Numerical methods for quantum impurity models DRSTP (9-20 March 2015. Doorn, Netherlands) Lecturer: Andrew Mitchell

Exercise 1: Schrieffer-Wolff transformation

The Anderson impurity model (AIM) describes a single interacting quantum level, locally tunnel-coupled to noninteracting conduction electrons of a continuum bath. Its Hamiltonian, in second-quantized notation, is given by $H_{\text{AIM}} = H_{\text{bath}} + H_{\text{imp}} + H_{\text{hyb}}$, where,

$$H_{\text{bath}} = \sum_{\sigma,k} \epsilon_k c^{\dagger}_{\sigma k} c_{\sigma k} , \qquad (1a)$$

$$H_{\rm imp} = \epsilon_d \left(d^{\dagger}_{\uparrow} d_{\uparrow} + d^{\dagger}_{\downarrow} d_{\downarrow} \right) + U \left(d^{\dagger}_{\uparrow} d_{\uparrow} d^{\dagger}_{\downarrow} d_{\downarrow} \right) , \qquad (1b)$$

$$H_{\rm hyb} = \sum_{\sigma,k} \left(V_k d_{\sigma}^{\dagger} c_{\sigma k} + \text{H.c.} \right) , \qquad (1c)$$

where $c_{\sigma k}^{\dagger}$ creates a conduction electron with spin $\sigma = \uparrow$ or \downarrow and momentum k; while d_{σ}^{\dagger} creates a spin- σ electron on the *impurity* site.

The Kondo model (KM) describes a single spin- $\frac{1}{2}$ impurity, exchange coupled locally to conduction electrons. Its Hamiltonian is given by,

$$H_{\rm KM} = H_{\rm bath} + \sum_{k,k'} \left[J_{kk'} \mathbf{S} \cdot \mathbf{s}_{kk'} + K_{kk'} \sum_{\sigma} c^{\dagger}_{\sigma k} c_{\sigma k'} \right] \,, \tag{2}$$

where **S** is a spin- $\frac{1}{2}$ operator for the impurity and $\mathbf{s}_{kk'} = \sum_{\sigma,\sigma'} c^{\dagger}_{\sigma k} \vec{\sigma}_{\sigma \sigma'} c_{\sigma k'}$ is the conduction electron spin density (here $\vec{\sigma}$ is a vector of Pauli matrices).

The Kondo model can be derived perturbatively from the Anderson model in a regime where the impurity is singly-occupied, and therefore hosts a spin- $\frac{1}{2}$ local moment corresponding to an electron with either up or down spin. When $V_k = 0$ (the 'atomic limit' of an isolated impurity), the impurity is single-occupied for $-U < \epsilon_d < 0$. When $\sum_k |V_k|^2/U \ll 1$, we may project onto the singly-occupied manifold of AIM impurity states, eliminating perturbatively virtual excitations to empty or doubly-occupied impurity states to second-order in H_{hyb} . This is the Schrieffer-Wolff transformation.

The Brillouin-Wigner perturbation expansion,

$$H_{\text{eff}} = \hat{1}_{so}H_0\hat{1}_{so} + \hat{1}_{so}H_1\hat{1}_{so} + \hat{1}_{so}\left[H_1\left(E_0 - H_0\right)^{-1}\hat{P}_{ex}H_1\right]\hat{1}_{so} + \dots$$
(3)

can be used to find the low-energy effective Kondo Hamiltonian by setting $H_0 = H_{\text{bath}} + H_{\text{imp}}$ and $H_1 = H_{\text{hyb}}$. Here, $\hat{1}_{so}$ is a projector onto the singly-occupied impurity manifold, while $\hat{P}_{ex} = \hat{1}_{tot} - \hat{1}_{so}$ projects onto the excited impurity manifold (empty or doubly-occupied). E_0 is the energy of states of H_0 , i.e., $H_0 |\Psi_0\rangle = E_0 |\Psi_0\rangle$. Ultimately we can assume that $U + \epsilon_d$ and $-\epsilon_d$ are $\gg |\epsilon_k - \epsilon_{k'}|$ at low temperatures/energies.

Find expressions for $J_{kk'}$ and $K_{kk'}$ appearing in Eq. 2, in terms of ϵ_d , U, and V_k appearing in Eq. 1.

From Eq. 1c, it can be seen that the impurity couples to a single localized bath orbital, $f_{\sigma} \propto \sum_{k} V_k c_{\sigma k}$. Express the Kondo model, Eq. 2, in terms of this localized orbital.