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Abstract. We study the local magnetization in the 2D Ising model at its critical
temperature on a semi-infinite cylinder geometry, and with a nonzero magnetic
field h applied at the circular boundary of circumference β. This model is
equivalent to the semi-infinite quantum critical 1D transverse field Ising model at
temperature T ∝ β−1, with a symmetry-breaking field proportional to h applied
at the point boundary. Using conformal field theory methods we obtain the full
scaling function for the local magnetization analytically in the continuum limit,
thereby refining the previous results of Leclair, Lesage and Saleur. The validity of
our result as the continuum limit of the 1D lattice model is confirmed numerically,
exploiting a modified Jordan–Wigner representation. Applications of the result
are discussed.
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1. Introduction

The Ising model is a classic paradigm of statistical mechanics, and continues to find
powerful application in diverse areas of modern physics [1]–[3]. It also reveals unique and
generic universal behavior associated with boundaries [4]–[6]. In its quantum 1D chain
version, the critical boundary Ising model (BIM) reads

H = −
∞∑

i=0

[σz
i σ

z
i+1 + σx

i ] − hBσ
z
0 . (1)

The uniform field along x is fixed such that the bulk system is at the critical point between
Ising order and the disordered phase. The symmetry σz ↔ −σz is broken when a finite
magnetic field hB �= 0 is applied at the point boundary. Such a boundary field cannot lead
to a finite bulk magnetization. Importantly however, it does cause a renormalization group
flow from a free boundary condition hB = 0 to a fixed boundary condition hB → ±∞.

The renormalization group flow associated with this BIM has been shown to be at the
heart of boundary critical phenomena occurring in a surprising variety of low-dimensional
correlated electron systems, such as Luttinger liquids containing an impurity [7], coupled
bulk and edge states in non-Abelian fractional quantum Hall states [8, 9], and quantum
dots near the two-impurity Kondo [10, 11] or the two-channel Kondo [12, 13] critical points.

In the continuum, the BIM is in fact integrable [14], both in the massless bulk critical
case, and also in the massive regime away from the critical point. Certain correlation
functions can then be calculated exactly using form factor methods [15]–[17], although
in the bulk critical case relevant to equation (1) many important quantities cannot be
easily obtained due to the proliferation of many-particle excitations. On the other hand,
Chatterjee and Zamolodchikov [18] (CZ) showed that conformal field theory imposes
linear differential equations which fully determine correlation functions in this limit.
Of course, conformal field theory has been used previously for systems with conformal
invariant boundary conditions [5, 6]. The remarkable feature of the result of CZ is that the
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correlation functions are still determined by differential equations even for nonconformal
invariant boundary conditions obtained at finite boundary field.

The method of CZ was applied to the calculation of the local magnetization as a
function of distance from the boundary, x. On the semi-infinite plane, equivalent to the
quantum 1D model, equation (1), at zero temperature, their result reads [18]

〈σ(x)〉h = 213/8
√
πhx3/8Ψ(1/2, 1; 8πh2x), (2)

where Ψ is a degenerate hypergeometric function. Here 〈σ(x)〉 has the standard field
theory normalization, which we emphasize is only proportional to 〈σz

j 〉 of a particular
lattice model, such as equation (1). Indeed, x ∝ j, and h ∝ hB provided that hB 
 1. At
short distance one thus obtains

〈σ(x)〉 = −213/8hx3/8[ln(x) + O(1)] + O(x7/8) for x
 h−2, (3)

and at long distances 〈σ(x)〉 → (2/x)1/8, corresponding exactly to the result for fixed
boundary condition, obtained from boundary conformal field theory [19]. As such, the
exact function, equation (2), captures the full crossover behavior between two fixed points
where conformal invariant boundary conditions do hold.

Since the problem for finite h does not in general possess conformal invariance at the
boundary, it is not possible to generalize equation (2) to other geometries by means of a
simple conformal mapping. However the method of CZ can be applied directly to other
geometries, yielding a new set of differential equations (this was demonstrated explicitly
for the 2D disk geometry by CZ [18]). Similarly, Leclair, Lesage and Saleur [7] (LLS)
applied the method to the geometry of a semi-infinite cylinder. In the present paper we
shall be concerned with this semi-infinite cylinder geometry, whose boundary consists of
a circle with circumference β, at which the boundary field h is applied. This classical 2D
Ising model is equivalent to the quantum chain model equation (1) at finite temperature
T ∝ β−1 (see e.g. [20]).

We re-examine the result of LLS for the local magnetization in section 2. Whereas
these nonperturbative results give the full x dependence of the local magnetization for
any h and β, we find that a more general ansatz for the local magnetization allows for
an additional multiplicative factor f(2βh2). The physical meaning of this missing factor
is then explained. The full scaling function for the local magnetization is determined in
section 3; while the lattice model equation (1) is studied directly in section 4. The local
magnetization on the lattice is calculated numerically, and the results compared with
the refined analytic solution, showing excellent agreement. The paper ends with a short
summary, where implications and applications of the results are discussed.

2. Refinement of earlier results

LLS considered a classical Ising model on the half-cylinder in the continuum limit [7].
They calculated the local magnetization as a function of the distance x from the circular
boundary of circumference β, which was conveniently written in the form [7]

〈σ(x)〉 =

(
1

sinh(2πx/β)

)1/8

g(X), (4)
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with X = (1 − coth(2πx/β))/2 and where 〈σ(x)〉 is independent of τ ∈ (0, β) due to
translation symmetry along the boundary. LLS derived a linear differential equation for
g(X), which reads [7]

(
(X −X2)

d2

(dX)2
+

(
1 +

Λ

2
− 2X

)
d

dX
− 1

4

)
g(X) = 0, (5)

parametrized in terms of Λ = 2βh2. Their solution is [7]

〈σ(x)〉LLS =

(
4π/β

sinh(2πx/β)

)1/8

2F1

(
1

2
,
1

2
; 1 + 2βh2,

1 − coth(2πx/β)

2

)
, (6)

where 2F1(a, b, c, z) is the Gauss hypergeometric function. Below we will use its integral
representation

2F1(a, b, c, z) =
Γ[c]

Γ[b]Γ[c− b]

∫ 1

0

dt
tb−1(1 − t)c−b−1

(1 − tz)a
, (7)

where Γ(y) is the gamma function. This result is normalized with an overall constant
such that at long distances 〈σ(x)〉 → ((4π/β)sinh(2πx/β))1/8 recovers the expected result
for fixed boundary conditions (taking β → ∞ then yields 〈σ(x)〉 → (2/x)1/8, consistent
with [19]).

In this paper we point out that the differential equation (5) leaves a freedom
which goes beyond an overall normalization constant. Unlike the zero-temperature case
(corresponding to the semi-infinite plane, β → ∞), here the normalization of equation (6)
can itself be a scaling function of Λ. We thus replace equation (6) by the more general
ansatz,

〈σ(x)〉h,β = f(2βh2) ×
(

4π/β

sinh(2πx/β)

)1/8

2F1

(
1

2
,
1

2
; 1 + 2βh2,

1 − coth(2πx/β)

2

)
, (8)

which depends explicitly on the function f(2βh2), determined in section 3, below.
Equation (8) implies f(∞) = 1, so that 〈σ(x)〉h,β recovers asymptotically the behavior of
the fixed boundary condition fixed point.

We note that the same subtlety occurs with other geometries, as highlighted by CZ
in the case of the disk [18]. In that case, the additional scale in the problem is the disk
radius R; and an additional scaling function of Rh2 (analogous to our Λ = 2βh2) appears
in the expression for the local magnetization. As in the present case, this function is not
fixed by the linear differential equations [18].

Finally, we comment briefly upon the physical significance of the scaling function
f(2βh2). It describes the dependence on the additional thermal scale influencing
the renormalization group flow at T �= 0. In accord with physical expectation, the
renormalization group flow is cut off at the external scale given by max{T, x−1}. Since
h grows under renormalization (and has scaling dimension 1/2) [5, 6], we should consider
two regimes depending on the ratio between this external scale and the field-induced scale
∼h2:

max{T, x−1}  h2: free boundary condition,

max{T, x−1} 
 h2: fixed boundary condition.
(9)
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Figure 1. Schematic phase diagram of the BIM as a function of temperature and
distance from the boundary. The dashed line denotes the crossover between free
and fixed boundary conditions occurring when max{T, x−1} ∼ h2.

These regimes are illustrated in figure 1. The important consequence following from this is
that, at finite temperatures, the fixed boundary condition fixed point is not always reached
on taking x → ∞. The single scaling function f(2βh2) thus describes the crossover from
free to fixed boundary condition at a given x, upon decreasing temperature. Obviously
its effect is most apparent at large x, since there is no crossover at small x. However,
as suggested by figure 1, the system is always close to the free boundary condition fixed
point at small x, and this fact will prove useful in determining f(2βh2), as considered in
section 3.

3. Determination of the scaling function f(2βh2)

In this section we find the function f(2βh2) appearing in equation (8). Since this function
is a scaling function of βh2 and does not depend on distance x, it could in principle be
determined at any given x. While its influence is most pronounced at large x, where the
system undergoes a crossover as a function of T (see figure 1), here we determine f(2βh2)
by exploring the small x behavior, where the system remains close to the free boundary
condition fixed point. Importantly, the resulting behavior at small x is perturbative in h
regardless of βh2, as shown explicitly below.

First we note that at both large and small Λ, the short distance behavior of 〈σ(x)〉
is linear in h. As Λ → ∞, one sees this directly from the small x expansion of the exact
T = 0 result of CZ, equation (3). In the opposite limit Λ → 0, the behavior is by definition
perturbative in h, and so the leading correction to magnetization is of course also linear
in h. In section 3.1, we perform first-order perturbation theory in the boundary field h,
with respect to the free boundary condition fixed point. The key point is that its short
distance behavior yields precisely equation (3), implying that

〈σ(x)〉h,β = −213/8hx3/8[ln(x) + O(1)] + O(x7/8) for x
 β, h−2 (10)

holds at short distances x 
 β, h−2 for any Λ. Naively, one might think that the coefficient
of the x3/8[ln(x)+O(1)] term could be renormalized by higher orders in h. But the scaling
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Figure 2. Plot of equation (12).

form of the problem implies that every power of h is accompanied by a power of
√
β (or√

x, which gives a subleading x dependence to equation (10)). Such terms diverge as
T → 0, and so this renormalization is not consistent with the exact nonperturbative
T = 0 result, equation (2), which is well behaved at short distances, equation (3).

Finally, we consider the short distance expansion of our ansatz equation (8), which
using equation (7) is found to be

〈σ(x)〉h,β = −f(2βh2)
29/8

√
β

Γ[1 + 2βh2]

Γ[1/2 + 2βh2]
x3/8[ln(x) + O(1)] + O(x7/8) for x
 β, h−2.

(11)

Comparing equations (10) and (11) we now obtain the scaling function

f(Λ) =
√

Λ
Γ[1/2 + Λ]

Γ[1 + Λ]
. (12)

This function increases monotonically as shown in figure 2, and has asymptotic limits
f(Λ 
 1) ≈

√
πΛ and f(Λ  1) ≈ 1 − 1/8Λ.

We note that a similar perturbative method was used by CZ to fix the scaling function
of Rh2 for the disk geometry [18].

3.1. Perturbation theory in the boundary field h

In this subsection we show that the form of equation (10) indeed follows from perturbation
theory around the free boundary condition fixed point. We obtain the full x/β dependence
of the magnetization at small h, recovering perturbatively the Λ → 0 limit of equation (8).

The continuum limit of the critical classical 2D Ising model is described by a c = 1/2
conformal field theory, which admits a Lagrangian formulation in terms of the free massless
Majorana Fermi field (ψ, ψ̄), with the action

S0 =
1

2π

∫
d2z [ψ∂z̄ψ + ψ̄∂zψ̄]. (13)

Here (z, z̄) = (τ + ix, τ − ix) are complex coordinates and d2z = dτ dx. In the presence
of a boundary B with a magnetic field h, the action can be decomposed into a bulk part
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and a boundary part,

S =
1

2π

∫

D
d2z [ψ∂z̄ψ + ψ̄∂zψ̄] + h

∫

B
σB. (14)

The boundary operator σB was identified in [5, 6] with a dimension 1/2 operator
σB(τ) ∼ ψ(τ, x = 0), associated with the fermion field at the boundary. In our case
B = ∂D is a circle parametrized by τ ∈ [0, β] and D is the semi-infinite cylinder.
Following Cardy’s method of images [5] the one point function of the magnetization
is σ(z1, z2) = 〈σL(z1)σL(z2)〉, where σL(z) is a dimension 1/16 left moving field living
in the geometry of the infinite cylinder. We then obtain conformal invariant boundary
conditions, with the ‘boundary’ at x = 0. The boundary field h is now considered as a
perturbation to the free boundary condition fixed point. To first order in h,

σ(1)(z1, z2) = h

∫ β

0

dτ 〈σ(z1)σB(0, τ)σ(z2)〉. (15)

The three-point function appearing in the integrand is fully determined by conformal
invariance, and one obtains up to a normalization constant N

σ(1)(z1, z2) = hN

(
sin(π/β)(z1 − z2)

π/β

)3/8

×
∫ β

0

dτ
(π/β)

[sin ((π/β)(τ − z1)) sin ((π/β)(τ − z2))]
1/2
. (16)

The physical magnetization is obtained by setting 〈σ(x)〉 = 〈σ(z1 = ix, z2 = −ix)〉. We
now take z1 = ix, z2 = −ix in equation (16) and use the trigonometric identity,

2 sin

(
π

β
(τ − z1)

)
sin

(
π

β
(τ − z2)

)
= cos

(
2iπx

β

)
− cos

(
2πτ

β

)
. (17)

The integral in equation (16) then becomes

∫ 2π

0

dθ√
(w1/2 + w−1/2)/2 − cos θ

=
2π√

sinh(2πx/β)
2F1

(
1

2
,
1

2
; 1,

1 − coth(2πx/β)

2

)
,

(18)

in terms of w = e−4πx/β and θ = 2πτ/β. The constant N was carefully accounted for by
CZ [18]. Using this and equation (18), first-order perturbation theory in the boundary
field h yields

〈σ(x)〉(1)β = h
√

2πβ ((4π/β)sinh(2πx/β))1/8
2F1

(
1

2
,
1

2
; 1,

1 − coth(2πx/β)

2

)
+ O(h2).

(19)

It is interesting to compare this with the full result of LLS, equation (6). At small h, both
carry the same x/β dependence; however, LLS miss the overall linear dependence on h,
accounted for by the function f(2βh2) in equation (8).

The short distance behavior of equation (19) is precisely equation (10).
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4. Demonstration with numerical solution

In this section we demonstrate the validity of equation (8) as the continuum limit of the
lattice magnetization

〈σ(j, hB, T )〉 ≡
Tr(e−H/Tσz

j )

Tr(e−H/T )
, (20)

where H is the Hamiltonian of the lattice model, equation (1). The quantum boundary
Ising chain can be solved by applying a Jordan–Wigner transformation, which yields
a quadratic fermionic Hamiltonian. The magnetization is nonlocal in terms of these
fermions: calculation of σ(j, hB, T )〉 is then equivalent to evaluation of the determinant
of a matrix whose elements are fermionic correlation functions [21]. We construct these
analytically, but ultimately evaluate them numerically. Details of this calculation follow
in section 4.1. Here we pre-empt that discussion and present our numerical results,
comparing to the refined exact expression, equation (8).

The continuum limit expression equation (8) admits the scaling form

〈σ(x, h, T )〉 = T 1/8F [x/β, 2βh2]. (21)

For this function to be a continuum limit of the lattice magnetization, there should exist
nonuniversal constants c, cx, ch such that

〈σ(j, hB, T )〉 = cT 1/8F [cxj/β, 2chβh
2
B] (22)

is satisfied for all j, hB and T , as long as distances are large compared to the lattice
constant, j  1, and the energy scales hB and T are small compared to the lattice cutoff
scale, hB, T 
 1.

The constant cx is related to the velocity v of bulk excitations via cx = v−1. This
follows from the requirement that the exponential decay at long distances j  β is given
by [22] 〈σ(x = j)〉 = 〈σ(z1 = ix)σ(z2 = −ix)〉 → e−(2ν)π(2j)/(vβ), with ν = 1/16 being the
scaling dimension of the chiral σ field. In our model we obtain cx = 1/2 exactly. c is
an overall factor relating the lattice magnetization to the field theory one, and ch relates
the (squared) boundary field, hB, in the lattice model to h appearing in the continuum
action, equation (14). We determine c and ch by demanding that the ratio

〈σ(j, hB, T )〉
cT 1/8F [cxj/β, 2chβh2

B]
(23)

is equal to unity for all hB. The best fit from our numerical data was obtained for
ch � 0.161 and c � 0.729.

As shown in figure 3, we obtain essentially perfect agreement between numerical
calculations and field theoretical predictions for the magnetization as a full function of
distance, over a wide range of 2h2/T = 2chh

2
B/T .

Figure 3 should be seen as confirmation that the x dependence of the magnetization
is described by the LLS result, equation (6). However, the full dependence on h, x
and T—capturing the evolution from the T 
 h2 result of CZ, equation (2), to the
perturbative T  h2 result, equation (19)—is only recovered on inclusion of the factor
f(2βh2) appearing in equation (8).

doi:10.1088/1742-5468/2012/04/P04006 8

http://dx.doi.org/10.1088/1742-5468/2012/04/P04006


J.S
tat.M

ech.
(2012)

P
04006

Local magnetization in the boundary Ising chain at finite temperature

Figure 3. Comparison of analytical results using equation (8) (full lines) and
numerical results (dashed lines) for fixed temperature T = 0.5×10−3 and varying
boundary field hB = 10−3+n/4/

√
2, n = 0, 1, . . . , 10 increasing from bottom to top

(explicitly hB = 0.000 707, 0.001 25, 0.002 23, 0.003 97, 0.007 07, 0.0125, 0.0223,
0.0397, 0.0707, 0.125, 0.223).

4.1. Modified Jordan–Wigner transformation and construction of the magnetization
determinant

We now describe the calculation of the magnetization using a fermionic representation of
the transverse field quantum Ising chain, equation (1). We start from a finite lattice with
L sites,

HL = −
L−2∑

i=0

σz
i σ

z
i+1 −

L−1∑

i=0

σx
i − hBσ

z
0 , (24)

with boundary field hB at site j = 0, and with free boundary conditions at site j = L− 1.
Ultimately, we will take the L→ ∞ limit to avoid finite size effects.

Consider first the usual Jordan–Wigner representation of the Pauli matrices τj(j =
0, . . . , L− 1),

τx
j = iγB,jγA,j, τ z

j = −
(

j−1∏

�=0

iγA,�γB,�

)
γB,j, (25)

in terms of self-Hermitian (Majorana) lattice fermions γA(B),j, satisfying {γA,j, γA,j′} =
2δjj′, {γB,j, γB,j′} = 2δjj′, {γA,j, γB,j′} = 0. Here, τ y

j can be obtained from iτ y
j = τ z

j τ
x
j .

Employing this representation for equation (24), one obtains a linear term involving
a single fermionic operator representing the boundary spin operator, τ z

0 = −γB,0.
This proves to be inconvenient in the following, and so we use a modified fermionic
representation of the spins to eliminate this linear term from the Hamiltonian. Specifically,
we introduce an extra boundary Majorana fermion γ (with γ2 = 1), which anticommutes
with all other fermions γA,j and γB,j. It can be checked that, if [τa

j , τ
b
j′] = 2iεabcδjj′τ

c
j , then
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{σx
j , σ

y
j , σ

z
j } ≡ {σx

j , iγσ
y
j , iγσ

z
j } also satisfy [σa

j , σ
b
j′] = 2iεabcδjj′σ

c
j . Thus we work with the

modified Jordan–Wigner representation

σx
j = iγB,jγA,j, σz

j = − iγ

(
j−1∏

�=0

iγA,�γB,�

)
γB,j. (26)

This is formally equivalent to embedding the spins in a larger Hilbert space. The model
equation (24) now becomes a tight binding model of Majorana fermions, containing only
quadratic terms:

HL =
L−2∑

j=0

iγA,jγB,j+1 +
L−1∑

j=0

iγA,jγB,j + hBiγγB,0. (27)

The model can be straightforwardly diagonalized by introducing the fermionic modes

An = 1
2

L−1∑

j=0

(
gn(j + 1

2
)γA,j + ign(j)γB,j

)
, (n = 1, 2, . . . , L) (28)

with

gn(j) =

√
2

L+ 1/2
sin

(
πn

L+ 1/2

(
j +

1

2

))
(29)

satisfying the completeness relation
∑L

n=1 gn(j)gn(j
′) =

∑L
n=1 gn(j + 1

2
)gn(j′ + 1

2
) = δjj′.

This gives {An, An′} = δn,n′, and

γA,j =

L∑

n=1

gn(j + 1
2
)(An + A†

n), iγB,j =

L∑

n=1

gn(j)(An − A†
n). (30)

The Hamiltonian thus becomes

HL =

L∑

n=1

EnA
†
nAn + hB

L∑

n=1

gn(0)γ(An − A†
n), (31)

with En = 4 cos(πn/(2L+ 1)), which consists of a band of fermionic levels coupled to a
Majorana impurity.

Using equation (26), the magnetization is given by

〈σz
j 〉 = −ij+1〈γγB,0γA,0γB,1γA,1 · · · γB,j−1γA,j−1γB,j〉. (32)

One proceeds using Wick’s theorem [21], applicable for the quadratic Hamiltonian
equation (31). Due to the bipartite structure in equation (27) it follows that 〈γA,jγA,j′〉 =
〈γγA,j′〉 = 〈γB,jγB,j′〉 = 0. All nonzero contractions, including relative signs, are then
captured by the determinant

〈σz
j 〉 = −

∣∣∣∣∣∣∣∣

⎛

⎜⎜⎝

i〈γγB,0〉 i〈γγB,1〉 · · · i〈γγB,j〉
i〈γA,0γB,0〉 i〈γA,0γB,1〉 · · · i〈γA,0γB,j〉

...
...

. . .
...

i〈γA,j−1γB,0〉 i〈γA,j−1γB,1〉 · · · i〈γA,j−1γB,j〉

⎞

⎟⎟⎠

∣∣∣∣∣∣∣∣
. (33)
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The calculation of the fermionic correlators in equation (33) can be done by exact Green
function resummation, treating the problem as a noninteracting impurity model [23]. In
equation (31) we have a quasi-continuum of modes labeled by n coupled to a localized
impurity state γ. The Green functions for n-modes and for the localized state are defined
as

Ĝnn′(τ) = −
〈
T
(
An(τ)
A†

n(τ)

)
(A†

n′ An′ )

〉
, Gγ(τ) = −〈T γ(τ)γ〉, (34)

where O(τ) = eHLτOe−HLτ , and T is Wick’s time-ordering operator. We now construct a

perturbative expansion of the Green functions in hB, with G(iωm) =
∫ β

0
dτ eiωmτG(τ) in

terms of the Matsubara frequencies ωm = πT (1 + 2m). The zeroth-order Green functions
are given by

Ĝ
(0)
nn′(iωm) = δnn′

(
iωm − En 0

0 iωm + En

)−1

, G(0)
γ (iωm) =

2

iωm
. (35)

The full impurity Green function can then be written as Gγ(iωm) = [(G
(0)
γ (iωm))−1 −

Σ(iωm)]−1. Writing the boundary term in the Hamiltonian as HL|hB
=

hB

∑L
n=1 gn(0)γ(A†

n An )
( −1

1

)
, the exact self-energy follows as

Σ(iωm) = h2
B

L∑

n=1

g2
n(0) ( 1 −1 ) Ĝ(0)

nn(iωm)

(
1
−1

)
= −h2

B

L∑

n=1

g2
n(0)

2iωm

(ωm)2 + E2
n

. (36)

We can now calculate the fermionic correlators entering the determinant equation (33).
With G(τ) = T

∑
ωm

e−iωmτG(iωm), the correlators involving the impurity fermion are
given by

i〈γγB,x〉 = i〈T γ(τ = 0+)γB,x〉 = iT
∑

ωm

e−iωm0+〈γγB,x〉ωm

= T
∑

ωm

e−iωm0+
L∑

n=1

gn(x)〈γ(An − A†
n)〉ωm, (37)

where we used equation (30) in the last equality. Proceeding with first-order perturbation
theory in hB, we have

i〈γγB,x〉 = T
∑

ωm

e−iωm0+
L∑

n=1

gn(x)Gγ(iωm)hBgn(0) ( 1 −1 ) Ĝ(0)
nn(iωm)

(
1
−1

)

= −ThB

∑

ωm

Gγ(iωm)e−iωm0+
L∑

n=1

gn(x)gn(0)
2iωm

(ωm)2 + E2
n

. (38)

Using the exact expression for Gγ, this becomes

i〈γγB,x〉 = −ThB

∑

ωm

e−iωm0+

∑L
n=1(gn(x)gn(0)/((ωm)2 + E2

n))

1/4 + h2
B

∑L
n=1((gn(0))2/((ωm)2 + E2

n))
. (39)
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Similarly, the 〈γAγB〉 correlators are given by

i〈γA,xγB,x′〉 = −T
∑

ωm

e−iωm0+
L∑

n,n′=1

gn(x+ 1
2
)gn′(x′) ( 1 1 ) Ĝnn′(iωm)

(
1
−1

)
. (40)

Using standard impurity Green function methods, the full Ĝnn′(iωm) Green function is
seen to contain two terms,

Ĝnn′(iωm) = δnn′Ĝ(0)
nn(iωm) + h2

BĜ
(0)
nn(iωm)

(
−1
1

)
gn(0)Gγ(iωm)gn′(0) ( 1 −1 ) Ĝ

(0)
n′n′(iωm).

(41)

Explicitly, the desired correlator can be expressed as

i〈γA,xγB,x′〉 =
L∑

n=1

gn

(
x+

1

2

)
gn(x′) tanh

(
En

2T

)

+ 2h2
BT
∑

ωm

e−iωm0+

[(
L∑

n=1

gn(x+ 1/2)gn(0)En

(ωm)2 + E2
n

)(
L∑

n′=1

gn′(x′)gn′(0)

(ωm)2 + E2
n′

)]

×
[

1

4
+ h2

B

L∑

n′′=1

(gn′′(0))2

(ωm)2 + E2
n′′

]−1

. (42)

All these expressions are exact for the model equation (24) containing two boundaries.
We are interested in the effect of the boundary j = 0, but not on the boundary
at j = L − 1. Thus we proceed by taking the limit L → ∞, which reproduces
the desired semi-infinite chain. Replacing discrete summations over n by integrals,

(2/(L+ 1/2))
∑L

n=1 → (4/π)
∫ π/2

0
dθ, with θ = (πn/(2L+ 1)), equations (39) and (42)

become

i〈γγB,j〉 = −ThB

∑

ωm

e−iωm0+ σ1(ωm, j)

1/4 + h2
Bσ1(ωm, 0)

, (j = 0, 1, 2, . . .)

i〈γA,jγB,j′〉 = σ(j + j′ + 1) − σ(j − j′) + 2h2
BT

×
∑

ωm

e−iωm0+ σ2(ωm, j)σ1(ωm, j
′)

1/4 + h2
Bσ1(ωm, 0)

, (j, j′ = 0, 1, 2, . . .)

(43)

where

σ1(ω, j) =
4

π

∫ π/2

0

dθ
sin(θ) sin[(2j + 1)θ]

ω2 + (4 cos θ)2
,

σ2(ω, j) =
4

π

∫ π/2

0

dθ
4 sin(θ) sin[(2j + 2)θ] cos(θ)

ω2 + (4 cos θ)2
,

σ(j) = − 2

π

∫ π/2

0

dθ cos[(1 + 2j)θ] tanh

(
4 cos(θ)

2T

)
.

(44)

The magnetization due to a field hB applied at the single boundary of a semi-infinite
chain at finite temperatures is thus given exactly by equations (33) and (43). In practice
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we evaluate the integrals in equation (44) numerically, yielding the results presented
in figure 3. It would be interesting to rederive the field theoretical results by analytic
evaluation of the determinant equation (33) in the continuum limit following the methods
of [4].

5. Conclusions

The crossover physics evinced by the boundary Ising model has been shown to play a
key role in a surprisingly diverse range of physical problems [7]–[13]. Analysis of the
exact universal crossover from free to fixed boundary conditions in such problems at finite
temperatures thus requires the corresponding scaling functions of the boundary Ising
model to be known exactly. In this paper we obtained the full scaling function for the
magnetization of the boundary Ising chain at finite temperature. Among the potential
applications of our results, one example is calculation of finite-temperature conductance
crossovers in two-channel or two-impurity Kondo quantum dot systems [24]. The crossover
from non-Fermi-liquid to Fermi liquid physics in such systems is characterized by the same
renormalization group flow as occurs in the boundary Ising chain [10]. We plan to extend
our earlier work [12] at T = 0 in this area to finite temperatures, employing the results of
this paper [24]. We note in this regard that without the function f(2βh2), the conductance
near the non-Fermi-liquid fixed point is unphysical [24]; but using the main result of this
paper, equation (8), exact results [10] at both non-Fermi-liquid and Fermi liquid fixed
points are recovered precisely.
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