buildings placed in a smart grid environment. 

A natural ventilation model is developed and implemented for five 

residential building archetypes. A bottom-up methodology based on 

occupant behaviour, through the use of time-of-use data, is 

implemented at room level within EnergyPlus. A stochastic approach 

determines whether to open or close windows, depending on the 

occupancy state, the activity type and level, and the thermal comfort 

experienced. 

The algorithms proposed consider the main drivers governing window 

operation within a residential context. Focus is placed on the 

modelling challenges, and the impacts of the model are assessed using 

energy performance and thermal comfort. 

1 Introduction 

EU policy and targets 

The poor energy performance of the European building sector makes it one of the largest 

energy using and CO2 emitting sectors at present. Residential buildings alone account for just 

over two-thirds of this energy consumption. The so-called “20-20-20” targets set by the EU 

challenge the building sector in terms of energy efficiency, greenhouse gas emissions and 

integration of renewable energy sources (RES). Furthermore, a series of EU directives have 

mandated each member state to improve the energy and environmental performance of 

dwellings. Through the Energy Performance of Buildings Directive (EPBD) (European 

Commission, 2010) a series of reference buildings, representative of the national building 

stock, should be defined and a standard methodology developed for the calculation of their 

energy and environmental performances. Through Directive 2009/28/EC (European 

Commission, 2009) on the promotion of energy use from RES, 20% of total energy 

consumption from RES is targeted by 2020. The residential sector has a key role to play in 

order to meet these objectives. 

Response of the residential sector 

The direct response of each EU member state to the EPBD requirements is the development 

of national standard energy assessment procedures, while also enabling the publication of 

building energy rating certificates. These standard methodologies are key tools for policy 



makers in order to verify the implementation of current building regulations and to elaborate 

stricter ones in terms of fuel and energy conservation within dwellings. 

As acknowledged by the U.S. DoE (2011), the integration of RES requires more flexibility 

from the power system. This is due to the variable and uncertain nature of RES, particularly 

wind and solar generation. Utilisation of the flexibility offered by demand side management 

(DSM) strategies is one possible strategy. However, for residential buildings in particular, it is 

challenging to quantify this potential due to the wide range of electricity usage patterns, 

variability of electrical loads and uncertainty regarding human behaviour. Stricter energy 

efficiency regulations, the integration of new load types and the increasing electrification of 

space and water heating loads anticipated by the IEA (2011) further challenge the assessment 

of the associated flexible load resource capacity. 

Modelling of residential sector and natural ventilation 

Dineen and Ó’Gallachóir (2011) classified building energy and electricity demand models 

made into two categories: top-down and bottom-up approaches. Richardson et al. (2008) 

recognised that analysis of DSM in the domestic sector requires detailed and accurate 

knowledge of household consumer loads. By aggregating individual end-use loads, or groups 

of end-use loads, bottom-up approaches are capable of generating sufficient detail and are 

very useful for identifying the individual end-use contribution to the overall energy or 

electricity consumption of a national residential building stock (Swan & Ugursal, 2009). In 

the past decade, several bottom-up building energy or electricity demand models have been 

developed to study domestic loads with high time resolution (Richardson, et al., 2010; Widén 

& Wäckelgård, 2010) and with high spatial resolution (Chiou, et al., 2011). These models are 

usually based on time-of-use survey (TUS) data in order to extract the behavioural patterns of 

building residents, in terms of occupancy and use of electrical appliances. However, all of the 

above ignore an assessment of the thermal comfort of residents and each building model is 

representative of a single dwelling only, complicating the task of scaling outcomes to a 

national level. Consequently, Neu et al. (2013) proposed an approach to develop operational 

data, based on TUS data, as input in archetype building performance simulation (BPS) 

models, with each model being representative of a group of dwellings and dwelling loads. By 

integrating activity specific profiles for occupancy, electrical appliance use and lighting at 

high space and time resolution, EPBD reference dwellings can be converted into BPS 

archetypes, as recognized by Corgnati et al. (2013). Indeed, it has been recognised that 

standard assessment procedures developed to meet the EPBD requirements have limitations, 

including an inability to account for occupancy variations and usage of appliances (Gupta, et 

al., 2011). As emphasized by Ma et al. (2013), this archetype approach is in line with the 

power system perspective on the aggregated flexibility potential offered by smaller loads, 

such as residential ones, through the implementation of any DSM strategy. 

As houses become more energy efficient and air tight due to highly thermal resistant fabrics 

and stricter building regulations, the impact of natural ventilation on indoor thermal comfort, 

air quality and on transient heating and cooling loads increases. In order to assess the DSM 

potential in residential buildings, as a mechanism for electrical load shifting, these constraints, 

namely indoor comfort and transient heating loads, must be considered within BPS archetypes 

capable of simulating the energy and electricity demand of residential buildings. Dutton et al. 

(2012) recognised that stochastic probability-based models are more suitable for describing 

natural ventilation because human behaviour is not deterministic. The main drivers agreed for 

operating windows are listed below: 

 Environmental conditions, especially outdoor temperature during the heating season 

and indoor temperature during the off-heating season. 



 Indoor thermal comfort and air quality, such that window operation is driven by a 

temporary discomfort in order to re-establish acceptable conditions. 

 Temporal events, such that window operation is related to a particular event (e.g. 

entering a room, cooking, cleaning or waking-up). 

From those drivers, Andersen et al. (2013) identified the outdoor temperature and indoor air 

quality as the most important variables governing the operation of windows within dwellings. 

Generally, building occupants tend not to interact that often with windows. While this might 

be true for a commercial or office building, it is expected that residential building occupants 

would operate windows more dynamically in order to reach or to restore optimal comfort 

conditions (Peeters, et al., 2009). Indeed, the domestic environment is characterised by high 

variations, at a sub-hourly timescale, of internal heat gains associated with occupancy level, 

activity level and types, and electrical equipment use. As opposed to commercial or office 

buildings, such an environment also offers many ways for occupants to adapt, including the 

adjustment of natural ventilation rates by operating windows. This justifies the choice of an 

adaptive thermal comfort model to estimate an acceptable indoor temperature range, rather 

than a model based on Fanger’s approach, which is more appropriate for commercial and 

office buildings (Peeters, et al., 2009). 

Our contribution and approach 

A set of EPBD reference dwellings is considered and modelled in detail through EnergyPlus 

and converted into a set of archetypes by integrating the high space and time resolution 

operational data developed by Neu et al. (2013), thus taking into account occupant behaviour. 

Combining such a TUS activity specific approach with the outcomes from Dutton et al. 

(2012) and Peeters et al. (2009), a domestic natural ventilation and adaptive thermal comfort 

model is developed and implemented at room level using the EnergyPlus Energy 

Management System (EMS) module. A stochastic approach decides whether to open or close 

windows, depending on the room occupancy state, the type of activity performed and the 

thermal comfort experienced. The algorithms proposed consider the main drivers governing 

window operation, and adapt them to the residential sector context. Focus is placed on the 

modelling challenges and an assessment of the impacts of the model, using energy 

performance and thermal comfort. The calibration of the natural ventilation model is 

performed in order to match a benchmark ventilation air change rate at a building level. 

2 Methodology 

The set of EPBD Irish reference dwellings (DECLG & SEAI, 2013) is considered and 

modelled in detail through EnergyPlus. The operational data, required to convert this 

reference building into a BPS archetype, is integrated within each model, and a stochastic 

natural ventilation model appropriate for residential applications is developed. 

Set of archetypes 

Table 1 introduces the two building categories considered, further divided into five dwelling 

types, as well as their conditioned total floor area (TFA) and the share of the Irish residential 

building stock represented, according to the results from Irish 2011 Census (CSO, 2012). The 

set of reference dwellings is representative of more than 80% of the Irish national dwelling 

stock and each dwelling type is considered over different construction periods, namely new 

and existing dwellings. The main geometrical characteristics, construction types and 

materials, infiltration levels and the heating system types and control are in line with DECLG 

and SEAI (2013), and adapted from the Irish building regulations (DECLG, 2011) for both 

new and existing constructions. The number of rooms, layouts and floor plans are adapted 



from representative dwellings defined by Brophy et al. (1999). Figure 1 shows the SketchUp 

drawings of each reference dwelling. The new version of the most representative reference 

dwelling of the Irish national stock, namely the detached house (i.e. dwelling (b) in Figure 1), 

is considered in the current paper as a case study. According to its layout and the number of 

rooms, it is believed to be the most challenging archetype to model. 

Table 1 – Set of EPBD Irish reference dwellings 

Building 

category 
Dwelling type 

TFA 

(m
2
) 

Number of rooms 

Share of national 

stock 

(%) 

Single family 

Bungalow 104 8 
43.2 

Detached 160 13 

Semi-detached 126 10 28.2 

Multi-family 
Mid-floor flat 54 3 

10.9 
Top-floor flat 54 3 

 

 

Figure 1 - SketchUp drawings of reference dwellings: (a) bungalow, (b) detached, (c) 

semi-detached, and (d) flats 

Operational data 

From the four data subsets required by Corgnati et al. (2013) to develop BPS archetypes, the 

operational data subset is built following the bottom-up approach proposed by Neu et al. 

(2013), which applies Markov chain Monte Carlo techniques to TUS activity data to develop 

activity specific profiles for occupancy, disaggregated appliance and lighting electricity use 

for multi-zone residential BPS archetypes. As a result, the archetypes capture, at room level, 

the variations of electricity on a minute basis, and the variations of internal heat gains on a 

(a) 

(d) (c) 

(b) 



fifteen-minute basis. Such space and time resolution is vital for investigation of issues related 

to thermal comfort and electrical load shifting at an aggregated level (Neu, et al., 2013). 

The two types of occupancy profiles, namely normal and active profiles, are shown in Figure 

2. An active occupant is defined as a normal occupant who is not sleeping, and is thus willing 

to use any domestic equipment (electrical appliances, lighting) or to perform any action to 

restore indoor comfortable conditions (operation of natural ventilation, change of clothing, 

etc.), depending on the active occupancy level and the performed activity type. The two main 

variables are the household size (1, 2, 3 and “4 or more” residents) and the day type (weekend 

or weekday). Since only adult residents were surveyed in the TUS data used, there is a risk of 

underestimating the internal heat gains associated with occupancy, the use of equipment 

(electrical appliances, lighting), or even the probability to operate natural ventilation. 

 

Figure 2: Average daily modelled active occupancy and surveyed average daily normal              

occupancy for the detached house archetype with “4 or more” residents 

The average daily power consumption profiles for domestic electrical appliances integrated 

within the detached house archetype were developed and validated against metered data by 

Neu et al. (2013). In brief, the active occupancy profiles are combined with specific TUS 

activity profiles (probability of at least one occupant performing a particular activity) within a 

stochastic model to develop average appliance load profiles depending on the household size 

and day type, and taking into account the penetration of each appliance modelled within the 

national dwelling stock. In Figure 3, a noticeable underestimation of power consumption can 

be seen from electrical appliances, especially during the night time, mainly due to the TUS 

data used, which did not consider children. The lighting electricity demand is also activity 

specific, varying with the occupancy level, activity level and type, illuminance requirement, 

light bulb efficacy of the lighting technology installed, and the daylight level. For new 

dwellings, compact fluorescent technology was assumed, with a light source efficacy of 50 

lm/W. For existing dwellings, a composite light bulb efficacy of 18 lm/W was assumed, based 
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on IESNA standards (2000) and the breakdown of lighting technologies surveyed in UK 

residential building stock (Energy Saving Trust, DECC & DEFRA, 2013). 

The activity specific profiles for occupancy, domestic appliances and lighting electricity use 

have a direct impact on the internal heat gains. As proposed by Neu et al. (2013), occupants 

and their internal heat gains are mapped at room level by assigning a unique, or several, 

thermal zones to each activity. Similarly, by assigning a unique, or several, thermal zones to 

each electrical appliance and by considering the fraction of electrical power consumed which 

is converted into latent, radiant, convected heat or lost to the outdoor environment, appliances 

and their internal heat gains are spatially mapped at room level. Finally lighting internal heat 

gains are spatially mapped at room level, by attributing an illuminance requirement level to 

each activity detailed in the TUS dataset and by considering the fraction of electrical power 

consumed by lights which is converted into visible radiation, radiant and convected heat. 

 

Figure 3: Comparison of average daily electrical appliances load demand with surveyed 

average daily total load demand for the detached house archetype during a weekday 

Natural ventilation and adaptive thermal comfort algorithms 

The core of the stochastic window use approach developed by Dutton et al. (2012), using the 

EnergyPlus EMS module, is combined with the adaptive thermal comfort model algorithms 

developed by Peeters et al. (2009) for residential building applications, as shown in Table 2. 

Both models were selected because they had been developed for BPS applications and 

validated against measured data. However, some significant differences are introduced by that 

algorithm combination. First, the developed algorithms could be defined as a natural 

ventilation model rather than a window use model. Indeed, the controlled variable is the 

activation or deactivation of natural ventilation at a fixed air change rate for each room, rather 

than opening each single window of the building by a certain fraction. Another significant 

difference lies in the field of application, namely an archetype model, representative of a 

group of dwellings: when the natural ventilation is activated, it does not mean that one or 

several windows of a single dwelling are opened or closed, but that a majority of dwellings 
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represented by a particular archetype are activating or deactivating natural ventilation through 

the operation of windows. Finally, the algorithms developed in this work are strongly 

dependent upon the variations of occupancy level, activity level and activity type, by 

connecting them to the activity specific occupancy profiles introduced earlier. These 

variables, which embed the occupant behaviour, were not considered in existing models. 

Table 2: Algorithms for the natural ventilation and the adaptive thermal comfort model 

Model 

variables 

Room type 

Bedroom Bathroom Other room 

Running 

mean 

temperature 

constant c  

0.6 

Running 

mean 

temperature 
n

RMT  (°C) 

 1 11n n

RM DMc T c T                                             (1) 

Comfort band 

width 

  (°C) 

5 (for 10% of people dissatisfied, PPD) or 7 (for 20% PPD) 

Comfort band 

constant 
  

0.7 

Comfort band 

upper limit 

upperT  (°C) 
 min 26, nT     nT                                (2) 

Comfort band 

lower limit 

lowerT  (°C) 
 max 16, 1nT         max 18, 1nT                       (3) 

Comfort band 

neutral 

temperature 

nT  (°C) 

If 0n

RMT  ; 

16  

 

If 0 12.6n

RMT  ; 

0.23 16n

RMT   

 

If 12.6 21.8n

RMT  ; 

0.77 9.18n

RMT   

 

If 21.8n

RMT  ; 

26  

If 11n

RMT  ; 

0.112 22.65n

RMT   

 

If 11n

RMT  ; 

0.306 20.32n

RMT   

If 12.5n

RMT  ; 

0.06 20.4n

RMT   

(4) 

If 12.5n

RMT  ; 

0.36 16.63n

RMT   

Probability 

of natural 

ventilation 

operation 

nvp  

  0.171 0.166 6.4nv op outexpo logit p T T       

(5) 

 / 1expo expo

nvp e e   



The general layout of the resulting model implemented within the EnergyPlus EMS module 

for each archetype is as follows: 

 The running mean temperature
n

RMT  is calculated, Equation (1), at the beginning of 

each day, giving a weight of 40% to the average outdoor dry bulb temperature for the 

previous day 
1n

DMT 
 and a greater weight of 60% to the running mean temperature 

n

RMT  

for the previous day. By doing so, adaptation to the outdoor climate is incorporated. 

 For each room, depending on the activities performed, the activity sets are clustered 

into four categories: “main activities” which require the activation of natural 

ventilation independently from the thermal comfort level (e.g. cooking, cleaning); 

“waking-up activity”, which is derived from the negative slope of the activity specific 

occupancy pattern for the “sleeping” TUS activity data, Figure 4, and requires the 

activation of natural ventilation independently from the thermal comfort level; “other 

activities” which do not require the activation of natural ventilation independently 

from the thermal comfort assessment (e.g. studying, watching TV); “all activities” 

which regroups the “main activities” and “other activities”. 

 

Figure 4: Activity specific occupancy profiles for the “sleeping” and “waking-up” 

normalised activity, detached house archetype with “4 or more” residents, weekday 

 Independent from the indoor thermal comfort assessment, a random threshold is 

compared to the “main activities” and the “waking-up activity” probability 

distributions, normalised with respect to the minimum slope of the “sleeping” activity-

specific occupancy profile, as shown in Figure 4. Such operation of natural ventilation 

depending on the occupancy level, activity level and activity type, relates window 

operation with temporal events, but adapted to the residential context. 

 The running mean temperature 
n

RMT  feeds into calculation of the comfort band neutral 

temperature nT  , depending on the room type, Equation (4). 

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 6 12 18 0

P
ro

p
o
rt

io
n

 o
f 

a
d

u
lt

 o
cc

u
p

a
n

ts
 "

w
a
k

in
g

-u
p

"
 

P
ro

p
o
rt

io
n

 o
f 

o
cc

u
p

a
n

ts
 "

sl
ee

p
in

g
"

 

(a
d

u
lt

s/
re

si
d

en
t)

 

Time (hour) 

"Sleeping" TUS activity-specific

occupancy profile

"Waking-up" normalised activity-

specific occupancy profile



 The comfort band neutral temperature nT  feeds into calculation of both the lower and 

upper limits of the comfortable temperature range, lowerT  and upperT , depending on the 

room type, Equations (2) and (3). The width of the comfort temperature ranges is also 

dependent upon the requested percentage of people dissatisfied (PPD) through the 

value of , as per Table 2. 

 The indoor operative temperature opT  is compared to the respective limits of the 

comfort temperature range. However, if opT  is outside the limits, meaning that the 

indoor conditions are either too cold or too hot, the natural ventilation operation state 

is either left closed or the probability of operating the natural ventilation nvp  is 

calculated, Equation (5).  In order to take into account the active occupancy level and 

the activity type, nvp  is scaled by “all activities” probability distribution, before being 

compared to a random threshold. 

3 Results and discussion 

The behaviour of the natural ventilation model and the capabilities that such algorithms confer 

to the archetypes, in terms of DSM investigation and related thermal comfort issues, are 

addressed. Focus is placed on the modelling challenges associated with its implementation 

within residential BPS archetypes. 

Challenges associated with the modelling process 

A threshold limit needs to be set on the minimum level of activity specific occupancy level 

below which the natural ventilation cannot be operated. It prevents natural ventilation 

operation from cycling, especially for bedrooms in the early morning when the operation of 

natural ventilation is highly dependent on the “waking-up activity” probability distribution. 

Such cycling is unacceptable, even at an aggregated level in a residential context. It is mainly 

due to the continuous nature of activity specific occupancy profiles, being representative of a 

group of dwellings and thus never equal to “0”. A threshold value of 0.1 was found to be 

effective in eliminating the cycling issue without compromising the general behaviour of the 

model. 

The initial state of the natural ventilation operation must be reset for each simulation timestep, 

assuming that operable windows “closed” is the normal state of operation for a majority of 

dwellings represented by a particular residential archetype. It prevents natural ventilation 

operation from being continuous over long periods of time (several hours), even when 

unacceptable thermal comfort conditions are met. It is mainly due to the priority given to 

some particular activities (waking-up, cooking and cleaning) for operating windows 

independently from the thermal comfort assessment, and to the continuous nature of activity 

specific occupancy profiles. This re-initialisation of the state of operation of natural 

ventilation at each simulation timestep is believed to be necessary for archetype models but 

not for individual building models for which activity specific occupancy profiles are discrete 

or stepped. 

The natural ventilation algorithms must be “called” only once the warm-up simulations are 

completed by the BPS platform to auto-size some input components, such as the size of a 

circulation pump. It prevents results obtained for heating and cooling loads during the warm-

up periods from diverging, as observed by Dutton et al. (2012), even if this “non-

convergence” issue does not impede the simulation to complete. It is directly related to the 

stochastic behaviour of the natural ventilation model which is integrated within a 



deterministic BPS platform: results differ from one simulation to another when all other 

inputs are constant. 

It is vital to adjust the comfortable temperature ranges as well as the occupancy and activity 

patterns derived from TUS data in order to reflect the specific behaviour of occupants at a 

particular location. As emphasised by Peeters et al. (2009), in domestic buildings in 

particular, there is a very strong relationship between thermal comfort and outdoor conditions, 

especially outdoor temperature. Also, occupancy and activity patterns of occupants vary 

greatly with the climatic zone and the social habits. However, the general layout of the 

algorithms and the modelling challenges associated with their integration within BPS 

archetype models might not differ from one location to another. 

Depending on the quality of the TUS data used, it might be necessary to normalise the 

probability distribution of each activity set (“main activities” and “other activities”), with 

respect to either the “all activities” probability distribution or the average household size (4.94 

in this case study for a household with “4 or more” residents), when comparing their value to 

the random threshold. The assumption behind such a normalisation process is whether the 

operation of natural ventilation is mostly performed by adults or by any occupant, adult or 

not. Indeed, as observed in Figure 2, only adult residents were surveyed in the TUS used in 

this case study, with a risk of underestimating the probability to perform any action to restore 

indoor comfortable conditions, such as the operation of natural ventilation. Without real 

measurement data to support that assumption, the TUS active occupancy data used in this case 

study is not extrapolated and the normalisation process is not performed. As a consequence, 

higher probabilities of operation of natural ventilation would be met in smaller households. 

Natural ventilation model behaviour 

 

Figure 5 - Kitchen natural ventilation and thermal comfort, weekday, 15-min resolution 

Figure 5 shows an example operation of natural ventilation only, at a fixed air change rate of 

0.5 ach, during a September weekday for the kitchen of the detached house archetype. The 
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indoor operative temperature is within the comfortable range all day, thus not requiring the 

natural ventilation operation due to thermal comfort issues. Natural ventilation is activated 

early in the morning, at noon and in the evening, due to the cooking activity taking place at 

those times. An extra fixed air change rate input of 0.25 ach is set, due to infiltration through 

the building envelope, in line with DECLG and SEAI (2013) for new detached houses. The 

effective infiltration level is computed at each simulation timestep based on the fixed air 

change rate input, the indoor and outdoor conditions (temperature, wind speed and direction). 

Table 3 – Annual average natural ventilation air change rates per room 

Room 

Annual average natural ventilation output 

(ach) 

Fixed air change 

rate input at 0.5 ach 

Stochastic natural ventilation model 

at different air change rate inputs 

0.5 ach 1 ach 2 ach 4 ach 8 ach 10 ach 12 ach 

Bath 0.39 0.01 0.02 0.04 0.07 0.14 0.17 0.19 

Bed 1 0.37 0.01 0.02 0.04 0.07 0.13 0.16 0.19 

Bed 2 0.36 0.01 0.02 0.03 0.06 0.12 0.15 0.17 

Bed 3 0.42 0.06 0.12 0.22 0.42 0.80 0.98 1.17 

Bed 4 0.41 0.05 0.11 0.21 0.40 0.78 0.96 1.14 

Dining 0.41 0.01 0.02 0.04 0.08 0.15 0.18 0.22 

Kitchen 0.45 0.03 0.04 0.08 0.15 0.28 0.34 0.40 

Living 0.48 0.02 0.04 0.07 0.12 0.19 0.23 0.26 

Study 0.46 0.01 0.02 0.03 0.06 0.12 0.15 0.18 

Building 0.42 0.13 0.15 0.18 0.24 0.36 0.42 0.47 

 

Figure 6: Monthly average natural ventilation air change rates for the whole building 
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Table 3 introduces the calibration process of the average annual ventilation air change rates 

simulated with the stochastic natural ventilation algorithm compared to benchmark results 

with a fixed air change rate input of 0.5 ach set for each room with operable windows. With 

the stochastic natural ventilation algorithm, an air change rate input of 10 ach is found to 

produce the same results as the benchmark, at a building level. As observed by Andersen et al. 

(2013), bedrooms exhibit the greatest natural ventilation levels, whereas very low levels are 

observed in all other rooms. The low natural ventilation levels observed in bedrooms 1 and 2 

are due to the low active occupancy levels met in those rooms, because of the TUS data 

quality, as discussed in the section above. 

Figure 6 compares the monthly variations of air change rates, due to natural ventilation only, 

between the benchmark fixed air change rate input of 0.5 ach and the stochastic natural 

ventilation algorithm with an air change rate input of 10 ach. In both cases, a seasonal 

variation is characterised, with higher air change rates during summer than during winter, 

Figure 6. In the benchmark case, the seasonal and weather variations are reflected by 

EnergyPlus calculations which modify the fixed air change rate input of 0.5 ach at each 

simulation timestep, based on both the indoor and outdoor conditions (temperature, wind 

speed and direction). With the stochastic natural ventilation algorithm, the seasonal variations 

are reflected by an increase of the frequency of window operation in summer time due to the 

uncomfortable indoor temperatures met and the adaptive behaviour of occupants. However, 

the algorithm used to calculate the probability of natural ventilation operation does not 

consider the CO2 indoor concentration, one of the most significant drivers for governing the 

operation of windows, together with the outdoor temperature, as observed by Andersen et al. 

(2013). 

4 Conclusions and further work 

Natural ventilation and adaptive thermal comfort algorithms, developed for applications 

within BPS models, have been successfully integrated within EPBD archetypes. The model 

behaviour is in line with recommendations drawn from similar modelling studies performed 

and validated against real data. The algorithms proposed consider the main drivers governing 

the operation of natural ventilation, and adapt them to a domestic context. The concept of 

active occupancy, which was initially related to the use of domestic electrical appliances and 

lighting, has been extended to the operation of natural ventilation. By controlling a single 

variable, namely the air change rate, it is possible to calibrate the model in order to match the 

required overall annual air change rate. Furthermore, by integrating high resolution models 

for occupancy and equipment use, and by increasing the time resolution of the EPBD 

archetypes from a yearly level to a sub-hourly level, the proposed approach expands previous 

investigations to include electrical load shifting, thermal comfort and indoor air quality issues. 

Due to the stochastic nature of the natural ventilation model, it is non-trivial to implement it 

within a deterministic BPS platform, and some technical challenges must be overcome so that 

the algorithms can reflect the main drivers governing the operation of natural ventilation. 

While some solutions are proposed for each challenge associated with the modelling process, 

an innovative approach is proposed, characterised by a strong relationship between the 

probability of operating windows and the activity specific occupancy patterns of residents, 

thus further embedding occupant behaviour within BPS archetype models. 

Further features of the natural ventilation model include a modification of the main control 

variable in order to further account for the seasonal and weather variations: as initially 

performed by EnergyPlus, the air change flow rate can be calculated at each simulation 

timestep based on both the air change rate input, the indoor and outdoor conditions 

(temperature, wind speed and direction). Also, the algorithm used to calculate the probability 

of natural ventilation operation could be modified in order to consider the CO2 indoor 



concentration as one of the most significant drivers for governing the operation of windows, 

together with the outdoor temperature. Further features of the archetype models may include 

the electrification of space and water heating systems and the development of a methodology 

for the assessment of the demand response potential embedded within residential BPS 

archetypes through the implementation of load shifting and operating reserve provision 

strategies constrained by thermal comfort. Also, the archetypes modelled are key to scaling up 

the potential flexibility resource from individual representative buildings to a national scale. 
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