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Overview:  Part 3 

 Particle in a box revisited 

 The problem of truncation 

 

 Linear discretization 

 Logarithmic discretization 

 The Wilson Chain 

 

 Analytic structure:  RG, flows, fixed points, 

scaling, universality 

Andrew Mitchell Quantum Impurity Problems:   Part 3 



The problem of truncation… 

 
 We wish to join two sub-systems into one large system.  

 
 If we are only interested in the low-energy physics of 

the combined system, can we neglect the high-energy 

states of the two sub-systems? 

 

 Consider simplest possible system: particle in a box! 
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Aside: particle in a box 

  In the continuum: 

 

                     with boundary conditions 

 

 On the lattice:  

   (1d chain) 
 

         Hamiltonian conserves particle number and spin… 

                Consider only the 1-particle, spin-σ subspace 
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Aside: particle in a box 

  Basis states: 

 

 

 

 

 

                                   ie. single-particle states. Easy! 
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Aside: particle in a box 

  Diagonalize LxL hopping matrix: 

 

 Energy of states: 

 

 

 Eigenstates are particle-in-a-box wavefunctions 

                                       

 

                     with coefficients  
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Aside: particle in a box 
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Aside: particle in a box 
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Aside: particle in a box 
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Aside: particle in a box 
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Aside: particle in a box 

  Join two boxes together: 

 

 

 

 

 

 

 

 For            , boundary condition mismatch!  
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Aside: particle in a box 
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Aside: particle in a box 
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1/' tt
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Aside: particle in a box 

 This boundary condition mismatch means that low-
energy states of a composite system cannot just be 
constructed from low-energy states of two sub-systems 

   … in general 

 

 Need to select states with the correct boundary 
conditions (ie, nodes in the right places) 

 Motivation for development of DMRG 

 

 But is there another way? A way that exploits RG? 
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Aside: particle in a box 

  Consider the opposite limit                   

Can now treat           perturbatively! 

 

 

 

 

where                             is the complete set of diagonal  
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Aside: particle in a box 

  When      is the smallest energy scale of the problem, 

can project into the ground state manifold of   
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Aside: particle in a box 

  Ground state of composite (joined) system: 

 

 

 

 

 To first order: ground state of combined system can be 

constructed from ground states of sub-systems 

provided connecting terms are small. 

 

 

 2 

1 )1(' UtEE gs

eff

gs 

 21
2

1
 eff

gs

Andrew Mitchell Quantum Impurity Problems:   Part 3 



Aside: particle in a box 
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Aside: particle in a box 

100L
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The Truncation Problem 

  Back to iterative diagonalization and truncation! 
 

 Philosophy in NRG: 

Ensure coupling to each added site is always small 

 

 In NRG, this is achieved by a logarithmic discretization 

of the conduction band. 

 Mapping to a 1d chain produces hoppings that  

decrease exponentially down the chain.   
    

 Energy scale separation allows truncation at every step. 
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Discretization 

 
 How does the discretization work in practice? 

 

 We saw already that truncating the 1d chain 

representation is a type of discretization 

 

 Another possibility:  discretize the conduction electron 

density of states. 

 Replace the continuous spectrum by discretized poles 
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Linear Discretization 

 Divide band up into N intervals, each of width 2D/N 
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Linear Discretization 

 Discretize the continuous spectrum by replacing with 

sum over delta-peaks: 
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Logarithmic Discretization 

 Logarithmic discretization of conduction band: 

 

 

 Define intervals  
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Logarithmic Discretization 
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Logarithmic Discretization 
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Logarithmic Discretization 
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 disc



Logarithmic Discretization 

 Is this a good approximation to the true continuum? 

 Broaden the spectral poles into (log-) Gaussians to check: 

 

 

 

 

approximately 

recovers 

flat band 
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Wilson’s formulation 

 Anderson Hamiltonian:  

 

 
 

 

 Conduction band assumed to be isotropic: 

   

   

   Impurity then just couples to the s-wave states: 
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Wilson’s formulation 

 Assume                  and                    are 

independent of energy (and write                ):           
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Wilson’s formulation 

 Divide band into logarithmic intervals: 
 

 

 

 

 Set up a Fourier series in each interval: 

 

 

 

   where, 
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Wilson’s formulation 

 Canonical transformation of operators in each interval: 

 

 
 

 

 

 

 Hybridization term of Hamiltonian: 

 

 

 Impurity only couples to p=0 fundamental harmonic! 
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Wilson’s formulation 

 BUT: Conduction electron Hamiltonian: 

 

 

 

 

              modes couple to impurity only indirectly,  

             through the modes with 

 

 Coupling between           and            modes controlled 

in the discretization parameter, and vanish as     
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Wilson’s formulation 

 Keep only p=0 modes! 

 

 

 

 

 

 

 

                 where,  
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Logarithmic Discretization 

 disc
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Logarithmic Discretization 

 Low-energy excitations around Fermi level are 
exponentially-well sampled 

 needed to capture Kondo physics on the scale of TK 

 

 Treats physics on all energy scales on equal footing 

 Logarithmic divergences in perturbative treatment avoided 
by logarithmic discretization 

 

 But does this help?  

 Continuous spectrum:  uncountably infinite number of states 

 Discretized spectrum: countably infinite… but still infinite! 
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Mapping to 1d chain 

 The Wilson Chain is a 1d tight-binding chain,  

with the impurity located at one end: 

 

 
… 

‘zero orbital’ of the Wilson Chain: 

Local Density of States  

seen by the impurity is the 

logarithmically discretized 

host density of states, 

impurity 

↑ 

 disc
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Wilson Chain 

 disc
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Wilson Chain 

  But we don’t want the diagonal representation! 

 We need the tridiagonal chain representation 
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Wilson Chain 

  But we don’t want the diagonal representation! 

 We need the tridiagonal chain representation 
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Wilson Chain 

  Tridiagonalize by “Lanczos” method 

 CONSTRAINT:  zero-orbital of Wilson chain must have correct LDOS 
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kkdisc a  2
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pole weights define the 

transformation for the zero-orbital, 

connected to the impurity 

Lanczos 

starting 

vector: 

0a
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Wilson Chain 

  Tridiagonalize by “Lanczos” method: 

 Starting ingredients: diagonal host Hamiltonian and zero-orbital vector 

 

 

 

 1)  Compute: 

 

 2)  Compute: 

 

 3)  At any step, only non-zero elements are:   
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Wilson Chain 

  Tridiagonalize by “Lanczos” method: 

 

 

 
 

 

 

 Wilson showed that the hoppings drop off exponentially 

down the chain, due to the logarithmic discretization: 

… ↑ 
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NRG 

 Iterative diagonalization of Wilson chain 

 

 Truncation of Hilbert space at each step 

 Throw away high lying states, keeping large but fixed 

number, Ns , states per iteration 

 Justified by the energy-scale separation going from 

iteration to iteration 

 

 High-energy states discarded at one iteration do not 

affect low-energy states at later iterations 
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NRG: iterative procedure 

 Start from the impurity-zero orbital sub-system 

 Apply recursion relation to add on extra sites 

 

 

 

 

 

 Full (discretized) Hamiltonian recovered as 
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 One iteration in NRG: 

NRG: iterative procedure 
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 Flow of (rescaled) many-particle levels: 

NRG: iterative procedure 
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NRG: iterative procedure 

 Physics of the model at lower and lower energy scales is 

revealed as more Wilson chain orbitals are added 

 

 Fixed number of states kept at each iteration, so no 

explosion of Hilbert space:  linear scaling with N 

 

 After a finite number of iterations (say N=100 for  Ʌ=3), 

access ground state information 

 For the Kondo model:   

Strong coupling spin-singlet ground state 

Impurity screened by conduction electrons:  Kondo effect! 
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 Flow of (rescaled) many-particle levels: 

Why?! 

NRG: iterative procedure 

converged 

levels 
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Analytic structure:  the RG in NRG 

 View iterative construction of the Wilson chain… 

  

 

 

 

   … as an RG transformation:  
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The Renormalization Group 

 
 The sequence of Hamiltonians,       , form a group 

 

 Application of the transformation,              ,  generates a 
new member of the group, 

 

 Successive application of the transformation generates a 
characteristic RG flow through this Hamiltonian space 

 Flow starts from the ‘initial’ Hamiltonian (corresponding to the 
bare impurity with its original microscopic parameters) 

 At special points in the flow, physics can be understood in terms 
of the original model, but with renormalized parameters. 

 NHR ˆ

NH

1NH
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Fixed points 

  Fixed points (FPs) of the RG transformation 

correspond to special cases where 

 

 A fixed point Hamiltonian is thus one that is 

invariant to the RG transformation, 

 

 Fixed point Hamiltonians often correspond to the 

original model, but with special renormalized values 

of the parameters (often 0 or infinity, but not always) 

 **  ˆ HRH 

*

1 HHH NN  
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Fixed point stability 

  Analyze behavior near to FPs: 

 

 It follows from the RG transformation that: 

 

 Does          get larger or smaller with N ? 

 Construct possible perturbations to each FP consistent 

with model symmetries 

 

 Can determine eigenvalue     of the transformation        

for operators       analytically! 

 

 

NN HHH  *
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Fixed point stability 

 
 Classify perturbations as ‘relevant’ or ‘irrelevant’: 

 A ‘relevant’ perturbation grows under RG: 

 An ‘irrelevant’ perturbation diminishes under RG:  

 

 Classify fixed points as ‘stable’ or ‘unstable’: 

 A ‘stable’ FP has no relevant perturbations 

 RG flow ‘attracted’ to the FP 

 An ‘unstable’ FP has at least one relevant perturbation 

 RG flow ‘repelled’ by the FP 

1 i

1 i
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RG Flow 

  RG flow between fixed points 

 Repelled by unstable FPs;  attracted by stable FPs 

 Seen in many-particle energies and physical quantities 

 Schematically represented by RG flow diagram 

 

Kondo model:  

 

Unstable FP: 

‘Local Moment’ Stable FP: 

‘Strong Coupling’  
Effective 

renormalized coupling 

J
~

Andrew Mitchell Quantum Impurity Problems:   Part 3 



RG Flow 

  Number, character and stability of FPs determined 

by the specific RG transformation and symmetries 

 RG flow (trajectory) determined by starting 

parameters of bare model 
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Universality 

 
 One stable FP: 

 Single ground state! 

 For any starting parameters, always end up at the same FP 
(although path to reach the stable FP might be different) 

 

 Universality 

 Irrespective of the details of a model, or its bare parameters, 
two systems with the same stable fixed point have the same 
ground state and low-energy physics 

 RG flow between two fixed points is universal, and 
characterized only by a single crossover energy scale  
(for example, TK for the Kondo model)  

 Physical quantities for different systems are described by a single 
universal curve, when rescaled in terms of  T/TK  or  ω/TK 
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Critical phenomena 

  One stable FP: 

 Single ground state! 
 

 

 

 Two stable FPs: 

 Two possible ground states 

 Starting parameters 

determine RG trajectory and 

ultimately which stable FP is 

reached 

 Quantum phase transition! 
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Fixed point properties 

  How to determine fixed points? 

 What are their properties? 

 Are they stable? 

 

 Free Wilson Chain is invariant under the RG 

transformation… 

 hosthost HRH 2ˆ
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Fixed point properties 

 
 Free Wilson Chain (no impurity): 

 

 

 

 Represented by tridiagonal matrix 
 

 

                  Diagonalize matrix to 

                  obtain single-particle  

          levels: 





,

† 
k

kkk

WC

N bbH

  








 




N

n

N

n

nnnnnn

NWC

N ffhffeH
0

1

0

)1(

†

 

†

 

2/)1( H.c.     



















 



21

110

00

2/)1(

eh

heh

he

N

N 

Andrew Mitchell Quantum Impurity Problems:   Part 3 



  Fill up single-particle levels up to the Fermi level 

(in accordance with Pauli principle) 

 Construct many- 

particle excitations 

above ground state 

 Rapid convergence 

with Wilson Chain  

length: adding more 

sites does not change 

levels! 

 Free Wilson chain is a FP of the RG transformation! 

 

Fixed point properties 
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 Anderson Impurity Model:  reminder 

 Bare Hamiltonian: 
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Fixed point properties 
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 Anderson Impurity Model:  reminder 

 Bare Hamiltonian: 

 

 

 

 FPs Hamiltonians are of the same form, but with 

renormalized parameters: 

 Free Orbital (FO) FP     (high T) 

 

 

 Free Wilson chain with a single decoupled impurity SITE 

0   ; 0   ; 0          with ****  FOFOFOFO UVHH 

Fixed point properties 
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 Anderson Impurity Model:  reminder 

 Bare Hamiltonian: 

 

 

 

 FPs Hamiltonians are of the same form, but with 

renormalized parameters: 

 Local Moment (LM) FP     (T ~ U  : recall Schrieffer-Wolff) 

 

 

 Free Wilson chain with a single decoupled impurity SPIN 

2/   ;    ; 0          with *****

LMLMLMLMLM UUVHH  

Fixed point properties 

        

 




, ,

,

† H.c.ˆˆˆˆˆ 
k k

kkkimpimpimpimp cdVnnnUnnH

Andrew Mitchell Quantum Impurity Problems:   Part 3 



 
 Anderson Impurity Model:  reminder 

 Bare Hamiltonian: 

 

 

 

 FPs Hamiltonians are of the same form, but with 

renormalized parameters: 

 Strong Coupling (SC) FP    (low temperature… T << TK ) 

 

 

 Free Wilson chain with ‘zero-orbital’ removed 

  2/   ; /           with ***2**

SCSCSCSCSC UUVHH  

Fixed point properties 
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FO fixed point analysis 

 
 Anderson Impurity Model 

 Near the FO FP: 
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 Anderson Impurity Model 

 Near the LM FP: 
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LM fixed point analysis 
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 Anderson Impurity Model 

 Near the SC FP: 
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irrelevant 

• SC FP is ‘stable’ 

• As N increases, get closer to SC FP  

• MUST reach SC FP at low enough temperatures 

• T=0 ground state is described by SC FP: Kondo singlet 

SC fixed point analysis 
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The Renormalization Group 

 
 Anderson Impurity Model 

 Schematic RG flow diagram: 

U
~

V
~

Kondo model 
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The Renormalization Group 

 
 Anderson Impurity Model 

 RG flow of many-particle energies: 

FO 

LM 
SC 
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The Renormalization Group 

 

 RG flow also seen in physical quantities… 

 

  … more in final part!  
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