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Overview:  Part 1 

 Impurities in metals 

 Quantum dots 

 Dynamical Mean Field Theory 

 

 Non-interacting limit 

 Green functions 

 

 The problem of interactions 

Andrew Mitchell Quantum impurity problems: Part 1 



Impurities in metals 

 Defects 

 Potential scattering centres 

 Magnetic impurities 
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Impurities as probes 

 Break translational symmetry of host 

 Cause scattering of quasiparticles 

 FT-STS → quasiparticle interference 

 

 

 

 

 



Impurities in metals 

 Quantum impurity problem 

 Hamiltonian: 

 
 

 

 ‘Host’ consists of non-interacting conduction electrons: 

 

 

 

 ‘Impurity’ part: a few local, interacting  

degrees of freedom 
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   (‘diagonal’ or  

‘k-space’ basis) 
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Impurities in metals 

 Kondo model: a spin-½ impurity,       , coupled by 

antiferromagnetic exchange to conduction electron 

spin density of the host at impurity location (0) 
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Impurities in metals 

 Kondo model:  spin-flip scattering 

impurity 
conduction 

band 

J 
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Impurities in metals 

 Anderson model: a single quantum level, with 

onsite Coulomb repulsion, tunnel-coupled to 

conduction electrons of host 

hybimphostAIM HHHH 
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Impurities in metals 

 Anderson model: 

impurity 
conduction 

band 

V 


dimpE  ddimp UE  20impE
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Impurities in metals 

 Anderson model: 

impurity 
conduction 

band 

V 



essentially 

singly-occupied 

local moment for 

0 ddU 
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Semiconductor Quantum Dots 

2 D E G 

( n - d o p e d ) 

O h m i c c o n t a c t 

S u r f a c e e l e c t r o d e s 

-V 

dot! 

GaxAl1-xAs 

GaAs 
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Quantum dots 
Goldhaber-Gordon et al., 

Nature 391, 156 (1998) 
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Coulomb Blockade 

s d 

s
dot 

d
sdeV

E 

Andrew Mitchell Quantum impurity problems: Part 1 



Coulomb Blockade 
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Coulomb Blockade 

s d 



E 
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Coulomb Blockade 

 Coulomb repulsion blocks sequential tunneling 

 

 

 

 

 

 

 

 Active level carries a spin-½ local moment 
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dd U2
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fd  
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Coulomb Blockade 

 But: gate voltage controls dot occupancy… 

s d 

Vg 

gd V
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Coulomb Blockade 

 But: gate voltage controls dot occupancy… 

s d 

Vg 

gd V

 Sequential tunneling 

at points of dot  

valence fluctuation 

 Effective level width 

renormalized by 

interactions 
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Coulomb Blockade 

 Conductance peaks as gate voltage is swept: 

s d 

Vg 

gV

cG
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Coulomb Blockade: experiment 

 Conductance peaks as gate voltage is swept: 

Van der Wiel et al, Science 289, 2105 (2000) 

High-T 
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Kondo Effect 

 Low temperature: quantum many body effects! 

    

Van der Wiel et al, Science 289, 2105 (2000) 
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Anderson Impurity Model 

 Real quantum dot devices: 

 Model as a single active interacting quantum level 

 Tunnel-coupled to source and drain leads 

hybdotleadsAIM HHHH 
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Anderson Impurity Model 

 Equilibrium (zero bias): 

 Combine leads into a single conduction electron channel 
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Anderson Impurity Model 

 Equilibrium (zero bias): 

 Combine leads into a single conduction electron channel 

 

 

 

 

 

 

 Other bath degrees of freedom decouple 
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dot 
conduction 

band 

conduction 

band 



Two-lead device:  single channel 
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Coupled Quantum Dots 

R. Potok et al., Nature 446, 167 (2007) 

A. Vidan et al., App. Phys. Lett. 85, 3602 (2004) 

H. Jeong et al., Science 293, 2221 (2001) 

N. Craig et al., Science 304, 565 (2004) 



Nanotube Quantum Dots 

Nygard et al, Nature  

408, 342 (2000) 

source drain 
gates 

Dot 
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Dynamical Mean Field Theory 

 ‘DMFT’ 

 

 For correlated lattice problems (Hubbard model etc) 

 
 Local self-energy approximation 

(exact in the limit of infinite dimensions) 

 

 Map onto a single-impurity Anderson impurity model 

in a bath that must be determined self-consistently 

A. Georges, G. Kotliar, W. Krauth, M. Rozenberg 

Rev. Mod. Phys.   68,  13  (1996) 
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Dynamical Mean Field Theory 

Kotliar & Vollhardt, Physics Today (2004) 
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Dynamical Mean Field Theory 
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 Hubbard Model in d = ∞    

 R. Bulla, PRL 83, 136 (1999) 

 Mott Metal-Insulator transition 

at T=0 

 

Dynamical Mean Field Theory 
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Quantum impurity problems 

 Why are quantum impurity problems hard to solve? 

 →  strong electron correlations 

 

 

 Before we try to solve the impurity problem… 

 …let’s look again at the ‘easy’ bit:   

                representations of the non-interacting host 

           that we will need later 
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Bulk metal: 

 Host metal: real-space representation 

 

 

 

 

 

 

 

      STM image 
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Bulk metal: 

 Host metal: real-space representation 

 Non-interacting tight-binding model 
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Bulk metal: 

 Host metal: diagonal representation 

 
 

 
 

where, 
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Bulk metal: 

         is the dispersion: 

 For example, 2d square lattice: 

 k

0x a  /k
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Bulk metal: 

         is the dispersion: 

 For example, triangular lattice: 

 k

0x a  /k
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Bulk metal: 

         is the dispersion: 

 For example, honeycomb (graphene) lattice: 

 k

0x a  /k
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Density of states: 

 Total density of states: 

    
k

ktot EE 

E 
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Density of states: 

 Local density of states (LDOS): 

 As measured locally at a given point in real space 

 Obtained experimentally by STM 
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site i in terms of k-space orbitals   kiki
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Density of states: 

 Local density of states (LDOS): 

 Related to local (real-space) Green function… 
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Free host Green functions 

 But what is the local host Green function? 
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Diagonal representation! 
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Free host Green functions 

 But what is the local host Green function? 
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Free host Green functions 

 Dyson representation: 
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hybridization 

with rest of system 

isolated d-level 

Green function: 
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Potential scatterer 

 Potential scattering ‘impurity’ 

 

 

 

 

 Modified LDOS: 
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T matrix 

 T matrix describes scattering between 

diagonal eigenstates of the free system, 

induced by the impurity: 

 

 

 

 

 
 

 

Born approx:   
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Resonant level 

 ‘Resonant level’ impurity:  

(non-interacting U=0 Anderson model) 
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Resonant level 

 Resonant level Green function: 
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Hybridization function 
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Local Density of States (LDOS) of host 

site to which impurity is coupled 
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Hybridization function 
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 Consider wide flat conduction band: 
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Hybridization function 

 Hybridization function by Kramers-Kronig: 

 

 

 

 

 

 

 For wide flat band:   
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Impurity spectral function 

 Flat conduction band: 

 

 

 

 Spectrum: 
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Impurity spectral function 

 Spectrum: 

 

 Lorentzian, centred on  

 

 Effective level width  

 

 Peak height pinned to 

 

 Quadratic approach to maximum value 
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T matrix 

 T matrix for resonant level: 
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Interacting problem: 

 The Anderson impurity model with strong 

interactions U>0 is MUCH more difficult! 

 

  Why?! 
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Interacting problem: 

 In the non-interacting case, the Hamiltonian can be 

brought into diagonal form by performing a 

canonical transformation of operators: 

 

 
 

with 
 

 

 Achieved by simply diagonalizing the hopping matrix 

which is of dimension N x N for an N-particle system  
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Interacting problem: 

 For an interacting problem, containing terms like 

 

 

(not quadratic in electronic operators), 

the Hamiltonian itself cannot be brought to diagonal 

form by transformation of operators. 
 

 Must construct the Hamiltonian matrix with elements 
 

                      in the many-particle basis.  

 

 Fermions:   matrix is of dimension  4N x 4N 

 
 ddddd ccccU †† 

ba H   ˆ 
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Interacting problem: 

 So: we cannot do exact diagonalization 

(except for very small systems, and at high T) 

 

 Perturbation theory in the interaction U does not give 

information about the strongly correlated regime. 

Plagued by divergences!  

 

 Mean field approaches completely fail 

to capture the physics 
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Aside:  many-particle levels 

 Consider a single interacting quantum level: 
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Aside:  many-particle levels 

 NOT possible to reproduce these many-particle 

energies just using single-particle levels: 
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Interacting problem: 

 Large U: Schrieffer-Wolff transformation: 

 Project into singly-occupied (spin) manifold of dot 

 Perturbatively eliminate virtual excitations to empty or 

doubly-occupied dot states to second order in  
hybH

   1̂     1̂    
1 

0 hybimphybeff HHEHH




projector:  1̂ 
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Interacting problem: 

 Large U: Schrieffer-Wolff transformation: 

 Low-energy effective model is the Kondo model 

0imp        sSJHH hosteff
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The Kondo problem 

 But what is the physics of the Kondo model?! 

 

 

First full solution obtained by the  

        Numerical Renormalization Group…   

                     … see part 2! 
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