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ABSTRACT In this study, a formal definition, robustness analysis and discussion on the control of a
position-based semiconductor charge qubit are presented. Such a qubit can be realized in a chain of coupled
quantum dots, forming a register of charge-coupled transistor-like devices, and is intended for CMOS
implementation in scalable quantum computers. We discuss the construction and operation of this qubit,
its Bloch sphere, and relation with maximally localized Wannier functions which define its position-based
nature.We then demonstrate how to build a tight-bindingmodel of single andmultiple interacting qubits from
first principles of the Schrödinger formalism. We provide all required formulae to calculate the maximally
localized functions and the entries of the Hamiltonian matrix in the presence of interaction between qubits.
We use three illustrative examples to demonstrate the electrostatic interaction of electrons and discuss how
to build a model for many-electron (qubit) system. To conclude this study, we show that charge qubits can
be entangled through electrostatic interaction.

INDEX TERMS CMOS technology, charge qubit, position-based qubit, electrostatically controlled qubit,
single-electron devices, tight-binding formalism, Schrödinger formalism, entanglement, entanglement
entropy, Bloch sphere.

I. INTRODUCTION
Quantum computing is a still-emerging paradigm that utilizes
the fundamental principles of quantum mechanics such as
superposition and entanglement. The range of complex prob-
lems from mathematics, chemistry and material science that
could be solved with quantum computing is immense [1]–[3].
A quantum bit (qubit) is the basic unit of quantum informa-
tion, typically comprising a nanoscale quantum mechanical
two-state system. The qubits are extremely fragile and dif-
ficult to manipulate and read out, since all the operations
until the final read-out must be done non-destructively to
preserve the crucial property of quantum coherence. They
typically require extremely low, cryogenic temperatures to
operate in order to preserve their coherent superposition state.
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Furthermore, quantum computation requires a fault-tolerant
manipulation of many coupled qubits, making the search
for robust qubits suitable for mass production a necessity.
In this regard, an appealing paradigm for scalable quantum
computation would exploit existing advanced semiconductor
technologies.

The quantum computer differs from the classical digital
computer in the sense that instead of using a binary digit (bit)
to represent Boolean logic states of ‘0’ or ‘1’, it uses a
qubit which can be in a superposition of quantum counter-
part states of |0〉 and |1〉. Among a number of proposed
technologies for realizing quantum computation, one can
highlight the following ones. Possibly the most promising
approach from the point of view of decoherence time is
based on trapped ions [4]. It has been recently demonstrated
that trapped ions and photons can achieve a large number
of entangled qubits [5]. Unfortunately, they are difficult to
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manipulate and are perceived as rather unsuited for a very
large-scale integration (although the research into trapped
ions is actively ongoing). Solid-state methods, on the other
hand, rely on the usage of collective physical phenomena
of macroscopic quantum states as, for instance, observed
in superconductors or in superfluids [6]. Integrated, on-chip
solutions based on superconductors (employing Josephson
junctions) are currently the dominant technology with the
number of qubits ranging from 19 to 72 and operating at
extremely low temperatures of 15 mK. There are many other
promising theoretical proposals based on topological quan-
tum computation by braiding Majorana fermions or other
non-Abelian quasiparticles in condensed matter systems [7].
However, none of these proposals have been experimentally
realized to date. Some further discussion on the state-of-the-
art of qubits can be found in [8].

Over recent years, there has been ongoing research on
semiconductor qubits [8]–[16] due to their promising com-
patibility with batch fabrication and enormous progress
in CMOS fabrication technologies. Inspired by previous
and very recent works on charge-based semiconductor
qubits [8], [10], [11], [16]–[18] and spin-based semicon-
ductor qubits [19]–[21], here we discuss the feasibility of
realizing a semiconductor charge qubit in the CMOS tech-
nology. Our proposed charge semiconductor qubit originates
from a fundamental device known as a single-electron device
(SED) [22]–[25]. This device allows to precisely control
and manipulate individual electrons. To further facilitate the
electron transport and control, the SED can be refined into
a single-electron transistor (SET), see Fig. 1. Multiple gate
extensions can enable the controllable movement of individ-
ual electrons and also the quantum superposition and entan-
glement of their quantum states [8], [9], [16], [26]. A qubit
based on the SET is also referred to as a ‘charge qubit’, and
was very actively studied between the early 90s and mid-
noughties (see, for instance, Ref. [27]).

However, concerns about the decoherence time and charge
noise [11] resulted in a period of relative inactivity in this
field, compared with other technologies. Very recently, inter-
est in charge qubit devices has resurged, in part because
previous problems are now mitigated by new technological
advances, especially the fine nanometer-scale feature size of
CMOS lithography and short propagational delay afforded by
the cut-off frequency (fT ) reaching almost a terahertz.

FIGURE 1. Schematic diagram of a single-electron transistor (SET),
a device allowing a single injected electron to be manipulated via the
tunneling barriers by controlling voltages applied at the source (S), drain
(D) and gate (G) terminals.

Our research is motivated by recent, significant efforts
made to advance quantum qubits and quantum gates imple-
mented in semiconductor and, in particular, CMOS tech-
nologies, with a number of very recent studies reporting
silicon quantum dots [19]–[21], [28]–[30] and support elec-
tronics [16], [31]–[37]. These studies demonstrate a more
practical view on quantum computing, highlighting the fea-
sibility of large-scale fully integrated quantum processors,
wheremany qubits will be controlled by themeans of conven-
tional electronic circuitry. The presented study is particularly
relevant to such implementations of quantum processors [16],
[38] which may become dominant architectures in the future.

In support of the scientific and technological feasibility of
the proposed charge qubit, the purity of silicon in modern
high-volume commercial nanometer-scale CMOS has dra-
matically increased since the previous wave of realizations
of the charge qubit [39]. This has been driven by increas-
ingly sophisticated CMOS lithographic processes with ultra-
high switching speed of devices as well as improved defect
tolerances, required to achieve ever increasing densities
of functioning transistors (tens of millions per mm2) on
microprocessor chips. Hence, the semiconductor qubit under
study exploits this highly refined CMOS manufacturing pro-
cesses, using ultra-pure silicon, precise control of doping,
and high control of the interface between silicon and silicon
dioxide.

Semiconductor/silicon qubits have been studied both the-
oretically and experimentally in the literature, taking into
account spin, valley and orbital degrees of freedom [40], [41].
The manipulation of various quantum states of such systems
is based on the control of external electrical or magnetic fields
to achieve desired qubit operations [42]. Most of these works
rely on the manipulation of either spin or both the spin and
charge of a particle (hybrid qubits), and usually are restricted
to the analysis of a single double-quantum-dot (DQD) or
three quantum-dots [17], [41], [43], [44].

As aforementioned, a large number of various charge
qubit implementations have also been reported in the liter-
ature. Briefly outlining some implementations, we note that
charge qubits implemented as DQDs based on a Joseph-
son circuit [45], semiconductor charge qubits fabricated in
AlGaAs/GaAs [46], a possibly large-scale implementation
of charge-based semiconductor quantum computing [47].
Among the most recent studies, Ref. [28] introduces high-
fidelity single-qubit gates. Charge qubits in van der Waals
heterostructures are discussed in [48]. Relevant to charge
qubits, an electron localization due to Coulomb repulsion is
investigated along with the time evolution of quantum states
in the presence of charge noise [11], [28], [30], [45], [46].

In this work, we focus our attention on a system based on
the electrostatic manipulation of single-electron semiconduc-
tor charge qubits implemented in modified structures based
on FDSOI 22 nm technology [16]. We extend the method-
ology, commonly applied to a double quantum dot system,
to the case of multiple-particle qubits, each having an arbi-
trary number of energy states, interacting electrostatically.
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We also investigate entanglement between two or more
interacting qubits by the use of the Von Neumann entan-
glement entropy. Other approaches to measure entanglement
between two qubits have been suggested in the literature,
for example with the use of a correlator or the concept of
concurrence [49], [50]. In this study, we are interested to
provide a proof of entanglement between an arbitrary number
of qubits or DQDs. However, we should mention that the
measurement of entanglement entropy is an open problem
and cannot be achieved in a straightforward way, especially
for multi-particle systems [51].

Lastly, we should point out that this study, even though
it is focused on charge qubits, can be extended to spin or
hybrid qubits, which are currently perceived as the leading
trend in CMOS qubits. Specifically, particles with informa-
tion encoded in spin also need to be moved around with
positional precision in a quantum processor. From this point
of view, each particle would also undergo, at some point dur-
ing the computations, some type of shuttling across different
qauntum dots (QDs) to reach another part of the processor
and to carry the quantum information. The body of theoretical
work on this so-called spin-bus architecture is extensive and
has also been reported experimentally [43]. The presented
formalism in this study extents the description from a DQD
cell to a multiple-QD cell (and even multiple multi-QD cells).

This paper is organized as follows. Section II presents the
statement of the problem, describing a chain of transistor-
like QD devices implementing a quantum register. Section III
proceeds with the formal development of a charge qubit
whose quantum logic states are defined by the detection of
an electron in a specific quantum dot of the quantum register.
That section provides the rigorous definition of the qubit
and shows how to construct maximally localized functions.
In addition, we discuss the robustness of the charge qubit and
possible methods to control the angles of its Bloch sphere.
Section IV is dedicated to the derivation from first principles
of the tight-binding model for this system. We show how to
obtain the Hamiltonianmatrix elements and solve the relevant
equations for one qubit, and go on to extend the procedure for
multiple charge qubits interacting electrostatically. Selected
cases of interest, and comparison of the tight-binding for-
malism with the Schrödinger equation, are presented. Finally,
SectionV defines theVonNeumann entanglement entropy SN
in terms of the reduced density matrix in the context of charge
qubits. This is used to demonstrate entanglement between
states and the importance of the Coulomb electrostatic inter-
action on the entanglement of charge qubits.

II. DESCRIPTION OF THE SYSTEM UNDER STUDY
The key building block of the proposed semiconductor
charge qubit can be realized in CMOS fully depleted
silicon-on-insulator (FDSOI) technology [52] and is shown
in Figs. 2(a) and (b). It resembles a transistor and comprises
two depleted silicon dots separated by a silicon channel,
which acts as a tunneling barrier whose potential energy is
controlled electrostatically by the gate. Each dot acts as a

FIGURE 2. (a) A representative example of a CMOS transistor-like
silicon-on-insulator device that serves as a coupled quantum dot system.
(b) Charge qubit formed by two coupled quantum dots (QD). (c) QDs in
series forming a quantum register. (d) Block diagram of the system
showing an injector and a detector. The injection of an electron is
performed through an injector on the left quantum dot of the register
whilst the readout is carried out on the right quantum dot by using a
single-electron detector. The double-QD (DQD) system forms a charge
qubit. The potential function U(x, t) appearing in the Hamiltonian of the
system is controlled by the voltages applied at the terminals of the
structure, with the barrier UB(t) varying in time in the most general case.
When in a coherent state, an electron injected into such a system can
tunnel quantum mechanically through the barrier between the two
quantum dots. The electron exists in a superposition of left and right
quantum dot states described by its wavefunction. Measurement of the
electron position causes wavefunction collapse (it is a
destructive/projective measurement); the electron is found to be in either
the left or right quantum dot with probabilities related to the
wavefunction density (repeated independent measurements yield the left
and right position probabilities). Physical device parameters are given
in Table 1.

single quantum dot (QD). When the barrier separating the
QDs is very high, quantum mechanical tunneling is expo-
nentially suppressed and the QDs are effectively decoupled.
A single electron injected into the system is then trapped in
either left or right dot and the quantum state has a very long
lifetime. By lowering the barrier, a single electron can tunnel
between the left and right dots in the double QD (DQD)
device. The potential barrier UB(t) between the two dots,
controlled by the voltage applied at the gate of the device, can
varywith time in themost general case, and hence allows con-
trol over the electronic tunnelling in the DQD (see Fig. 2(d)).
To complete the structure, one adds an injector (a device
which is able to inject a single electron into one quantum dot)
and a detector (a device which is able to detect an electron at
the same or the other quantum dot). This geometry allows
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one to define a charge qubit. We assume that the state of the
qubit, as a closed system, can be expressed as a superposition
of eigenstates.

As this study aims to support the design of a quantum
processor in FDSOI 22-nmCMOS technology, finite-element
method (FEM) simulations of 2D and 3D structures have
been carried out using semiconductor, electromagnetic and
Schrödinger-Poisson simulators of COMSOL Multiphysics
using the dimensions, materials and dopant concentrations
of that technology over temperatures 2–70 K to support
the model presented in this study. From these simulations,
the potential energy of an electron is calculated. The poten-
tial energy on the surface of the silicon channel along the
symmetry line is then used in the tight-biding model. Both
the semiconductor simulation of the modulation of the con-
duction band by the applied electric field and electromag-
netic simulations (the penetration of the electric field in the
channel) return consistent results, showing the freeze-out of
the channel and the depth of the quantum wells forming
along the structure and controlled by the potential applied at
the gates (imposers). The schematic 3D structure is shown
in Fig. 3(a) and it contains gates (imposers) made of a stack
of SiO2, high-ε dielectric and heavily doped polysilicon, thin
silicon channel, buried oxide (BoX) and thick wafer. An addi-
tional insulating coat is deposited on the top of the structure.
Some minor effects, such as trapped gate charges, are also
taken into account. At the beginning (and also at the end)
of the structure, the devices serving as injectors/detectors are
connected.

A representative example of the electron’s potential energy
on the surface of the silicon channel of a quantum register
with three dots, as obtained from FEM simulations, is shown
in Fig. 3(b). In such a geometry, there exists such a combina-
tion of gate voltages that causes potential energy ‘‘barriers’’
to be formed under the imposers and ‘‘wells’’ to be formed in
between the imposers. The minimum of the potential energy
is conventionally placed at 0 meV. In a typical scenario, barri-
ers of 1 to 4 meV can be formed when a sub-threshold voltage
is applied at the imposers. The resulting potential energy
can be effectively approximated by an equivalent piece-wise
linear function. The Schrödinger equation with a piece-wise
linear potential energy can be solved to find a set of eigen-
functions and eigenenergies. We use three different methods
to ensure that the eigenenergies are consistent. Any DQD
in a register can be viewed a charge-based qubit. However,
the term position-based qubit has also been used [47], [53].

The electron’s potential energy can be controlled by
applying appropriate potential at the imposer terminals. The
imposer voltages allow DC bias voltage and pulses of indi-
vidually controlled magnitude and duration to be applied to
control the barrier height separating the pairs of neighboring
DQDs. Figure 3(c) shows how the potential energy changes
when we sweep the potential at one of the imposer over the
range from 300 to 350 meV. One can note that the relative
height of the barrier separating dot 2 and dot 3 decreases,
facilitating tunneling between the two quantum dots.

FIGURE 3. (a) Schematic 3D structure containing gates (imposers), silicon
channel, buried oxide (BoX) and wafer. (b) Finite element method (FEM)
simulations of the electrostatically shaped potential energy as a function
of the coordinate along the structure. By manipulating the electric
potential applied at the gates, one can achieve desired potential energy
profiles; It can be seen that the potential energy can be approximated by
an equivalent piece-wise linear function. The charge qubit can be defined
using two potential energy wells separated by a barrier. (c) One can
achieve a desired potential energy profile along the coordinate to
facilitate or decrease tunneling of an electron between adjacent dots.

III. FORMAL DEFINITION AND ELECTROSTATIC BLOCH
SPHERE CONTROL OF A CHARGE QUBIT
The parameters of our investigated DQD system are given
in Table 1 and correspond to the device shown in Fig. 2(d).
Here, e andm∗e denote the electron charge and effective mass,
respectively, 2 L is the length of the DQD device, bw is the
length of the barrier separating the two quantum dots, and
UB is the barrier potential energy. The left and right dots
themselves have the potential energies UL and UR. These
chosen parameters correspond to 22-nm FDSOI CMOS. For
the sake of completeness, all variables are concentrated in
one table, although xd and zd will be later defined in Fig. 7
for separated DQD structures. When coupled to other similar
QDs in a chain, as shown in Fig. 2(c), the dynamics of an
injected electron can be manipulated on a larger scale. Such
an array of QDs is similar to a charge-coupled device (CCD)
and allows formation of a quantum register.
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TABLE 1. System parameters for a two-quantum dot qubit(s).

A qubit is generally defined as an isolated quantum system
that has two distinctive quantum states (denoted |0〉 and
|1〉) controlled via various technical means (for example,
by applying electric or/and magnetic fields). In the case
of a qubit implemented through two coupled quantum dots
(i.e. a DQD), electrostatic or electromagnetic fields facilitate
Rabi oscillations between the two states. The spectral the-
orem guarantees that two different eigenvalues of the sys-
tem’s Hamiltonian, expressed as a Hermitian matrix, have
orthogonal normalized eigenstates, which is essential for the
operation of a qubit [54]. The fidelity is preserved provided
the quantum system remains effectively isolated from any
decohering environment over the timescales of the experi-
ment. In this section, we aim to show the feasibility of charge
qubits and introduce their formal definition. To analyze the
eigenstates of a two-dot or multi-dot system, we begin with
the time-independent Schrödinger formalism. Later we will
show an extension to a time-dependant Hamiltonian and
multi-particle case. The Schrödinger equation is written as
follows:

Ĥ
∣∣ψj(x)〉 = Ej

∣∣ψj(x)〉 (1)

where Ĥ is the Hamiltonian operator for the system,
∣∣ψj(x)〉 is

an eigenstate labelled by index j, and Ej is its corresponding
energy. For a time-independent Hamiltonian, the wavefunc-
tion dynamics can be obtained in the Schrödinger picture
simply from

∣∣9j(x, t)
〉
= e−iEjt/h̄

∣∣ψj(x)〉, where i is the
imaginary unit.

Consider the simplest case with only two energy levels, E0
with corresponding wavefunction |ψ0〉, and E1 with wave-
function |ψ1〉. At any given time t , the state of a qubit can be
represented in terms of the superposition,

|ψ〉 = α |ψ0〉 + β |ψ1〉 (2)

where α, β are the probability amplitudes of each eigen-
state in the |ψ〉 basis, with |α|2 + |β|2 = 1 to preserve the
normalization of the wavefunction.

However, the eigenstates |ψ0〉 or |ψ1〉 do not typically cor-
respond to states of a single electron in a DQD that are physi-
cally detectable by means of a standard electrostatic (charge)
detector, as used in the proposed device. Instead, we change
the basis and write |ψ〉 in terms of the detectable qubit states
|0〉 and |1〉 [8],

|ψ〉 = c0 |0〉 + c1 |1〉 ≡ cos θ2 |0〉 + e
iϕ sin θ2 |1〉 (3)

where |c0|2 + |c1|2 = 1, and the angles ϕ ∈ [0, 2π ) and
θ ∈ [0, π] define the so-called Bloch sphere representation
of a qubit. Since the QDs are physical quantum dots with
spatial extent along the lateral x-axis as shown in Fig. 2(d),
the states |0〉 and |1〉 are associated with time-independent
wavefunctions |φL(x)〉 and |φR(x)〉, defined such that |φL(x)〉
maximizes the electronic occupancy of the left quantum dot
and |φR(x)〉 maximizes the electronic occupancy of the right
quantum dot. A prescription to determine these functions
is given below. First, note that the coefficients a and b are
generally complex-valued, following from orthonormality as

c0 = 〈0|ψ〉 ,
∫
D

φ∗Lψ dx and c1 = 〈1|ψ〉 ,
∫
D

φ∗Rψ dx (4)

where x ∈ D denotes the entire domain of existence of
an electron injected into the two-quantum dot system with
finite walls. Hence, Eqs. (3)–(4) define formally a charge
qubit. We emphasize that the new orthonormal states |φL(x)〉
and |φR(x)〉 are a linear combination of the original eigen-
states |ψ0(x)〉 and |ψ1(x)〉. This is not surprising since the
physical system considered has only two energy levels, and
so only two orthogonal wavefunctions are available to con-
struct the new basis. This formalism can be straightfor-
wardly generalized to multi-quantum dot and multi-level
system.

In general, the basis transformation is linear since the
Schrödinger equation is a linear differential equation, and
takes the form, ∣∣φζ=L,R〉 = ∑

j=0,1

Uζ j
∣∣ψj〉 (5)

where Uζ j = [Û]ζ j are elements of a unitary matrix Û. Since
ˆU†Û = Î for a unitary matrix and the original eigenstates
satisfy 〈ψi|ψj〉 = δij, the states of the new basis are guaran-
teed to be orthonormal and the antisymmetry of the fermionic
wavefunction is preserved (this is referred to as a ‘canonical
transformation’). Here, the dagger symbol denotes Hermitian
conjugation, and δij is the Kronecker delta symbol.
Of course, there exist an infinite number of unitary matri-

ces Û that satisfy Eq. (5). To complete the definition of
the charge qubit, we must find the specific representation
that satisfies an additional constraint – namely, that |φL(x)〉
maximizes the occupancy of the left quantum dot, and |φR(x)〉
maximizes the occupancy of the right quantum dot.
It should be emphasized here that to faithfully model the

physical DQD device, the quantum dots do not have infi-
nite potential walls. Although the probability of locating the
electron in either quantum dot is relatively high, there is a
finite probability that the electron can exist in classically
forbidden regions, such as in the barrier region between the
quantum dots, or outside of the device entirely, leading to
a loss of quantum information from the system. This moti-
vates us to construct the basis |φ〉 that minimizes any such
non-ideality.
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We start by recalling that the total probability of locating
an injected electron across the entire domain of existence is
exactly unity (this is the physical property responsible for
wavefunction normalization). Therefore,∫
D

|ψ |2 dx =
∫

c.f.L & c.f.R

|ψ |2 dx +
∫
B

|ψ |2 dx

+

∫
wL

|ψ |2 dx +
∫
wR

|ψ |2 dx = 1 (6)

where ‘c.f.L’ and ‘c.f.R’ stand for the classically forbidden
regions outside the left and right quantum dots, ‘B’ stands
for the controllable barrier region separating the two quan-
tum dots, and wL and wR are respectively the left and right
quantum dots themselves (see Fig. 2(d)).
We define the probability of locating an electron in quan-

tum dot ζ = L or R as pwζ . From Eq. (3) it then follows that,

pwζ =
∫
wζ

(
|c0|2|φL |2+|c1|2|φR|2+c0 c∗1φL φ

∗
R+c.c.

)
dx (7)

where ‘c.c’ denotes complex conjugate. We recognize
that φL(x) and φR(x) are not vanishing at the barri-
ers but have (exponentially) decaying tails that constitute
the dominant source of non-ideality of the charge qubit.
A measure of the non-ideality (or residual error factor) is
then ε = 1− pwL − pwR .

The localized-state basis of Wannier functions [55], [56]
is defined such as to maximize the probability to locate an
electron in the relevant quantum dot. Using formula (5) for
ζ = L or R, we write:

{(x, φL(x)) : x ∈ D} and {(x, φR(x)) : x ∈ D}

max
∫
wζ

|φζ |
2dx

= max
∫
wζ

(Uζ0 · ψ0 + Uζ1 · ψ1)(U∗ζ0 · ψ
∗

0 + U
∗

ζ1 · ψ
∗

1 )dx

(8)

This optimization problem allows one to find the matrix
elements Uζ j performing the basis transform.

For a DQD qubit comprising two quantum dots with the
parameters of Table 1, one can straightforwardly determine
the maximally localized basis functions, as shown in Fig. 4.
Figure 4(a) shows the probability density for an electron
in eigenstate |ψ0(x)〉 or |ψ1(x)〉 as a function of position
along the x-axis, highlighting how the eigenbasis is typically
delocalized over the entire device. By contrast, Fig. 4(b)
shows the probability density for an electron in themaximally
localized (Wannier) basis |φL(x)〉 or |φR(x)〉, demonstrating
suitability as a charge qubit basis. Note however that even in
the maximally localized basis, there is appreciable tunneling
amplitude inside the classically forbidden barrier region.

The full control of the Bloch sphere requires one to be able
to change both angles, θ and ϕ. However, it is easy to see that

FIGURE 4. Representation of qubit states in the proposed DQD device.
(a) Probability density of and electron in eigenstates of the DQD,
|
∣∣ψ0(x)

〉
|2 and |

∣∣ψ1(x)
〉
|2 as a function of position x/L.

(b) Corresponding maximally localized functions |
∣∣φL(x)

〉
|2

and |
∣∣φR (x)

〉
|2.

FIGURE 5. Rotation of the angle θ both in the eigenfunction basis
{
∣∣ψ0

〉
,
∣∣ψ1

〉
} and position basis {

∣∣0〉
,
∣∣1〉

} (i.e. the Bloch sphere). The angle
θ can be adjusted by dynamically manipulating the potential energy
function by setting the bottoms of the potential energy of the quantum
dots UwL and UwR .

an equilibrium system in the eigenfunction representation is
characterised by a fixed angle θ with the angle ϕ precessing
at the frequency of occupancy oscillations δω = (E1−E0)/h̄
where the energy levels E0 and E1 are associated with the
states |ψ0〉 and |ψ1〉. Angle θ can be adjusted by dynamically
modulating the potential function adjusting the bottoms of the
potential energy of the quantum dotsUwL andUwR . However,
once the system is in equilibrium (i.e.,UB(x) is high enough),
θ does not change. The eigenfunction representation of the
two-quantum dot system is shown in Fig. 5 (see the left
column) where we show the effect of the potential function
variation on the angle θ . The state vector describing such
a system precession with the frequency δω along the paths
shown in those figures is defined by the height of the barriers
separating the quantum dots.
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It is interesting to note that in the position-based repre-
sentation (5), the Bloch sphere and the original trajectories
are transformed as shown in the middle column of Fig. 5,
with both angles, θ and ϕ, being functions of time even
in the equilibrium case. It is straightforward to obtain the
expressions for the angles in explicit form:

cos2
θ

2
=

1
2
+ |c0||c1| cos(δωt)

sin2
θ

2
=

1
2
− |c0||c1| cos(δωt)

ϕ = arctan
[
2|c0||c1| sin(δωt)
|c0|2 − |c1|2

]
(9)

Here, according to Eq. (2), |c0| and |c1| represent the prob-
ability amplitudes of the eigenstates ψ0 and ψ1, and the
frequencies ω0 = E0/h̄ and ω1 = E1/h̄ are associated with
those states.

IV. DERIVING TIGHT-BINDING MODEL OF INTERACTING
QUBITS FROM SCHRÖDINGER FORMALISM
The Schrödinger formalism, both time-dependent and time-
independent, allows one to capture the dependence of
the wavefunction on spatial coordinates from first princi-
ples. However, it becomes increasingly inconvenient to use
when handling multiple interacting particles or more com-
plex structures. In this section, we show how to derive a
tight-binding model directly from the Schrödinger equation,
allowing us to model single and multiple electrons in such
structures easily and effectively. The tight-binding model
is often used in systems where localized Wannier orbitals
constitute a good basis for quantum tunneling of electrons in
a periodic potential [18], [57]–[59]. In bulk materials treated
within the tight-binding formalism, the long-range Coulomb
interaction is often assumed to be screened, but in quantum
confined nanostructures as studied here, the electron-electron
interactions are crucial andmust be considered explicitly. The
aim here is to show how the parameters appearing in the
model will be related directly to the geometry of the system
and to the maximally localized Wannier functions introduced
in the previous section.

A. MULTI-PARTICLE FORMALISM IN APPLICATION
TO THE STUDIED SYSTEM
For convenience, wewill use the first quantization formalism.
The Hamiltonian of N interacting particles in one dimension
contains the kinetic energy operator −

∑ h̄2
2m∗∇

2
k , the poten-

tial energy operator
∑
U (xk ) and the interaction energy∑

UC
kj due to the Coulomb force between electrons. Hence,

the Hamiltonian operator is written as follows:

Ĥ =
N∑
k=1

(
−

h̄2

2m∗k
∇

2
k + Uk (xk , t)

)
+

N∑
k>j=1

g · e2

4πεeff|xk − xj|

(10)

where εeff is the effective dielectric constant and g is a coeffi-
cient accounting for screening effects [60], e is the magnitude

of the electronic charge and m∗k is the (effective) mass of the
k th particle. It must be noted that equation (10) turns, due to
the constrains on the motion of the particles, into ‘‘a one-
dimensional case’’, where we use only one coordinate, xk ,
for each particle. The time-depended Schrödinger equation is
then written in terms of the N -particle eigenstate wavefunc-
tions

∣∣9j
〉
≡
∣∣9j(x1, . . . , xN , t)

〉
as follows:

ih̄
∂
∣∣9j
〉

∂t
= Ĥ

∣∣9j
〉

(11)

As usual, N -particle wavefunctions |9(x1, . . . , xN , t)〉 can
be represented in terms of a linear combination of N -particle
basis states |ψ(x1, . . . , xN , t)〉, which are themselves con-
structed as the tensor product of the M single-particle states
of each particle i, |ψ(xi, t)〉 =

∑M
ni=1 c

(i)
ni (t)

∣∣∣φ(i)ni (xi)〉,
according to:

|ψ(x1, . . . , xN , t)〉

= |ψ(x1, t)〉 ⊗ . . .⊗ |ψ(xN , t)〉

=

M∑
n1=1

c(1)n1 (t)
∣∣∣φ(1)n1 (x1)

〉
⊗ . . .⊗

M∑
nN=1

c(N )
nN (t)

∣∣∣φ(N )
nN (xN )

〉
(12)

In the combined Hilbert space H(⊗N ), we introduce the
basis

∣∣φ(⊗N )
〉
:{

{φ
(⊗N )
k } :

∣∣∣φ(1)n1 , . . . , φ
(N )
nN

〉
=

∣∣∣φ(1)n1

〉
⊗ . . .⊗

∣∣∣φ(N )
nN

〉
, n1, .., nN = 1, . . . ,M

}
(13)

where k = 1, . . . ,MN with MN providing the total number
of such basis functions. The Schmidt decomposition theorem
states that all states in the combined Hilbert space can be
expressed as a linear combination of these tensor product
states, so we write:

|9〉 =

MN∑
k=1

ck
∣∣∣φ(⊗N )
k

〉
(14)

In the basis of
∣∣∣φ(⊗N )
k

〉
, the Hamiltonian matrix is not

diagonal, and so in general we have finite matrix elements
of the type

Hmn =
〈
φ(⊗N )
m

∣∣∣ Ĥ ∣∣∣φ(⊗N )
n

〉
(15)

Eq. (11) then implies the following equation for the time-
evolution of the coefficients,

ih̄
dcm
dt
=

∑
n

Hmncn (16)

Equation (16) is a linear system of ordinary differential equa-
tions, which can be solved analytically for a time-independent
Hamiltonian or numerically for a time-dependent commuting
Hamiltonian:

c(t) = c0e
−

i
h̄

∫ t
0 Ĥ(τ )dτ (17)
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where c(t) is a vector containing the probability amplitudes ci
and c0 is a vector of initial conditions subjected to the usual
normalization constraint. If one deals with a time-dependent
non-commuting Hamiltonian, the Dyson series can be used
to calculate it numerically.

In addition to the formalism stated above, the postulates of
our model are as follows:
� An electron, injected into a double-quantum dot cell

(this could be straightforwardly extended to a multi-
quantum dot arrangement) is confined to that cell, even
if it interacts with other electrons.

� We will consider one or a set of interacting double-
quantum dot cells, each containing an electron that can
occupy the two lowest energy levels. Hence, in for-
mula (12) we take into account only two basis functions
for each electron (for example, maximally localised φL
and φR for each particle).

� The electron’s time-dependent wavefunction becomes
9(x, t) = c0(t)φL(x) + c1(t)φR(x). When a system of
N interacting electrons is considered, their individual
wavefunctions are combined using formula (12).

The applications of these postulates can be easily under-
stood by the example of one electron in a double-quantum
dot cell, see Fig. 6. If the electron is actualized in the left
quantum dot wL , its state is associated with the maximally
localized function φL . Hence, the wavefunction of the elec-
tron when ‘firmly’ detected in wL at a given instance of time
is |0〉 = 1 · φL(x) + 0 · φR(x). The actualization of the
electron in the right quantum dot wR is associated with the
maximally localized function φR. Hence, the wavefunction of
the electron when ‘firmly’ detected in wR at a given instance
of time is |1〉 = 0 · φL(x) + 1 · φR(x).

Equating the maximally localized functions to the actu-
alization of the electron can be seen as an approximation,
but it is held to a high degree of accuracy. Indeed, since the
functions φL and φR are the solution to the maximization
problem (7), the instantaneous probability of locating the

FIGURE 6. Charge qubit representation: double-quantum dot potential is
seen as a cell where the actualisation of the electron in quantum dot wL
corresponds to the state

∣∣0〉
and the actualisation of the electron in

quantum dot wR corresponds to
∣∣1〉

. Such a qubit will display the
occupancy oscillations between the quantum dots reflected in the
oscillating probabilities PwL (t) and PwR (t) as functions of time. The
continuous lines show the probabilities calculated using equation (16)
with the matrix elements (19) while the squares and circles show the
probabilities calculated directly from the Schrödinger equation.

electron, for instance, in wL is

pwL =
∫
wL

[c∗0φ
∗
L + c

∗

1φ
∗
R][c0φL + c1φR]dx

≈ |c0|2
∫
wL

φ∗LφL dx ≈ |c0|
2
∫
D

φ∗LφL dx = |c0|
2 (18)

which is the probability amplitude of φL .
In the next section, we consider the application of this

general formalism to three cases of interest. The under-
lying feature of the studied system is that electrons,
while interacting through Coulomb force, stay confined
to their respective double-quantum dot cells. We will see
that combining the equations obtained from first princi-
ples with the postulates we formulated is essentially the
tight-binding model.

B. ONE ELECTRON IN A DOUBLE-QUANTUM-DOT: QUBIT
We return to the basic definition of the qubit introduced in
Section III and analyze it using the framework proposed in
Section IV-A with all expressions simplified for the one-
particle case. The charge qubit is shown in Fig. 6 where
the double-quantum dot structure, the building block of the
charge qubit, is represented as a symbolic cell with an elec-
tron actualized either in the left or in the right quantum dot.
We have already calculated the maximally localized Wannier
functions for this system, φL(x) and φR(x), see Fig. 4. The
Hamiltonian in the matrix form becomes (not including the
Coulomb interaction for the moment since we deal with one
electron):

H11 = 〈φR| Ĥ |φR〉 = −
h̄2

2m∗
〈
φR
∣∣φ′′R〉+ 〈φR|U (x) |φR〉

H22 = 〈φL | Ĥ |φL〉 = −
h̄2

2m∗
〈
φL
∣∣φ′′L 〉+ 〈φL |U (x) |φL〉

H12 = 〈φR| Ĥ |φL〉 = −
h̄2

2m∗
〈
φR
∣∣φ′′L 〉+ 〈φR|U (x) |φL〉

H21 = 〈φL | Ĥ |φR〉 = −
h̄2

2m∗
〈
φL
∣∣φ′′R〉+〈φL |U (x) |φR〉 (19)

where the double apostrophe symbol denotes the second
derivative with respect to coordinate. Hence, knowing the
system’s geometry and the potential energy function U (x),
it is possible to calculate the functions φL,R and then the
matrix elements. The calculation of the localized functions
φL,R is required only once in the case of time-independent
system. In the case of weakly perturbed systems, one can
assume that the maximally localised functions are not ‘dis-
turbed’ too much, and the time-dependent dynamics are
expressed in the probability amplitudes. We note that in
the case of cells with symmetrical functions U (x), as the
one shown in Fig. 2(d), H12 = H21. As an illustration,
the matrix entries calculated for our particular geometry are
given in Table 2. For convenience, we normalize the energy
of electrons by the quantity E0 = h̄2/(2m∗eL

2), so the entries
of the Hamiltonian matrix are expressed in units of E0.
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TABLE 2. System parameters for a two-quantum dot qubit.

Hence, for a two-level system of Fig. 6 representing the
electrostatic qubit, we have the following model. The state
when the electron is actualised in wL is denoted as |0〉 ≡ |φL〉
while the state when it is actualized in the right quantum
dot — as |1〉 ≡ |φR〉. The time evolution of the states is
described by equation (16) written in terms of the probability
amplitudes c = (c1, c0)T:

|9〉 = c1 |1〉 + c0 |0〉 (20)

The Hamiltonian matrix in that equation becomes:

H =
[
Ep1 th,01
th,10 Ep2

]
(21)

It is conventional to use the following notation H11 =

Ep1, H22 = Ep2, H12 = th,01 and H21 = th,10. The
off-diagonal terms th,01 and th,10 are known as tunnelling
or hopping terms. In this form, the charge qubit is no dif-
ferent than any other quantum two-state system, and hence
it will display all the expected features. We note that the
matrix (21) is the fundamental building block for the Hamil-
tonian matrix of many-particle systems as will be shown
later.

Figure 6 plots the electron occupancy oscillation curves
in quantum dot wL (green curve) and quantum dot wR (blue
curve) in the double-quantum dot structure. We used the
parameters from Table 1 and expressions (19) to calculate
the entries of matrix (21). Then, the set of equations (16)
was solved to find the coefficients c0(t) and c1(t) and the
probabilities |c0|2 and |c1|2 associated with the occupancy
of the quantum dots. For comparison, the direct solution of
the Schrödinger equation is marked by circles and squares,
and it provides exactly the same probabilities. As expected,
the occupancy of wL and wR are in anti-phase. In the case
of one electron, it can be localized only in one quantum dot.
Hence, when the occupancy of wL reaches unity, the occu-
pancy of wR must be zero. In other words, the normalization
condition is preserved.

C. TWO INTERACTING QUBITS
Now we examine the extension of the formalism to many-
particle systems where different DQDs are only electrostat-
ically coupled, with no wavefunction overlap, and where
decoherence is not considered. As an illustration, we will
study in detail two and three interacting electrons, as illus-
trated in Fig. 7. We will use the superscript α to denote the
first double-quantum dot cell where particle 1 is injected and
the superscript β to denote the second double-quantum dot
cell where particle 2 is injected. For two electrons interacting
through Coulomb force, each confined to their respective

FIGURE 7. Schematic structures of two and three interacting qubits
(i.e., double-quantum dot cells with an electron injected in each
of the cells).

double-quantum dots, the wavefunction is written as:

|9〉 =
∑

nα=1,0

∑
nβ=1,0

cnαnβ
∣∣∣n(α)α n(β)β

〉
= c11

∣∣1α1β 〉+ c10 ∣∣1α0β 〉+ c01 ∣∣0α1β 〉+ c00 ∣∣0α0β 〉
(22)

where the states |0α〉, |1α〉,
∣∣0β 〉 and ∣∣1β 〉 are associated

with the maximally localised functions φαL , φ
α
R , φ

β
L and φβR ,

respectively.
The wavefunction contains possible detectable states of the

two-particle system. For instance, the probability of finding
particle 1 in the right quantum dot and particle 2 also in the
right quantum dot of their respective cells is |c11|2, etc. The
Hamiltonian matrix accommodates the electrostatic interac-
tion by including the terms due to the electrostatic interac-
tion and tunnelling terms for both particles by combining
formulae (10) and (15).

H = H(β)
⊗ I+ I⊗H(α)

=


Ep11 tβh,10 tαh,10 0

tβh,01 Ep22 0 tαh,10
tαh,01 0 Ep33 tβh,10
0 tαh,01 tβh,01 Ep44


(23)

whereHα andHβ denote the matrices including the Coulomb
interaction for the first and second particles and I is the 2× 2
identity matrix.

System of equations (16), solved for the two-particle case,
allows one to look at different configurations of electrons in
two double dot cells as a function of geometry, potential and
strength of interaction. For example, Fig. 8 shows an analog
of occupancy oscillations from Fig. 6 for particle 1 in its
respective double-quantum dot cell α in the presence of elec-
trostatic interaction with particle 2 in double-quantum dot β
(refer to Fig. 7(a) for the geometry and the arrangement of
double-quantum dot cells). We begin with the configuration
where particles 1 and 2 are both located in the left quantum
dots of their respective double-quantum dot cells. Due to the
repelling action of interaction, the occupancy oscillations are
disturbed, and it is less likely to localize particle 1 in the
right quantum dot of double-quantum dot α. Figure 8 also
shows the least and the most probable configurations of such
a system.
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FIGURE 8. Two interacting qubits, each containing a single electron:
occupancy oscillations of the electron in double-quantum dot α
expressed as probabilities Pα

|1〉
and Pα

|0〉
to locate the particle in the left

or in the right quantum dot evolving in time in the presence of interaction
with the electron in double-quantum dot β. The scheme on the left shows
the least and most probable states of the particles.

D. THREE AND MORE INTERACTING QUBITS.
GENERATING THE WAVEFUNCTIONS AND MATRICES FOR
AN ARBITRARY NUMBER OF PARTICLES
The generalization of the formalism, allowing an extension
of the model to a multi-particle system, can be derived from
these examples as follows. The wavefunction is expressed
as a tensor product defined in the combined Hilbert space
H(⊗N ):

|9〉 =
∑

nα=1,0

∑
nβ=1,0

. . .
∑

nω=1,0

cnα nβ...nω (t)
∣∣∣n(α)α n(β)β . . . n(ω)ω

〉
(24)

and the corresponding Hamiltonian is constructed as follows:

H = H(ω)
⊗ I⊗ . . .⊗ I+ . . .+ I⊗ . . . I⊗H(α) (25)

Expressions (24) and (25) allow us to assemble and solve
the matrix equation (16) for an arbitrary number of charge
qubits of a given geometry. As an example, Fig. 9 visualizes
a simulation for a three-electron system, where we plot an
analog of occupancy oscillations for three interacting qubits.
As expected, the occupancy oscillations are disturbed even
more compared to Fig. 8 due to the presence of one addi-
tional particle and its repelling action. This approach can
be easily automated and used to simulate interacting qubits

FIGURE 9. Three interacting qubits: evolution of occupancy oscillations of
particle 1 in double-quantum dot α expressed as probabilities Pα

|1〉
and

Pα
|0〉

to locate the particle in the left or in the right quantum dot of the
structure in the presence of interaction with particle 2 in double-quantum
dot β and particle 3 in double-quantum dot γ . The scheme on the left
shows the least and most probable configurations of the particles.

and quantum gates in an environment compatible with circuit
design and simulations.

V. VON NEUMANN ENTANGLEMENT ENTROPY IN THE
CONTEXT OF SEMICONDUCTOR CHARGE QUBITS
To conclude this study, we shall also discuss whether it is
possible to entangle two charge qubits when they interact
electrostatically through the means of the Coulomb force.
If entanglement is feasible for such qubits, this would mean
that conventional quantum computing operations can be
implemented on charge qubits.We recognize that there exist a
number of methods to investigate entanglement. For example,
the correlator as defined in Ref. [49] is a direct derivation
of the Bell inequality between two qubits. Both the Von
Neumann entropy and this correlation function will result in
the same conclusion of such a system in terms of simulation
results. In [50], the concept of concurrence is defined for a
pair of qubits. As a measure of entanglement in this study,
wewill use theVonNeumann entropy. It is a bipartile quantity
requiring to divide the original quantum system into two sub-
parts. The aim of the analysis is to understand whether the
sub-parts of the original system are in separable states or not.

A. SYSTEM OF ONE CHARGE QUBIT
To understand how the entropy of entanglement works, let
us start with a single qubit in a double-quantum dot system.
For a bipartition of the single qubit system, we will use the
following notation (this will help avoiding confusion with the
notation introduced previously for the multi-electron case).
We will denote the situation when the electron is in the
left quantum dot of the double-quantum dot system as sub-
part ‘a’, and, likewise, for the right quantum dot as sub-part
‘b’. Subsequently, the state of one qubit can be conveniently
written in the form similar to the multi-particle formalism we
introduced before:

|ψ〉 = c10
∣∣∣1a0b〉+ c01 ∣∣∣0a1b〉 (26)

Here, c10(t) and c01(t) are the probability amplitudes in the
localized position basis. This form should be interpreted as
follows: 0a means that there is no electron in sub-part a
of the system (i.e., in the left quantum dot) and 1a means
that the electron is present in sub-part a of the system. The
same applies when the index b is used. For obvious reasons,
the states

∣∣1a1b〉, ∣∣0a0b〉 or similar are not normally possible,
as that would make the system physically corrupted.

To describe the Von Neumann entanglement entropy,
we will use the density matrix formalism. In the position
basis, noting equation (26), we write the density operator for
the full system (no bipartition applied yet) in the following
form:

ρ̂ab = |ψ〉 〈ψ |

= c10c∗10
∣∣∣1a0b〉 〈1a0b∣∣∣+ c01c∗01 ∣∣∣0a1b〉 〈0a1b∣∣∣ (27)

Equivalently, the density matrix operator can be written in a
matrix representation, known as the density matrix ρ, with
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elements ρab = [ρ]ab as follows,∣∣1a0b〉 ∣∣0a1b〉
ρ =

〈
1a0b

∣∣〈
0a1b

∣∣ [
|c10|2 0
0 |c01|2

]
(28)

By dividing the system into two parts, a and b, we can
now introduce the reduced density operators ρ̂a and ρ̂b via
the partial trace as follows:

ρ̂a =
〈
0b
∣∣∣ ρ̂ab ∣∣∣0b〉+ 〈1b∣∣∣ ρ̂ab ∣∣∣1b〉

ρ̂b =
〈
0a
∣∣ ρ̂ab ∣∣0a〉+ 〈1a∣∣ ρ̂ab ∣∣1a〉 (29)

which describe the state of each sub-part, tracing out the
complement. For example, in the matrix form, the reduced
density matrix of sub-part a takes the following form, which
is equivalent to the reduced density matrix

|0a〉 |1a〉

ρa =
〈0a|
〈1a|

[
|c01|2 0
0 |c10|2

]
(30)

Then, the Von Neumann entanglement entropy SN is defined
as follows:

SN = −Tr(ρa lnρa) = −Tr(ρb lnρb) (31)

While the entanglement entropy is not particularly useful
for one electron or one qubit, it can provide some interesting
insights to its meaning. As an illustration, the Von Neumann
entropy applied to one qubit in a superposition state is visu-
alized in Fig. 10. One can clearly see that the entropy is
maximal, SN = ln 2, when the qubit is found in one of the
two states: (

∣∣1a0b〉 + ∣∣0a1b〉)/√2 or (
∣∣1a0b〉 − ∣∣0a1b〉)/√2.

Recalling that we are operating in the localized basis, this
superposition of the localized states corresponds to the sit-
uation when the electron is maximally delocalized. We also

FIGURE 10. Von Neumann entanglement entropy calculated for two
states of a single charge qubit. Entanglement entropy is at maximum
when the probability of occupying each of the states is the same. Vice
versa, entanglement entropy is zero when the electron actualises in one
of the quantum dots.

note that in the localized basis a qubit displays occupancy
oscillations although the period can vary by several orders-
of-magnitude as a function of UB. Hence, the Von Neumann
entanglement entropy is generally a function of time.

B. SYSTEM OF TWO INTERACTING QUBITS
Having understood the Von Neumann entropy applied to the
simplistic case of one qubit, we can now apply it to two inter-
acting qubits. We will now return to our standard notation for
double-quantum dots as used in Sec. IV-C. In this case, sub-
part ‘α’ will denote an electron in the first double-quantum
dot and sub-part ‘β’ will denote an electron in the second
double-quantum dot. The wavefunction is the same as given
by formula (22):

|9〉 = c11
∣∣1α1β 〉+ c10 ∣∣1α0β 〉+ c01 ∣∣0α1β 〉+ c00 ∣∣0α0β 〉

(32)

The density operator becomes:

ρ̂ = c11c∗11
∣∣1α1β 〉 〈1α1β ∣∣+ c10c∗10 ∣∣1α0β 〉 〈1α0β ∣∣

+c01c∗01
∣∣0α1β 〉 〈0α1β ∣∣+ c00c∗00 ∣∣0α0β 〉 〈0α0β ∣∣ (33)

Equivalently, the density matrix can be written as follows:∣∣1α1β 〉 ∣∣1α0β 〉 ∣∣0α1β 〉 ∣∣0α0β 〉

ρ =

〈
1α1β

∣∣〈
1α0β

∣∣〈
0α1β

∣∣〈
0α0β

∣∣

|c11|2 0 0 0
0 |c10|2 0 0
0 0 |c01|2 0
0 0 0 |c00|2

 (34)

Applying a bipartition to the system, we obtain the
reduced density matrices. For example, following Eq. (29),
the reduced density matrix for sub-part α can be written as
follows:

|0α〉 |1α〉 (35)

ρα =
〈0α|
〈1α|

[
|c01|2 + |c00|2 0

0 |c10|2 + |c11|2

]
(36)

We note here that the entries of the reduced density matrix
can be easily understood. In the matrix above, the first non-
zero entry gives the probability of finding sub-part α of the
quantum system in state |0〉, while the second non-zero entry
gives the probability of finding it in state |1〉, regardless of the
state of the second electron. These entries, as a matter of fact,
were plotted in the graphs of Fig. 8. As a final step, the Von
Neumann entanglement entropy is calculated using the same
formula (31).

Figure 11 shows the entanglement entropy SN(t) calcu-
lated for two qubits (each containing an electron) interacting
electrostatically though the Coulomb force. The Hamiltonian
operator is given by expression (10), and we note that we
use the effective screening constant g to account for possible
screening effects in solid-state structures [60]. Figure 11 also
shows the occupancy oscillations experienced by sub-part
α (i.e., the electron in the first double-quantum dot) in the
presence of the second electron when the electrostatic inter-
action between them is rather weak (g = 0.1). In this
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FIGURE 11. Von Neumann entanglement entropy SN(t) of two
electrostatically interacting qubits as a function of time calculated at the
electrostatic screening coefficient g = 0.1.

FIGURE 12. Initial Von Neumann entanglement entropy SN(t) of two
electrostatically interacting qubits as a function of time calculated at the
electrostatic screening coefficient g = 1.

case, as was discussed earlier, the electron experiences large-
amplitude occupancy oscillations, with ∼100% probability
to be eventually found in the left quantum dot and a bit less
in the right quantum dot. Reciprocally, there are instances of
time when the electron is delocalised, and the entanglement
entropy reaches its maximum. For comparison, Fig. 12 shows
an example of strong interaction between the two qubits
(g = 1), whilst Fig. 13 shows the same example for a longer
time stretch. The occupancy oscillations are disturbed, and
the electron α is initially found mostly in the left quantum dot

FIGURE 13. Von Neumann entanglement entropy SN(t) of two
electrostatically interacting qubits as a function of time over a longer
time stretch calculated at the electrostatic screening coefficient g = 1.

due to the strong electrostatic repulsion. As a consequence,
entanglement entropy decreases. However, the dynamics fol-
low the same pattern (with a different frequency), when one
visualizes the same plot for a longer time period.We conclude
that if the interaction between the two qubits is strong, it leads
to the localisation of electrons and hence it reduces their
entanglement.

To conclude this section, the time to reachmaximum entan-
glement between the two qubits is plotted in Fig. 14(a) as a
function of the tunneling probability th (where th = th,01 =
th,10) and for a fixed value of the screening coefficient g = 1.
It is evident that the higher the hopping term is, the shorter
is the time needed. Lastly, we also plot in Fig. 14(b) the time
to reach maximum entanglement between the two qubits as a
function of the screening coefficient g, for a fixed value of the
tunneling probability th = 0.33 E0. The higher the screening
coefficient is, the longer it also takes for the system to reach
the maximum entanglement.

C. SYSTEM OF TWO INTERACTING REGISTERS
In this section, we will examine a system of two coupled reg-
isters each consisting of four QDs, as depicted in Fig. 15(a).
We will assume one particle in each line interacting electro-
statically via the Coulomb force with one particle on the other
line. In this case, sub-part ‘α’ denotes the first line and sub-
part ‘β’ denotes the second line. Each line includes four dots
(or two DQDs) and can be seen as a qudit. The wavefunction
of the system is:

|9〉=
∑

nA=0#1,1#1,0#2,1#2

∑
nB=0#1,1#1,0#2,1#2

cnAnB
∣∣∣n(A)A n(B)B

〉
(37)

where we assume four quantum states for each particle.
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FIGURE 14. (a) Time to reach maximum entanglement SN(t) as a function
of the tunneling probability th for a fixed value of the screening
coefficient g = 1. (b) Time to reach maximum entanglement SN(t) as a
function of the screening coefficient g for a fixed value of the tunneling
probability th = 0.33 E0.

The reduced density matrix for sub-part α can be written
as follows:

ρ̂α =
〈
0β#1

∣∣∣ ρ̂ ∣∣∣0β#1〉+ 〈1β#1∣∣∣ ρ̂ ∣∣∣1β#1〉
+

〈
0β#2

∣∣∣ ρ̂ ∣∣∣0β#2〉+ 〈1β#2∣∣∣ ρ̂ ∣∣∣1β#2〉 (38)

Let us now assume the maximally entangled Bell
state [61], [62]:

|8〉 =
1
√
2

(∣∣0α0β 〉+ ∣∣1α1β 〉) (39)

which is defined generally between any two systems,
α and β. Writing this state in the basis of our system, we get

|8〉 =
1
√
2

(∣∣∣0α#10β#1〉+ ∣∣∣0α#20β#2〉+ ∣∣∣0α#10β#2〉+ ∣∣∣0α#20β#1〉
+

∣∣∣1α#11β#1〉+ ∣∣∣1α#21β#2〉+ ∣∣∣1α#11β#2〉+ ∣∣∣1α#21β#1〉) (40)

and

ρα = trβ (〈8|8〉) =
1
2
I4 (41)

From (31), we can calculate SN = 2 ln 2.
In Fig. 15(a), the Von Neumann entanglement entropy

SN(t) is plotted between two single-electron registers inter-
acting electrostatically via the Coulomb interaction. Each
line consists of two DQs which correspond to two qubits,
denoted as qubit #1 and qubit #2. Interestingly, it is visible
that an almost maximally entangled state can be achieved in
this case (∼ 2 ln 2) for the selected parameters. In principle,
the maximum entanglement is harder to achieve as the spatial
degrees of freedom for each particle increases. Finally, the
maximum entanglement entropy SN as a function of the tun-
neling probability th, for a given time period tmax = 10[ns], is

FIGURE 15. (a) Von Neumann entanglement entropy SN(t) between two
single-electron registers interacting electrostatically via Coulomb
interaction. Each line consists of two DQDs which corresponds to two
qubits, denoted as qubit#1 and qubit#2; (b) Maximum entanglement
SN(t) as a function of the tunneling probability th in a given time
duration, tmax = 10 ns.

plotted in Fig. 15(b). As the tunneling probability th increases,
the system can become maximally entangled.

VI. DECOHERENCE AND FIDELITY OF CHARGE QUBITS
Qubits based on nuclear spin, electron spin or combination
of charge-spin (hybrid) appear to be the best candidates for
quantum computing from the point of view of achievable
decoherence times [8], [12]. As reported in the literature,
charge-based qubits have much shorter decoherence times
(within a range of 50 ns to 1 µs). However, reasonably high
practical qubit fidelity can still be achieved by using very fast
state flip times as explained below. The 22-nm FDSOI CMOS
process used to develop the quantum structures considered
in this study has transition frequencies (fT ) in the several
hundreds of gigahertz range [37]. Even with a 50 ns deco-
herence time, charge-based qubits could still perform over a
thousand operations per useful coherence duration. This is an
advantage that can compensate for the charge qubit’s shorter
decoherence time. The FDSOI process has a roadmap for the
12-nm feature node that should provide state flip times as
low as 10 ps and hence can facilitate high quality quantum
operation. We also note that the measurement/readout of
spin qubits is very challenging due to their need to operate
with narrowband microwave electromagnetic fields which
are inherently slow (tens of ns-level access time) and con-
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sume rather high power (over 10mW per qubit) [15], [38],
[63]. Consequently, being able to operate on charge qubits
2–3 orders-of-magnitude faster can compensate for their
2–3 orders-of-magnitude decoherence time handicap.

Lastly, we should also mention that by choosing the state
and the physical parameters properly, the dephasing can be
largely suppressed in a quantum-dot array [11], [28], [30],
[44]. Therefore, we can conclude that the relatively short
decoherence time is not expected to prohibit the application
of charge qubits for quantum computing.

VII. CONCLUSION
This paper provides a formal definition, robustness analysis
and discussion on the control of a charge qubit intended for
semiconductor implementation in scalable CMOS quantum
computers. The construction of the charge qubit requires
maximally localized functions, and we show such functions
for double quantum dot structures with dimensions corre-
sponding to a 22-nm FDSOI CMOS technology. We also
discuss how an individual qubit can be manipulated in terms
of the two angles of the Bloch sphere.

Based on the electrostatic nature of the qubit, we demon-
strate how to build a tight-binding model of one and multiple
interacting qubits from first principles of the Schrödinger
formalism. We provide all required formulae to calculate the
maximally localized functions and entries of the Hamiltonian
matrix in the presence of interaction between qubits. We use
four illustrative examples to demonstrate interaction of elec-
trons in three cases of interest and discuss how to build a
model for many-electron (qubit) system. Finally, we use the
Von Neumann entanglement entropy in the context of charge
qubits to show that the electrostatically interacting electrons
in these qubits can be entangled.
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