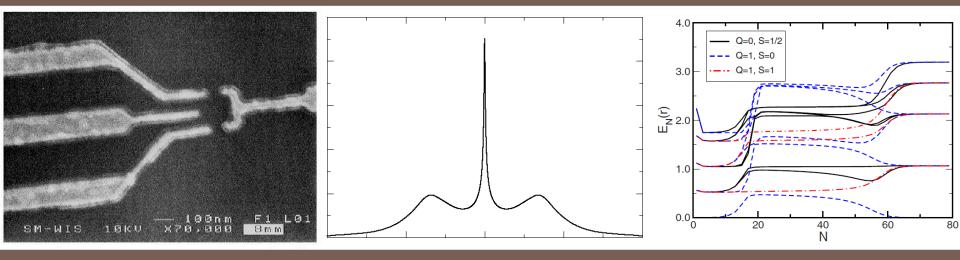
NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS



http://www.staff.science.uu.nl/~mitch003/nrg.html

March 2015

Andrew Mitchell, Utrecht University

Quantum impurity problems

Part 1: Quantum impurity problems and theoretical background

Part 2: Kondo effect and RG. 1d chain formulation and iterative diagonalization

Part 3: Logarithmic discretization and truncation. The RG in NRG

Part 4: Physical quantities. Results and discussion.

Andrew Mitchell

Quantum impurity problems

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

Part 4: Results and Applications

March 2015

Andrew Mitchell, Utrecht University

Overview: Part 4

- RG flow in physical quantities
- Calculation of thermodynamics
 Evolution of the Kondo temperature
 Scaling and universality
- Calculation of dynamics, t matrix

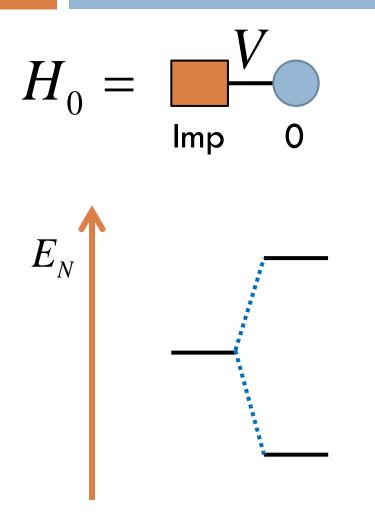
Quantum Impurity Problems: Part 4

Conclusion

Andrew Mitchell

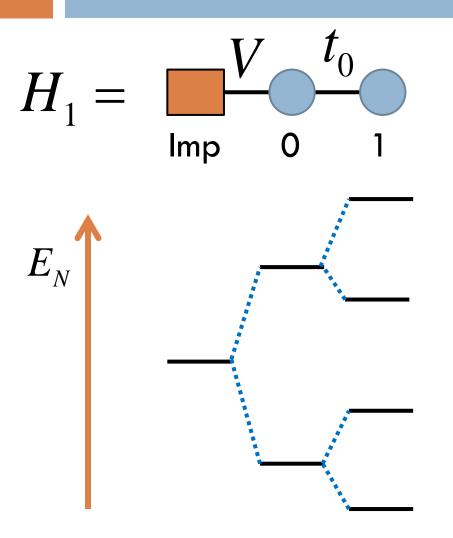
NRG: recap

- Logarithmic discretization of conduction band
- Mapping to 1d Wilson chain
- Iterative diagonalization
- Successive Hilbert space truncation
- Keep a large but finite number of states at each iteration (discard the high-energy states):
 - Access ground state information (in a finite number of steps)
- BUT: what about physical quantities?!



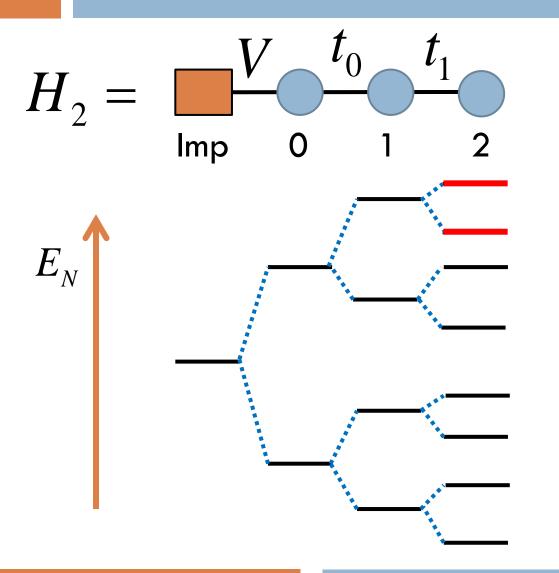
Quantum Impurity Problems: Part 4

Andrew Mitchell

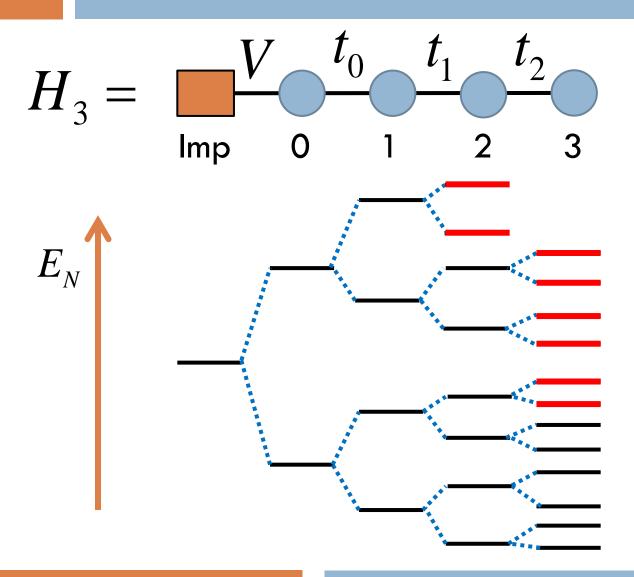


Quantum Impurity Problems: Part 4

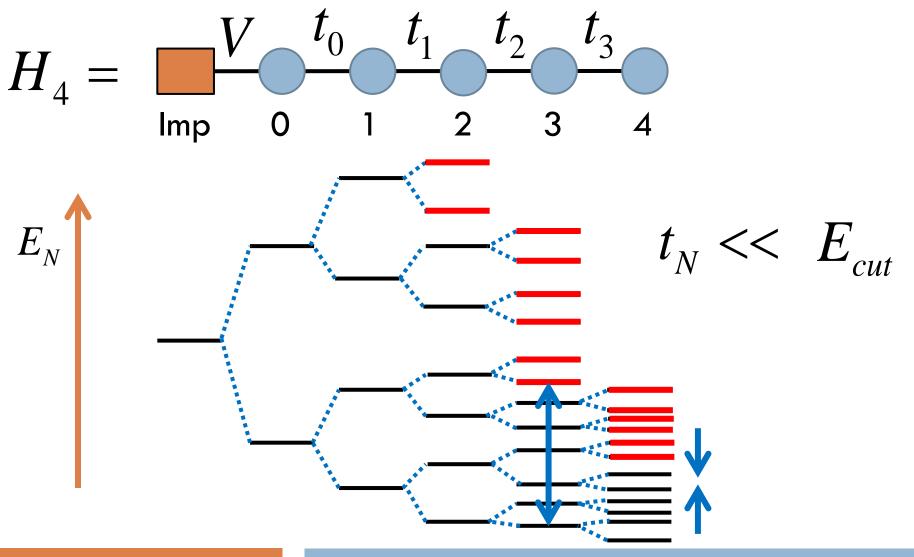
Andrew Mitchell



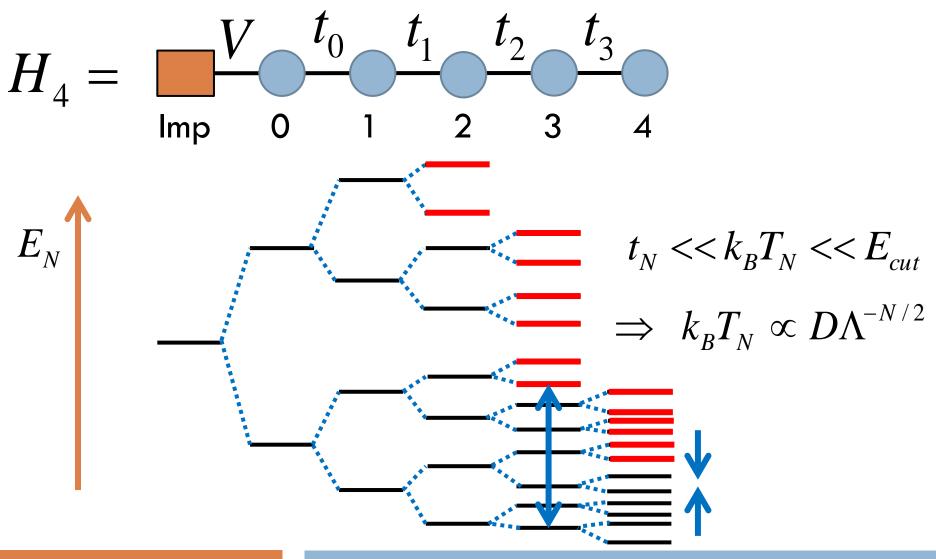
Andrew Mitchell



Andrew Mitchell



Andrew Mitchell



Andrew Mitchell

Effective temperature

- □ We recover the full (discretized) Hamiltonian only in the limit $H = \lim_{N \to \infty} \Lambda^{-(N-1)/2} H_N$
- BUT: the sequence of approximate Hamiltonians H_N for finite N=0, 1, 2, 3, ... accurately describe the full system at an effective temperature $k_B T_N \propto D \Lambda^{-N/2}$
- Useful information can be extracted at each iteration!
- Thermodynamics can be calculated from the finite set of NRG energy levels at a given iteration for this temperature

Thermodynamics

- **Entropy:** $S_N / k_B = \beta \langle H_N \rangle + \ln (Z_N)$
- $\square \text{ Magnetic susceptibility: } \chi_N / \left(g^2 \mu_B^2 k_B^{-1}\right) = \beta \left[\left\langle \left(S_N^z\right)^2 \right\rangle \left\langle S_N^z \right\rangle^2 \right]$ $\square \text{ Specific heat: } C_N / k_B = \beta^2 \left[\left\langle \left(H_N\right)^2 \right\rangle \left\langle H_N \right\rangle^2 \right]$

• Evaluated at effective temperature $k_B T_N \propto D\Lambda^{-N/2}$ from finite set of NRG levels at iteration N via, $\langle \hat{\Omega}_N \rangle = \frac{1}{Z_N} \sum_r \langle r | \hat{\Omega}_N | r \rangle_N \times \exp \left[-\beta E_N(r) \right]$

 $\Box \text{ Impurity contributions defined as: } \left\langle \hat{\Omega} \right\rangle_{imp} = \left\langle \hat{\Omega} \right\rangle_{full} - \left\langle \hat{\Omega} \right\rangle_{host}$

Andrew Mitchell

Fixed point thermodynamics

For the Anderson impurity model:
 FO fixed point: decoupled free impurity site

Expect entropy: $S_{imp} = \ln(4)$ magnetic susceptibility: $T\chi_{imp} = \frac{1}{8}$

■ LM fixed point: decoupled free impurity spin-1/2 Expect entropy: $S_{imp} = \ln(2)$ magnetic susceptibility: $T\chi_{imp} = \frac{1}{4}$

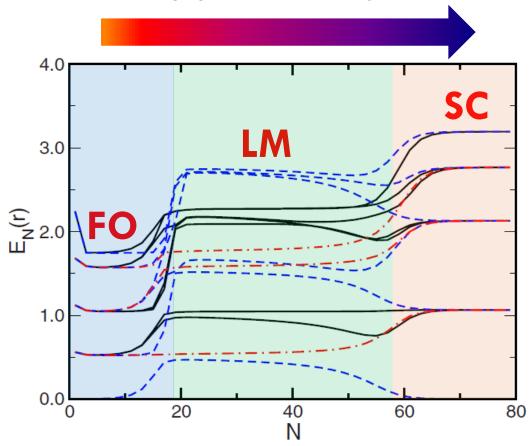
SC fixed point: Kondo singlet ground state

Expect entropy: $S_{imp} = 0$ magnetic susceptibility: $T\chi_{imp} = 0$

RG flow in energy levels

Each new iteration corresponds to a lower temperature

RG flow seen in many-particle energies...



AIM:

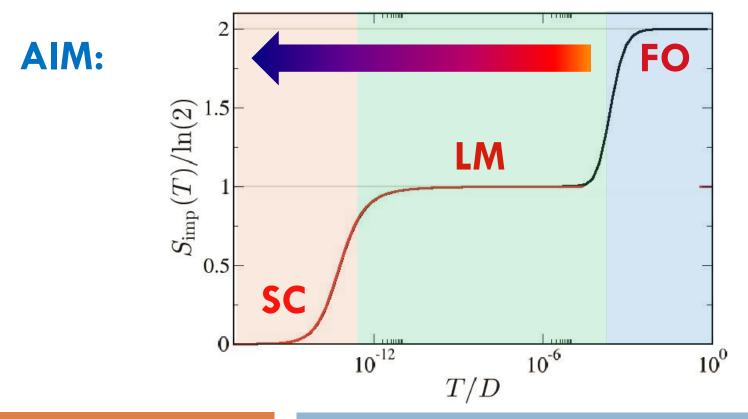
Andrew Mitchell

RG flow in thermodynamics

Each new iteration corresponds to a lower temperature

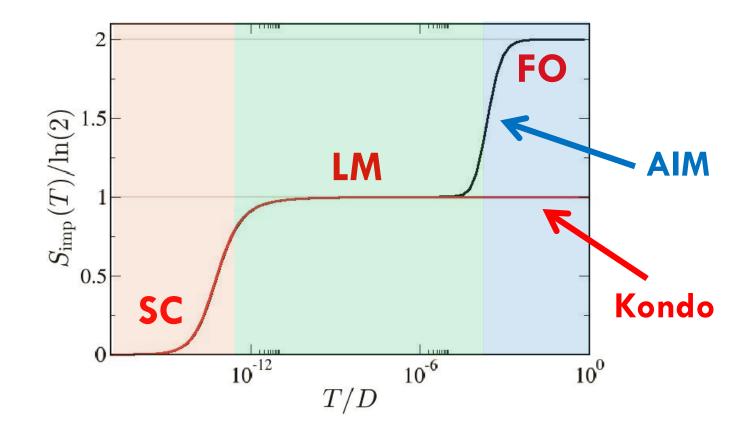
RG flow seen in many-particle energies...

... also appears in thermodynamics!



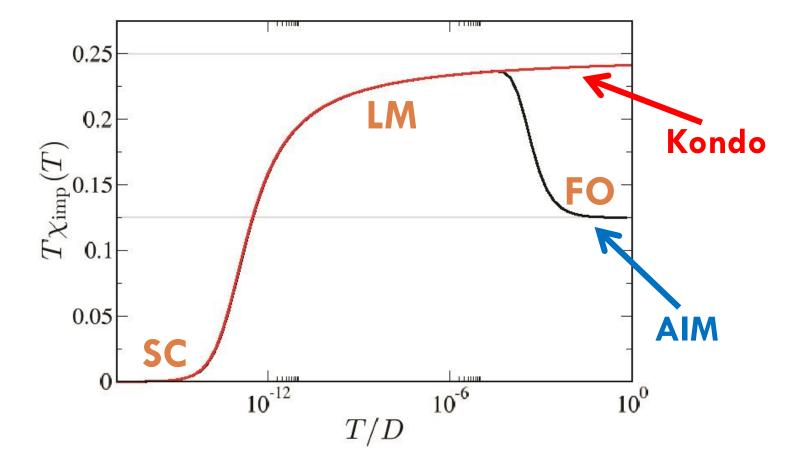
Andrew Mitchell

Anderson \rightarrow Kondo



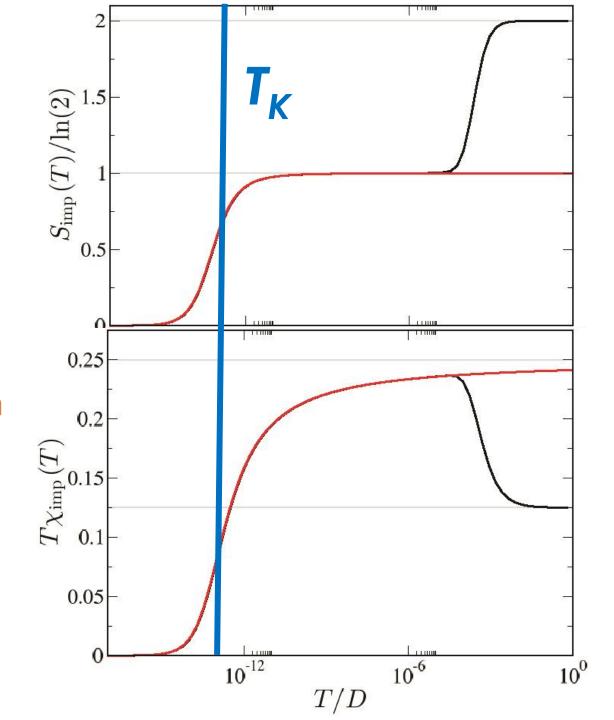
Andrew Mitchell

Magnetic susceptibility



Andrew Mitchell

Kondo temperature: characterizes crossover from LM to SC



Kondo temperature

Perturbative scaling

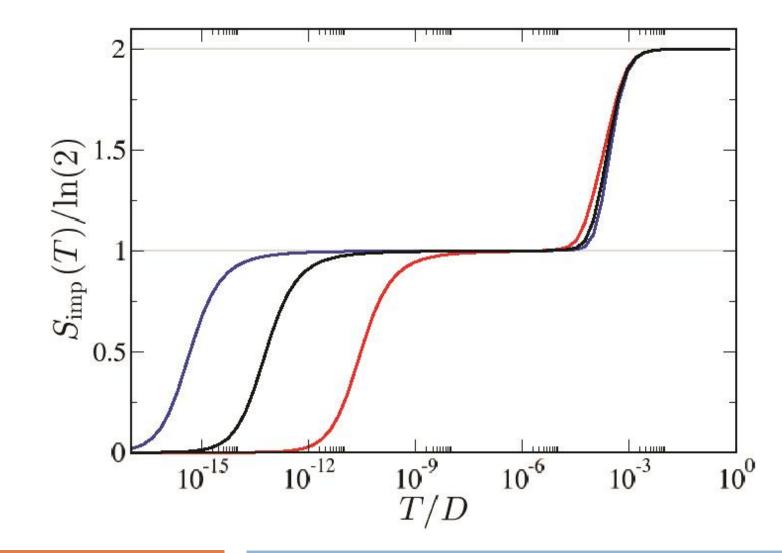
(2nd order, p-h symmetric, wide flat band)

Kondo Model:
$$T_K \sim D \exp\left[-1/\left(\rho J\right)\right]$$

Anderson Model (via SWT): $T_{K} \sim D \exp\left[-8\Gamma/(\pi U)\right]$

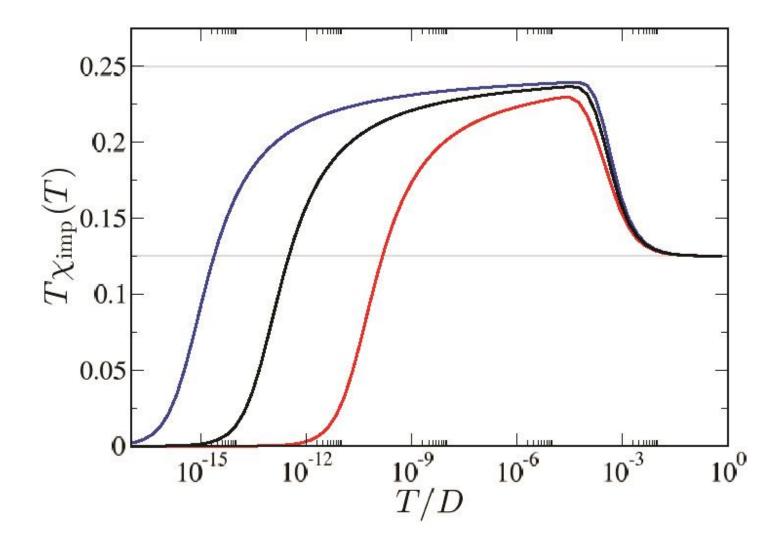
Confirmed asymptotically by NRG (for small J or large U).

Scaling and universality



Andrew Mitchell

Scaling and universality

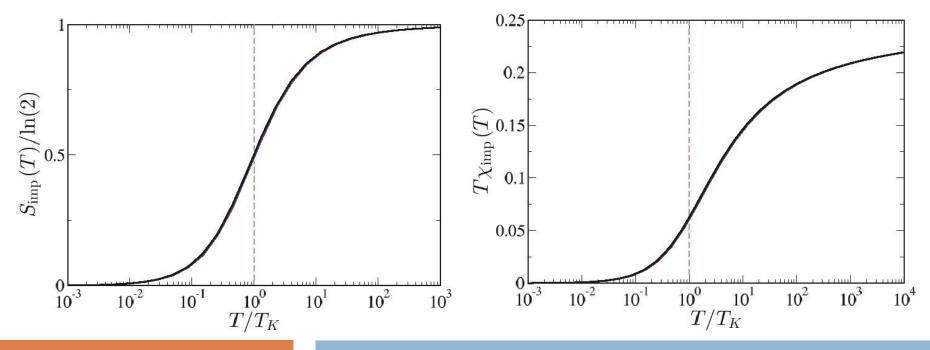


Andrew Mitchell

Scaling and universality

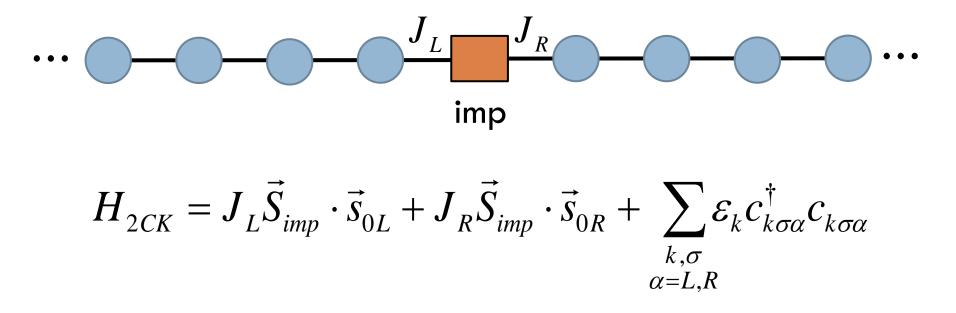
- RG flow between LM and SC fixed points is UNIVERSAL!
- Details of model are unimportant (AIM or Kondo)
 - **Except for determining crossover Kondo scale**, T_K

Scaling collapse of data in terms of T/T_{κ}



Andrew Mitchell

Example: two-channel Kondo model



Andrew Mitchell

Example: two-channel Kondo model

$$H_{2CK} = J_L \vec{S}_{imp} \cdot \vec{s}_{0L} + J_R \vec{S}_{imp} \cdot \vec{s}_{0R} + \sum_{\substack{k,\sigma \\ \alpha = L,R}} \varepsilon_k c_{k\sigma\alpha}^{\dagger} c_{k\sigma\alpha}$$

$J_L > J_R$: Kondo effect with left channel

Andrew Mitchell

Example: two-channel Kondo model

$$H_{2CK} = J_L \vec{S}_{imp} \cdot \vec{s}_{0L} + J_R \vec{S}_{imp} \cdot \vec{s}_{0R} + \sum_{\substack{k,\sigma \\ \alpha = L,R}} \varepsilon_k c_{k\sigma\alpha}^{\dagger} c_{k\sigma\alpha}$$

$J_L < J_R$: Kondo effect with right channel

Andrew Mitchell

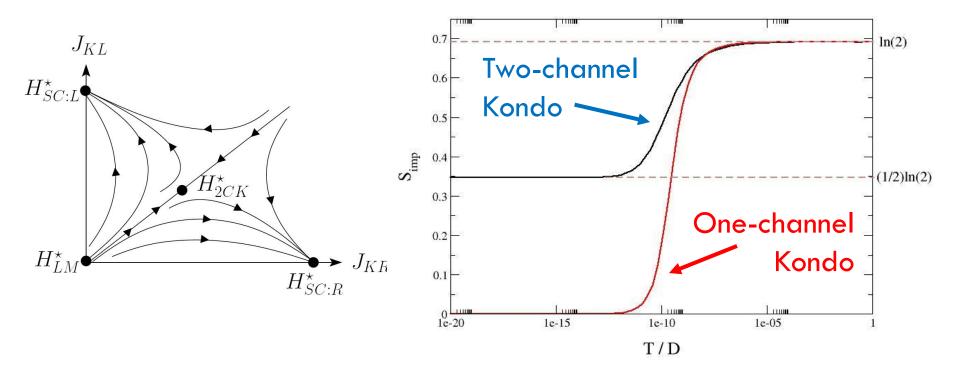
Example: two-channel Kondo model

$$H_{2CK} = J_L \vec{S}_{imp} \cdot \vec{s}_{0L} + J_R \vec{S}_{imp} \cdot \vec{s}_{0R} + \sum_{\substack{k,\sigma \\ \alpha = L,R}} \varepsilon_k c_{k\sigma\alpha}^{\dagger} c_{k\sigma\alpha}$$

Strong Coupling FP is destabilized when J_L=J_R
 Different RG flow here!

Andrew Mitchell

Example: two-channel Kondo model



Quantum critical physics captured by NRG

Andrew Mitchell

Dynamical quantities much harder to calculate

Discretized model produces discretized dynamics:
 spectral functions consist of discrete poles

Calculate spectral functions using the Lehmann respresentation...

- In NRG, we have access to many-particle states of the approximate Hamiltonians H_N. We want a generalized method for constructing spectral functions...
 - No single-particle levels for interacting systems!

Reminder:
$$C^{>}(t) = \left\langle \hat{A}(t) \, \hat{B} \right\rangle$$
; $C^{<}(t) = \left\langle \hat{B} \, \hat{A}(t) \right\rangle$
FT $\Rightarrow C^{\alpha}(z) = \int_{-\infty}^{\infty} dt \ e^{i z t} \ C^{\alpha}(t)$

Spectrum:
$$A(\omega) = -\frac{1}{2\pi} \operatorname{Im} \left[C^{>}(\omega + i0^{+}) + C^{<}(\omega + i0^{+}) \right]$$

Andrew Mitchell

Impurity Green functions:

$$C^{>}(t) = \frac{1}{Z} \sum_{i} \langle i \mid e^{-\beta H} e^{iHt} d_{\sigma} e^{-iHt} d_{\sigma}^{\dagger} \mid i \rangle$$
$$\sum_{j} |j\rangle\langle j| \sum_{k} |k\rangle\langle k|$$

resolution of identity

Andrew Mitchell

$$C^{>}(t) = \frac{1}{Z} \sum_{i} \left\langle i \left| e^{-\beta H} e^{iHt} d_{\sigma} e^{-iHt} d_{\sigma}^{\dagger} \right| i \right\rangle$$

$$= \frac{1}{Z} \sum_{i, j, k} \langle i | e^{-\beta H} e^{iHt} | k \rangle \times \langle k | d_{\sigma} e^{-iHt} | j \rangle \times \langle j | d_{\sigma}^{\dagger} | i \rangle$$

$$= \frac{1}{Z} \sum_{i, j} e^{-\beta E_{i}} e^{itE_{i}} e^{-itE_{j}} \langle i | d_{\sigma} | j \rangle \times \langle j | d_{\sigma}^{\dagger} | i \rangle$$

$$= \frac{1}{Z} \sum_{i, j} e^{-\beta E_{i}} e^{it(E_{i} - E_{j})} |\langle i | d_{\sigma} | j \rangle|^{2}$$

Andrew Mitchell

$$C^{>}(\omega) = \frac{1}{Z} \sum_{i,j} \int_{-\infty}^{\infty} dt \, e^{i\,\omega t} \, e^{-\beta E_{i}} \, e^{i\,t\left(E_{i}-E_{j}\right)} \left|\left\langle i \right| d_{\sigma} \left| j \right\rangle\right|^{2}$$
$$= \frac{1}{Z} \sum_{i,j} e^{-\beta E_{i}} \left|\left\langle i \right| d_{\sigma} \left| j \right\rangle\right|^{2} \times 2\pi \,\delta\left(\omega + E_{i} - E_{j}\right)$$

Similarly,

$$C^{<}(\omega) = \frac{1}{Z} \sum_{i,j} e^{-\beta E_{j}} \left| \left\langle i \right| d_{\sigma} \left| j \right\rangle \right|^{2} \times 2\pi \,\delta \left(\omega + E_{i} - E_{j} \right)$$

Andrew Mitchell

Impurity spectral function is given by:

$$A(\omega) = \frac{1}{Z} \sum_{i,j} \left(e^{-\beta E_i} + e^{-\beta E_j} \right) \left| \left\langle i \left| d_{\sigma} \right| j \right\rangle \right|^2 \times \delta\left(\omega + E_i - E_j \right)$$

in terms of **matrix elements of impurity operators**, between diagonalized **many-particle eigenstates**

For the generalized quantity
$$C_{AB}^{>}(t) = \left\langle \hat{A}(t) \ \hat{B}(0) \right\rangle$$

 $C_{AB}^{>}(\omega) = \sum_{i,j} \left\langle j \ \left| \hat{B} \right| i \right\rangle \frac{e^{-\beta E_a}}{Z} \left\langle i \ \left| \hat{A} \right| j \right\rangle \times \delta\left(\omega - E_j + E_i\right)$

Andrew Mitchell

□ Simple heuristic approximation at T=0

- Calculate excitations from the ground state at each iteration: need matrix elements $\langle a | \hat{B} | gs \rangle_N$
- \blacksquare Energy differences at each iteration ~ $\Lambda^{^{-N/2}}$
- Contributions to entire spectrum at a given energy ~ $\Lambda^{-N/2}$ come from iteration *N*. Combine poles for different *N*.

Problems:

- High energies poorly resolved
- Overcounting
- Nature of true ground state not known at early iterations

Complete Fock space

- Discarded states at each iteration form an approximate but complete basis
- Calculate full density matrix in this basis, $\hat{\rho} =$
- Access to accurate dynamics

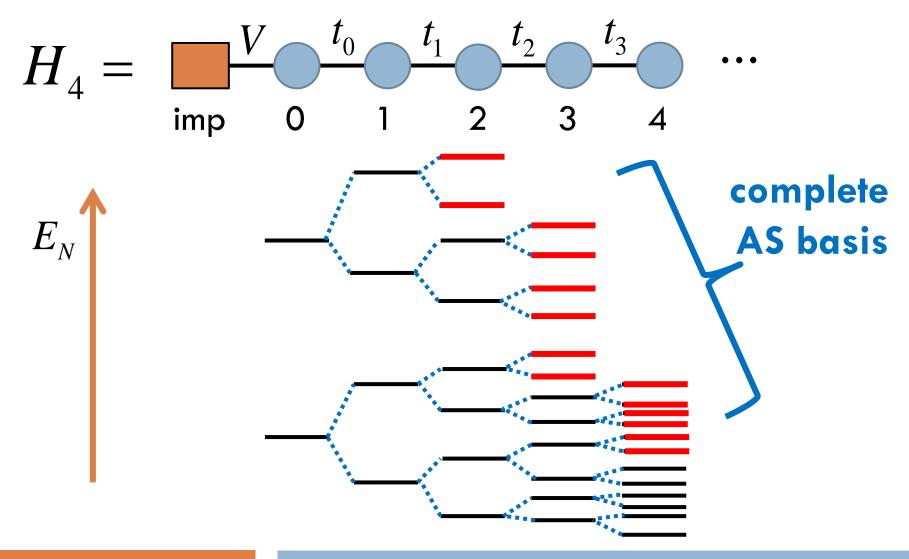
• Calculated via
$$\langle ... \rangle = \mathrm{Tr} \left[\hat{\rho} ... \right]$$

F. B. Anders, A. Schiller, PRL <u>95</u> 196801 (2005)
A. Weichselbaum, J. von Delft, PRL <u>99</u> 076402 (2007)
R. Peters, T. Pruschke, F. B. Anders, PRB <u>74</u> 245114 (2006)

Andrew Mitchell

Quantum Impurity Problems: Part 4

 $e^{-\beta \hat{H}}$



Quantum Impurity Problems: Part 4

Andrew Mitchell

Complication:

Matrix elements of type $\langle a | \hat{B} | b \rangle_N$ are known in NRG basis (calculated recursively, iteration by iteration)

Need unitary rotation of full density matrix in AS basis into NRG basis

Calculate reduced density matrix at each iteration

From which can also calculate entanglement entropy!

Complication:

Discretized model produces discretized dynamics: spectral functions consist of **discrete poles**

Broaden delta-peaks to recover continuous spectrum

- Energies distributed on a logarithmic grid
- Broaden using logarithmic Gaussians
- Low-energy behavior around Fermi level well-sampled

Andrew Mitchell

Replace each delta-peak with a log-Gaussian of the same total weight

At each frequency that the spectrum is to be evaluated, sum up the contribution from each broadened pole

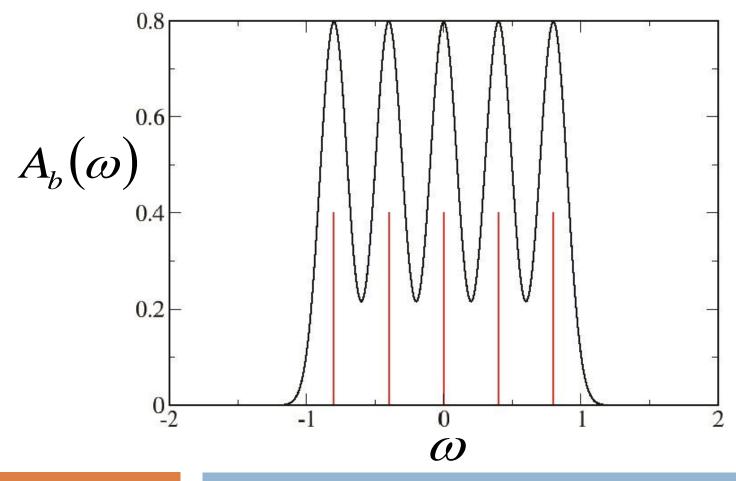
$$A(\omega) = \sum_{n} a_{n} \,\delta(\omega - \omega_{n}) \rightarrow \sum_{n} a_{n} \,P_{b}(\omega - \omega_{n})$$

$$= \int_{-\infty}^{\infty} d\omega' \sum_{n} a_{n} \delta(\omega' - \omega_{n}) P_{b}(\omega - \omega')$$

$$= \int_{-\infty}^{\infty} d\omega' A(\omega') P_{b}(\omega - \omega')$$
can exploit
convolution
convolution

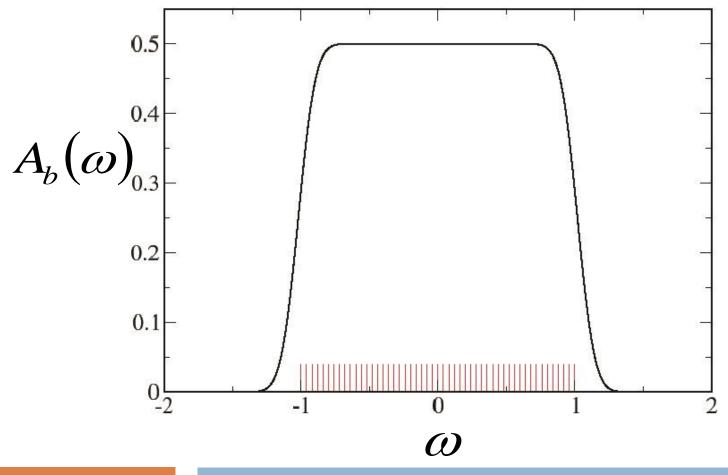
Andrew Mitchell

Example:



Andrew Mitchell

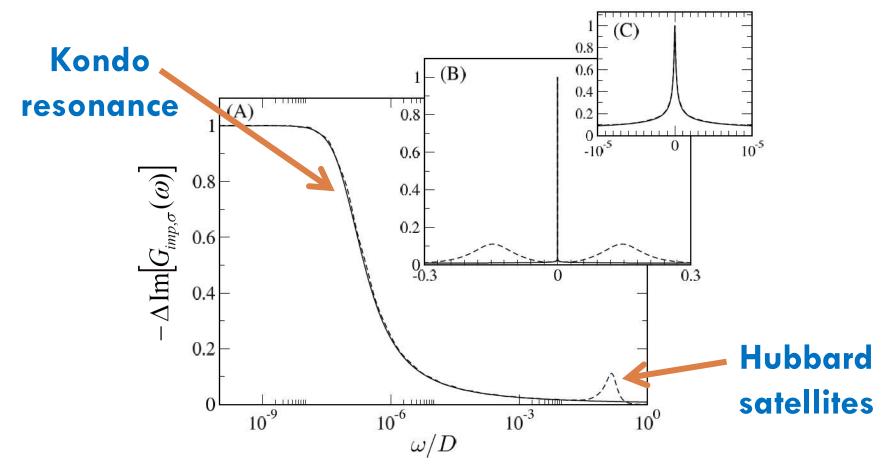
Example:



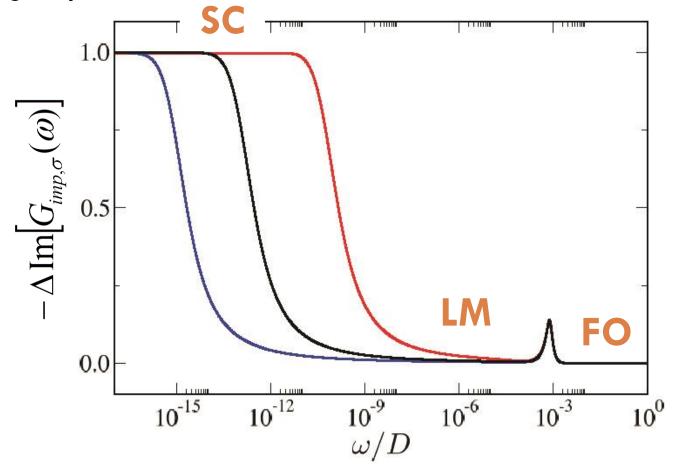
Andrew Mitchell

Andrew Mitchell

Single-particle spectrum of the Anderson model:

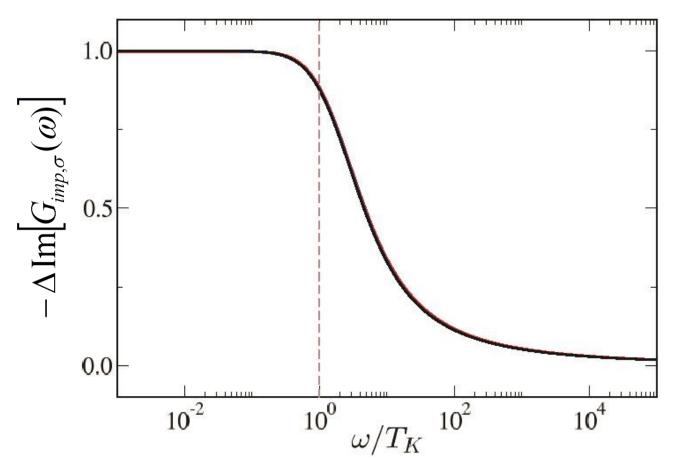


□ Single-particle spectrum of the Anderson model:



Andrew Mitchell

Universal scaling spectrum of the Anderson model:



Quantum Impurity Problems: Part 4

Andrew Mitchell

Conclusion: NRG for QIP

Quantum impurity problems appear in various guises:

- Magnetic impurities in metals
- Nanostructures
- Effective models in DMFT

NRG is a numerically-exact method

- It exploits the fundamental RG character of QIPs
- High-energy states are successively discarded, and the physics is examined at progressively lower temperatures
- Exact thermodynamics and dynamics can be calculated
- Versatile: can be applied to generalized problems