Statistics:

The uniform distribution (continuous) is one of the simplest probability distributions in statistics. It is a continuous distribution, this means that it takes values within a specified range, e.g. between 0 and 1 .

The probability density function for a uniform distribution taking values in the range a to b is:

$$
f(x)= \begin{cases}\frac{1}{b-a} & \text { if } a \leq x \leq b \\ 0 & \text { otherwise }\end{cases}
$$

Example

You arrive into a building and are about to take an elevator to the your floor. Once you call the elevator, it will take between 0 and 40 seconds to arrive to you. We will assume that the elevator arrives uniformly between 0 and 40 seconds after you press the button. In this case $a=0$ and $b=40$.

Calculating Probabilities

Remember, from any continuous probability density function we can calculate probabilities by using integration.

$$
\mathrm{P}(c \leq x \leq d)=\int_{c}^{d} f(x) d x=\int_{c}^{d} \frac{1}{b-a} d x=\frac{d-c}{b-a}
$$

In our example, to calculate the probability that elevator takes less than 15 seconds to arrive we set $d=15$ and $c=0$. The correct probability is $\frac{15-0}{40-0}=\frac{15}{40}$.

Expected Value

The expected value of a uniform distribution is:

$$
\mathrm{E}(\mathrm{X})=\int_{a}^{b} x f(x) d x=\int_{a}^{b} \frac{x}{b-a} d x=\frac{b-a}{2}
$$

In our example, the expected value is $\frac{40-0}{2}=20$ seconds.

Variance

The variance of a uniform distribution is:

$$
\begin{aligned}
\operatorname{Var}(\mathrm{X}) & =\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}^{2}(\mathrm{X}) \\
& =\int_{a}^{b} \frac{x^{2}}{b-a} d x-\left(\frac{b-a}{2}\right)^{2}=\frac{(b-a)^{2}}{12}
\end{aligned}
$$

In our example, the variance is $\frac{(40-0)^{2}}{12}=\frac{400}{3}$

Standard Uniform Distribution

The standard uniform distribution is where $a=0$ and $b=1$ and is common in statistics, especially for random number generation. Its expected value is $\frac{1}{2}$ and variance is $\frac{1}{12}$

The uniform distribution (discrete) is one of the simplest probability distributions in statistics. It is a discrete distribution, this means that it takes a finite set of possible, e.g. $1,2,3,4,5$ and 6 .

The probability mass function for a uniform distribution taking one of n possible values from the set $A=\left(x_{1}, . ., x_{n}\right)$ is:

$$
f(x)= \begin{cases}\frac{1}{n} & \text { if } x \in A \\ 0 & \text { otherwise }\end{cases}
$$

Example

DICE??

Calculating Probabilities

Remember, from any discrete probability mass function we can calculate probabilities by using a summation.

$$
\mathrm{P}\left(x_{c} \leq X \leq x_{d}\right)=\sum_{i=c}^{d} f\left(x_{i}\right)=\sum_{i=c}^{d} \frac{1}{n}
$$

In our example, to calculate the probability that the dice lands on 2 or 3 we set $d=3$ and $c=2$. The correct probability is $\frac{1}{6}+\frac{1}{6}=\frac{2}{6}$.

Expected Value

The expected value of a uniform distribution is:

$$
\mathrm{E}(\mathrm{X})=\sum_{i=1}^{n} x_{i} f\left(x_{i}\right)=\sum_{i=1}^{n} \frac{x_{i}}{n}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{x_{1}+x_{n}}{2}
$$

In our example, the expected value is $\frac{1+2+3+4+5+6}{6}=\frac{1+6}{2}=3.5$.

Variance

The variance of a uniform distribution is:

$$
\operatorname{Var}(\mathrm{X})=\frac{(b-a+1)^{2}-1}{12}
$$

In our example, the variance is $\frac{(6-1+1)^{2}-1}{12}=\frac{35}{12}=2.9$

Standard Uniform Distribution

The standard uniform distribution is where $a=0$ and $b=1$ and is common in statistics, especially for random number generation. Its expected value is $\frac{1}{2}$ and variance is $\frac{1}{12}$

