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ABSTRACT: We study theoretically a triangular cluster of three magnetic impurities, hybridizing
locally with conduction electrons of a metallic host. Such a cluster is the simplest to exhibit frustration,
an important generic feature of many complex molecular systems in which different interactions
compete. Here, low-energy doublet states of the trimer are favored by effective exchange interactions
produced by strong electronic repulsion in localized impurity orbitals. Parity symmetry protects a level
crossing of such states on tuning microscopic parameters, while an avoided crossing arises in the general
distorted case. Upon coupling to a metallic host, the behavior is shown to be immensely rich because
collective quantum many-body effects now also compete. In particular, impurity degrees of freedom are
totally screened at low temperatures in a Kondo-screened Fermi liquid phase, while degenerate ground states persist in a local
moment phase. Local frustration drives the quantum phase transition between the two, which may be first order or of Kosterlitz−
Thouless type, depending on symmetries. Unusual mechanisms for local moment formation and Kondo screening are found due
to the orbital structure of the impurity trimer. Our results are of relevance for triple quantum dot devices. The problem is studied
by a combination of analytical arguments and the numerical renormalization group.

■ INTRODUCTION AND MOTIVATION

The interplay of orbital and spin degrees of freedom with
electronic interactions can produce a diverse range of chemical
and physical behavior. At the few-electron level of a single
molecule, understanding the resulting complexity is a tradi-
tional problem in theoretical chemistry and a challenge because
strong correlations preclude an independent particle picture. At
the many-electron level of clean bulk metals, by contrast,
interactions are often rather unimportant, and the system is
adequately described by an essentially independent particle
description.
Bridging between these limits is the fascinating class of

“quantum impurity problems”,1 in which an interacting and, in
effect, small molecular subsystem is coupled locally to the
continuum of conduction electrons in a metal. The most basic
example, a classic paradigm in condensed matter science,1−3 is a
single magnetic impurity embedded in a metallic host. Local
Coulomb repulsion favors single-occupancy of the active
impurity orbital, with a local moment thus forming at high
temperatures due to the free spin degree of freedom. However,
the Kondo effect plays a key role at low temperatures/energies;
the impurity moment is screened dynamically by conduction
electrons, which together form a many-body spin-singlet state
(the Kondo singlet). The screening process itself can be
understood in terms of a renormalization group flow,
corresponding to the crossover from the local moment fixed
point applicable at high temperatures to the strong coupling
fixed point describing the Kondo singlet ground state1,4−7 and
with physical properties exhibiting universality in terms of the
crossover temperature scale, TK. Interestingly, there is a close
connection between spin Kondo physics and dissipative
tunneling relevant to electron-transfer processes in chemistry,
as emphasized many years ago by Jongeward and Wolynes in
ref 8.

The Kondo effect associated with screening of a single
magnetic impurity has been observed experimentally in many
metals.1 In semimetallic systems, by contrast, where the host
density of states vanishes at the Fermi level, it is well-known
that Kondo physics can be suppressed and that such systems
also support degenerate local moment ground states.9−13 Local
quantum phase transitions (QPTs) between Kondo-screened
phases and local moment phases have thus attracted much
interest and have been studied in detail, being sought, for
example, in soft-gapped systems such as graphene,14,15 d-wave
superconductors,16 and surfaces of 3d topological insula-
tors.17,18

The situation is unsurprisingly richer when several impurities
are present. Already in the case of two impurities, the resulting
behavior can be markedly different.19−30 If the impurities are
spatially well-separated, each is essentially screened independ-
ently by the Kondo effect. However, an effective exchange
interaction (RKKY) can arise and dominate when two
impurities are brought closer, with a resulting crossover to
local interimpurity spin-singlet formation19,20 (indeed, for
strictly independent screening channels, the crossover is
sharpened to a true transition21,26−28).
Multi-impurity systems, and even small molecules deposited

on metallic surfaces, exhibit more complex phenomena due to
competition between local interactions and the Kondo
effect.31−42 In this paper, we consider a cluster of three
impurities, which exhibits the frustrating effects of competing
ground states. Frustration and degenerate ground states at level
crossings are of course an important general feature of many
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complex molecular systems familiar in chemistry. Here, we
examine the interplay between frustration and the Kondo effect
in one of its simplest realizations to obtain a detailed
understanding of the underlying physical behavior.
Real three-impurity systems, such as Cr clusters on clean

Au(111) surfaces or Co clusters on Cu(100), have been studied
both experimentally31,33 and theoretically.32,34,43−45 However,
because the impurities couple to different surface sites of the
host, a realistic theoretical model maps irreducibly to a three-
channel problem,32 whose properties depend quite sensitively
on details of the particular experimental realization. More
general aspects of the three-impurity problem can however be
accessed in triple quantum dot (TQD) devices,42,46−49 where
the metallic leads to which the dots are tunnel-coupled provide
the conduction electrons. The Kondo effect has been observed
in single semiconductor quantum dots coupled to metallic
leads,50 which are often referred to as artificial atoms.51 By the
same token, coupled dot devices behave as highly tunable
artificial molecules.47,52,53 The primary experimental probe in
all cases is of course the conductance, obtained by driving a
steady current through the lead-coupled quantum dot system.
The system studied here is illustrated in Figure 1 and consists

of a triangular cluster of three quantum dots (impurities),

tunnel-coupled apically to a single channel of conduction
electrons (and with the metallic lead split into the source and
drain to allow measurement of conductance). We find both a
Kondo-screened phase and a free local moment phase,
depending on the model parameters (see Figure 2), which

themselves could be tuned in a real device by application of
gate voltages.42,46−49 The Kondo phase is characterized by a
strong coupling Fermi liquid ground state, in which all dot
degrees of freedom are screened. Zero-bias conductance
through the device in this case is maximally enhanced at low
temperatures due to the Kondo effect. Three distinct screening
mechanisms are uncovered, depending on the relative strength
of interdot tunnel-couplings, which have characteristic universal
signatures in physical quantities. By contrast, the Kondo effect
is totally suppressed in the local moment phase, which has a
doubly degenerate ground state and extremely low con-
ductance.
The QPT separating the Kondo and local moment phases is

studied in some detail. In the parity-symmetric case, the
transition is a parity-protected level crossing.35 In the more
general distorted case, by contrast, the transition occurs at the
critical end point of a line of Kondo-screened states. An
effective model is derived to describe this Kosterlitz−Thouless
(KT) transition,54 which captures the characteristic vanishing of
the low-energy scale, TK, as the transition is approached from
the Kondo phase. Analytic arguments are supplemented and
confirmed by exact numerics obtained using the numerical
renormalization group (NRG).4

■ MODELS AND METHODS
We consider the TQD device illustrated in Figure 1. It consists
of three equivalent and locally correlated single-level (Ander-
sonian) sites, with level energy ε and on-site Coulomb
repulsion U. Dots i and j are tunnel-coupled by a matrix
element tij to form a triangular arrangement. Dot 1 is also
coupled to source and drain leads (and we consider the zero-
bias case where the system is in equilibrium). The Hamiltonian
is decomposed as H = Hleads + HTQD + Hhyb, where, in standard
notation

∑ ∑ ∑ ε=
α σ

α σ α σ
= =↑ ↓

†H c c
k

k k kleads
s,d , (1a)

∑

∑

ε= ̂ + ̂ + ̂ ̂

+ +
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σ σ

=
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<

†
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[ ( ) ]

[ H.c.]

i
i i i i

i j
ij i j

TQD
1,2,3

, (1b)

∑= +
α σ

α σ α σ
†H V d c[ H.c.]

k
k khyb

, ,
1

(1c)

with nîσ = diσ
† diσ as the number operator for spin-σ = ↑/↓

electrons on dot site i = 1, 2, 3. HTQD describes the isolated
TQD, by itself a small quasi-molecular entity that can
accommodate up to six electrons. In the absence of electron
interactions (U = 0), it is in fact merely a three-site Hückel ring,
although interactions are essential because U is inversely
proportional to the dot capacitance (and no quantum dot has
infinite capacitance!). Hleads by contrast describes the leads, an
essentially noninteracting but macroscopic metal. The hybrid-
ization term Hhyb, in connecting the two subsystems via tunnel-
coupling between dot 1 and the leads, ensures that the lead-
coupled TQD system is an interacting, many-body problem
containing macroscopic numbers of electrons. That is essential
to the basic physics (despite some naive attempts to avoid it in
the chemistry literature).
For equivalent leads α = s,d, we define the conventional

“local” orbital to which dot 1 couples as

Figure 1. Schematic illustration of the TQD setup. Transport
measurements between the source (s) and drain (d) leads are
indicated by the arrow.

Figure 2. Schematic phase diagram for the TQD in the parity-
symmetric case, with ε = −U/2. For a given U (≫Γ), both LM and
Kondo SC phases can be accessed upon tuning the interdot tunnel-
couplings t and t′. Regimes and crossovers are discussed in the text.
The QPT between LM and SC phases indicated by arrows (a−c) is
considered explicitly in the following sections.
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With this, the full TQD problem can then be mapped to an
effective 1d problem by tridiagonalizing the conduction
electrons,1,4 starting from the f 0σ “zero” orbital. One thereby
obtains

∑ ∑= + +
σ

σ σ σ σ
=

∞
† †

+H e f f h f f[ ( H.c.)]
n
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0

( 1)
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(3b)

with all diagonal one-electron energies en = 0 if the local
conduction electron density of states (DOS), ρσ

(0)(ω), is
particle−hole symmetric, with ρσ

(0)(ω) given by

∑ρ ω δ ω ε
π

ω= − = −σ
α

α
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V
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,
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(4)

where G0σ
(0)(ω) ≡ ⟨⟨f 0σ;f 0σ

† ⟩⟩(ω)
(0) is the free Green function for

the local bath site, f 0σ (correlation functions of the type
⟨⟨Â;B̂⟩⟩ω are simply the Fourier transform of the usual retarded
functions −iθ(t1 − t2)⟨{Â(t1),B̂(t2)}⟩).
The conduction electron and hybridization terms of the

Hamiltonian enter in such quantum impurity problems through
a single “hybridization function”,1 given generally by

ω ω ω ωΓ = − ≡ Γ − Γσ σ σ σV G( ) Im ( ) ( ) i ( )2
0
(0) R I

(5)

with Γσ
I (ω) = πV2ρσ

(0)(ω) and where the real part, Γσ
R(ω),

follows by Hilbert transformation of the imaginary part, Γσ
I (ω).

As such, the free DOS and the tunnel-coupling V specify
completely the effect of the leads on the TQD. For simplicity,
we take a wide flat DOS, which is the conventional and generic
case1 relevant to most metallic hosts, ρσ

(0)(ω) = [1/(2D)]θ(D −
|ω|), such that Γσ

I (ω) ≡ Γ = πρV2 is defined inside of the band,
−D ≤ ω ≤ D, and ρ = 1/(2D).
Numerical Renormalization Group. The NRG4 is a

nonperturbative technique for treating quantum impurity
problems, such as the lead-coupled TQD system (for a recent
review, see ref 55). Numerically exact thermodynamic and
dynamic quantities can be calculated with NRG on essentially
all relevant energy scales, from the conduction electron
bandwidth D (typically a few eV in bulk metals) down to the
Kondo scale TK (which is an exponentially small1 fraction of
D).
The first step4 is to divide the conduction electron DOS into

intervals whose widths decrease exponentially (the points
separating intervals are ωn = ±DΛ−n, with Λ > 1 and n = 0, 1, 2,
...). The spectrum is then discretized by replacing the DOS in
each interval by a single pole of the same total weight. The
Wilson chain4−6 is then defined by writing the conduction
electron Hamiltonian as a 1d tight-binding chain of the form in
eq 3a, and parameters hn, en are chosen so that the free DOS at
the TQD site corresponds to the discretized spectrum. This
discretized model is then diagonalized iteratively, with high-
lying states discarded at each step (the truncation being
justified because the strength of the hoppings hn ∼ Λ−n/2

decreases exponentially down the chain4−6).
One thus examines the behavior of the system on

progressively lower energy scales, and thermodynamics can

be built up as a function of temperature.4−6,55 Dynamical
quantities, such as spectral functions, can also be obtained from
the full density matrix,56,57 calculated iteratively in the Anders−
Schiller basis.58 For the calculations presented in this paper, we
use a discretization parameter Λ = 3 and retain around 3000
states at each iteration.

Physical Quantities. We consider below the contribution
to thermodynamics arising from the lead-coupled TQD system,
specifically the so-called excess quantities4−6 ⟨Ω̂⟩imp = ⟨Ω̂⟩ −
⟨Ω̂⟩0, with ⟨Ω̂⟩0 denoting the thermal average in the absence of
the TQD itself. We focus on the entropy Simp(T), uniform spin
susceptibility χimp(T) = ⟨(S ̂z)2⟩imp/T, and “excess” charge nimp =
⟨Q̂⟩imp (here, S ̂z and Q̂ refer to the spin and charge of the entire
system). These quantities show characteristic signatures of the
underlying fixed points, reached under renormalization on
progressive reduction of the temperature/energy scale. The
renormalization group flow between such fixed points shows up
as crossover behavior in thermodynamics, which thus allows
determination of emergent energy scales in the problem, such
as the Kondo temperature, TK.
We also consider dynamical properties, in particular, dot

spectral functions (or, loosely, local densities of states), given
by Diσ(ω) = −(1/π)ImGii,σ(ω) in terms of the local Green
function for that dot, Gii,σ(ω) = ⟨⟨diσ;diσ

† ⟩⟩ω. In the zero-bias
(equilibrium) limit of interest, it is naturally the local spectrum
of dot 1 (itself directly tunnel-coupled to the leads) that
determines the differential conductance Gc(T) between source
and drain leads, mediated via the TQD. This is given exactly59

by

∫ ω
ω

π ω ω= −
∂

∂
Γ σ

−∞

∞G T
G

f
D T

( ) ( )
( , ) dc

0
1

(6)

where f(ω) = [1 + exp(ω/T)]−1 is the Fermi function (and ω =
0 is the Fermi level). Here, G0 = 2e2h−1G̃0, where the
dimensionless quantity G̃0 = 4ΓsΓd/(Γs + Γd)

2 embodies simply
the relative coupling strength of dot 1 to source and drain leads,
such that G0 = 2e2h−1 is maximal in the symmetric case Γs = Γd.
At zero temperature, the conductance is thus controlled by the
behavior of the spectrum at the Fermi level

π ω δ= Γ = = =σ
G

G
D T

(0)
( 0, 0) sin ( )c

0
1

2

(7)

where the final identity follows from the definition of the
scattering phase shift δ = arg[G1σ(ω = 0,T = 0)], together with
the fact that all electron scattering vanishes at the Fermi level.

■ RESULTS: SYMMETRIC CASE
We consider first the full TQD model, eq 1, in the parity-
symmetric case t12 = t13 ≡ t and t23 ≡ t′ (see Figure 1). In this
limit, the Hamiltonian is invariant to swapping the dot labels 2
↔ 3, meaning formally that [H,P̂23] = 0 for the permutation
operator P̂23. All states can thus be classified according to parity
P23 = ±1 (because P̂23

2 = 1). As shown in ref 35, this allows for
the possibility of a (zero-temperature) QPT between two
parity-distinct phases, which are of Kondo-screened and local
moment types. That scenario is explored in detail below,
focusing primarily on the strongly correlated case U ≫ Γ.
Because the most interesting physical behavior arises when the
TQD is in essence triply occupied, we consider the
representative case ε = −U/2. The largest energy scale of the
problem, the bandwidth D, is taken as D = 100Γ.
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Phase Diagram. Before discussing specific results for the
symmetric TQD, in Figure 2 we present the phase diagram that
highlights the relevant regimes, crossover scales, and phases,
verified directly by full NRG calculations. The parity-symmetric
TQD model supports two phases, a Kondo-screened phase
with a strong coupling (SC) ground state and a local moment
(LM) phase with a doubly degenerate ground state.35

As shown below, however, the effective spins that remain free
in the LM phase depend on the underlying parameters in the
(t,t′)-plane. Likewise, Kondo screening proceeds by different
mechanisms in the SC phase depending on the relative
magnitudes of the interdot tunnel-couplings. When the interdot
tunnel-couplings are large compared to the interaction, t ≫ U
(regime (a) of Figure 2), the relevant TQD states are simple
molecular orbitals (MOs), with the lowest doublet state
remaining free down to T = 0 when t′ ≲ U. By contrast, for
t,t′≪ U, each dot is essentially singly occupied. In this case, dot
1 (connected directly to the leads) can undergo the Kondo
effect on the scale of TK, provided that the interdot tunnel-
couplings are weak (t2/U ≪ TK). The strength of the effective
coupling between the remaining dots 2 and 3 then determines
the ultimate ground state of the system, with a level-crossing
QPT occurring between LM and SC states as t′ is increased
through t′ ∼ t2/(UTK)

1/2 (regime (c) of Figure 2). If by
contrast the interdot couplings are stronger, t2/U ≫ TK, the
lowest-energy TQD doublet state has weight on all three dots.
This results (regime (b) of Figure 2) in an effective
antiferromagnetic coupling to the leads if t′ ≳ t, in which
case, the Kondo effect is operative and the SC phase is
obtained, or if t′ ≲ t, it results in an effective ferromagnetic
coupling to the leads, such that the TQD doublet remains free
down to T = 0 in this LM phase.
In the following, we discuss in some detail the behavior in

these three distinct regimes.
Molecular Orbital Regime. We examine first the simplest

case, in which the interdot tunnel-couplings are strong, t ≫ U.
Here, the isolated TQD states are essentially noninteracting
MOs. To obtain a handle on the problem in this regime, we
thus derive a low-energy effective model for the noninteracting
TQD (U = 0) and then incorporate the effect of interactions
within lowest-order perturbation theory in U.
When U = 0, a simple canonical transformation of the dot

operators {d1σ,d2σ,d3σ} → {duσ,dlσ,doσ} brings HTQD in eq 1 to
the diagonal form

∑= ̂ + ̂ + ̂
σ

σ σ σ
=H E n E n E n( )U

u u o o l lTQD
0

(8)

where n ̂ασ = dασ
† dασ (α = u, l, o). The single-particle levels (MO

energies) are given by Eo = ε − t′ and Eu/l = ε + (1/2)t′ ± (1/
2)(8t2 + t′2)1/2, and for t′ < t, the relative ordering is El < Eo < 0
< Eu. The difference in energy between the four-electron state
and the three-electron state is thus EΔ ≡ Eo = ε − t′ < 0. The
lowest many-particle TQD state is thus always a four-electron
state when U = 0.
Intuition suggests however that the Coulomb repulsion will

favor a three-electron state. Treating perturbatively the
interaction part of the Hamiltonian, HI = U∑i n ̂i↑n ̂i↓, we thus
calculate the correction to the isolated TQD states to first-order
in U. The resultant energy difference between the four- and
three-electron states is then EΔ′ = ε − t′ + (1/2)U(1 + γ2) +
(U2), with 2γ2 = 1 − [1 + 8(t/t′)2]−1/2. Hence, for ε = −U/2,

as considered explicitly, EΔ′ = U/4 − t′, indicating that the
three-electron TQD state is indeed favored when t′ ≲ U/4.

Of course, the interesting behavior arises upon coupling the
TQD to the leads. In the relevant case of Γ ≪ U (≪t), one can
obtain an effective model valid at low temperatures/energies ≪
EΔ′ by projecting the full Hamiltonian onto the four-electron
TQD state (for EΔ′ < 0) or the three-electron state (for EΔ′ > 0).
This is achieved by a Schrieffer−Wolff transformation (SWT)60

to second-order in Hhyb, eliminating perturbatively excitations
to higher-lying TQD states.
In the effective four-electron sector, the spin-singlet TQD

state essentially decouples from the leads. This “frozen
impurity” fixed point is continuously connected to the
Kondo-screened ground states1,5,6 (discussed further below).
More interestingly, in the three-electron sector of the TQD,
one obtains via a SWT the effective model

= + ̂· ̂‡H H J S s(0)eff
leads K (9)

with S ̂ as a spin-(1/2) operator for the lowest (doublet) three-
electron TQD state and s(̂0) as the spin density of conduction
electrons at the TQD. Equation 9 is a model of Kondo form,1

with its underlying physics well-known to depend crucially on
the sign of the exchange coupling, JK

‡ . Importantly, we find here
JK
‡ < 0, wherein the ferromagnetic Kondo effect arises.1,61,62

Kondo quenching of the TQD spin-(1/2) is thus inoperative,
with the TQD decoupling from the leads upon renormalization
under reduction of the temperature/energy scale, leaving
asymptotically a free local moment as T → 0. The residual
entropy at the corresponding LM fixed point is thus Simp =
ln(2), and leading irrelevant corrections to the fixed point are
nonanalytic.61,62

Because the ground states for EΔ′ > 0 (LM) and EΔ′ < 0 (SC)
cannot be continuously connected, a QPT is expected at around
t′ ≈ U/4 [see arrow (a) of Figure 2]. This physical picture is
confirmed directly in Figure 3, where NRG results for the full

TQD model are presented. Specifically, we show the TQD
contribution to the entropy Simp(T) as a function of
temperature for systems approaching the QPT between LM
and SC phases. For T ≫ |EΔ′ |, the three- and four-electron
states are quasi-degenerate, and a ln(3) entropy thus results.
Flow to either the LM ground state with Simp = ln(2) or the SC
ground state with Simp = 0 occurs on the scale of TΔ ≡ |EΔ′ |,
which as such vanishes linearly with |t′ − tc′| as the transition at
the critical tc′ ≃ U/4 is approached from either side (such

Figure 3. Entropy Simp(T) versus T/πΓ for systems in the MO regime.
Plotted for common U/πΓ = 10 and t/πΓ = 5, with t′/πΓ tuned to
approach the transition [line (g), tc′/πΓ ≈ 2.45793] from the SC phase
[t′/πΓ = 2.5, 2.459, and 2.45794 for lines (a), (c), and (e)] and from
the LM phase [t′/πΓ = 2.4, 2.457, and 2.45792 for lines (b), (d), and
(f)]. The inset shows the excess charge, nimp(T), for the same systems.
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linearity is symptomatic of a parity-protected level-crossing
QPT35).
The inset shows the excess charge1,5,6 due to the TQD,

nimp(T), for the same systems, confirming that the transition at
T = 0 occurs between effective three- and four-electron TQD
states. These results also show that precisely at the QPT (curve
(g) in Figure 3), the problem can be understood in terms of
coexisting SC and LM fixed points, for example, the T = 0
charge nimp = (10/3) = [1/(2 + 1)](3 × 2 + 4 × 1) is simply an
average of the triple charge characteristic of the doubly
degenerate LM fixed point and the quadruple charge of the
singly degenerate SC fixed point.
Spin Regime: Strong Interimpurity Coupling. More

subtle behavior arises in the strongly correlated case U ≫ t, t′,
Γ, where each dot is essentially singly occupied for temper-
atures T ≪ U. However, the tunnel-couplings do generate
effective exchange couplings between the dots. This can be seen
by projecting (SWT) the full HTQD onto the singly occupied
manifold of TQD states, perturbatively eliminating virtual
excitations to two- and four-electron TQD states to second-
order in the tunnel-couplings t, t′, and V. The resulting effective
spin model is then given by

= + ̂ · ̂ + ̂ + ′ ̂ · ̂ + ̂ · ̂H H J J JS S S S S S s( ) (0)spin leads 1 2 3 2 3 K 1

(10)

where Sî is a spin-(1/2) operator for dot i, s(̂0) is the
conduction electron spin density at the TQD as before, and the
exchange couplings are given by

ρ
π

= ′ = ′ = Γ
J

t
U

J
t

U
J

U
4 4 82 2

K (11)

Two parity-distinct doublet ground states are then obtained
for the isolated TQD, depending on whether t′ > t (even-
parity) or t′ < t (odd-parity). In ref 35, we derived analytically
an effective low-energy model to describe this lead-coupled
TQD system for t2/U ≫ TK, but t ≪ U, corresponding to
regime (b) in Figure 2. In either case, t′ ≫ t or t′ ≪ t, the
effective low-energy model is again a Kondo model eq 9,
describing the residual coupling of the lowest TQD doublet
state to the leads. Importantly, however, JK

‡ = −(1/3)JK for t′≪
t, and JK

‡ = +JK for t′≫ t. The ferromagnetic Kondo effect1 thus
again arises for t′ < tc′ ≃ t, with the lowest TQD doublet
decoupling asymptotically at low energies. However, for t′ > tc′,
the regular spin-(1/2) antiferromagnetic Kondo effect1 drives
the system to a strong coupling state below the Kondo scale
TK ∼ D exp(−1/ρJK), in which all TQD degrees of freedom are
quenched by the lead conduction electrons. The entropy is thus
Simp(0) = 0, corresponding to the Kondo singlet ground
state.1,4−6 Upon tuning t′ through tc′ ≃ t, a level-crossing QPT
occurs between LM and SC phases.35

One can in fact derive more generally an effective low-energy
Kondo model of form eq 9, working directly with HTQD (i.e.,
without first projecting into the spin sector, as above). The
effective Kondo model is obtained simply by projecting the full
Hamiltonian onto the reduced TQD Hilbert space spanned by
the lowest eigenstate of the numerically diagonalized HTQD. For
any t′ < tc′ ≃ t≪ U, the odd-parity TQD doublet couples to the
leads, while the even-parity doublet couples for tc′ < t′ ≪ U.
The QPT can of course also be realized by tuning t, keeping t′
fixed (Figure 2), and a numerical calculation of the effective
coupling so obtained, JK

‡ , is shown in Figure 4. The asymptotic
values35 JK

‡/JK = −(1/3) and +1 in the LM and SC phases are

recovered in the singly occupied limit, and the discontinuous
change in the sign of JK

‡ is seen clearly at the point t′ = t due to
the level crossing of TQD states. NRG calculations on the full
model (without any low-energy projections) indeed confirm
that the transition occurs very close to tc′ = t.

Spin Regime: Weak Interimpurity Coupling. As
suggested by arrow (c) in the phase diagram in Figure 2, a
QPT between LM and SC phases arises even when the interdot
couplings t and t′ are very small. In this case, however, the
mechanism for local moment formation and Kondo screening
is rather subtle.
Because t, t′, Γ ≪ U, the dots are still essentially singly

occupied; therefore, the effective spin Hamiltonian eq 10
remains valid. In the limit where J = 0 (arising when t = 0), dot
1 decouples from dots 2 and 3 and undergoes the regular
Kondo effect with the lead to which it is coupled, being
screened below T ∼ TK (with TK as the Kondo scale
TK ∼ D exp(−1/ρJK) as above).

1 This must also in fact remain
the case for small but nonvanishing J ≪ TK because the
quenched Kondo singlet is already formed on the scale of TK.
However, this fixed point contains residual unquenched degrees
of freedom corresponding to the spins on dots 2 and 3. In order
to analyze the stability of this fixed point, one must thus
determine whether there is an effective coupling of these
degrees of freedom to the remaining Fermi liquid bath states of
the lead.
The effective exchange coupling acting directly between dots

2 and 3 is given simply by J′ = 4t′2/U (see eqs 10 and 11), such
that the local S = 0 singlet state is lower in energy than the local
S = 1 triplet by EΔ = ET − ES = J′. However, there is an
additional effective coupling between dots 2 and 3 due to an
RKKY-type interaction mediated by the Kondo singlet formed
between dot 1 and the leads. Virtual polarization of this Kondo
singlet is readily shown to generate an effective ferromagnetic
contribution to the coupling between the spins of dots 2 and 3,
with second-order perturbation theory in the coupling J within
a Wilson chain formalism28,63 yielding a renormalized singlet−
triplet splitting, EΔ′ = J′ − λJ2/TK (with λ = (1) as an
undetermined positive constant). When EΔ′ > 0, the 2−3 singlet
thus lies lowest and decouples from the rest of the system. In
consequence, at temperatures T ≪ |EΔ′ |, the entire system is in a
singlet state, characteristic of the SC phase of regime (c) in
Figure 2.
By contrast, when EΔ′ < 0, the triplet formed between dots 2

and 3 lies lowest in energy. Thus, in this case, there are still
residual TQD degrees of freedom at temperatures T≪ |EΔ′ |. To

Figure 4. Effective coupling JK
‡/JK versus t/πΓ for the low-energy

Kondo model eq 9 in the regime t,t′ ≪ U. Here, t′/πΓ = 10−3 and U/
πΓ = 8.
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determine the stability of this state, we must again consider the
effective coupling between this triplet and the rest of the
system. Within the Wilson chain picture, it can be shown that
the TQD triplet experiences an effective coupling to the
remaining Fermi liquid bath states of the lead, mediated via the
Kondo singlet formed with dot 1. The mechanism here is in
fact completely analogous to that occurring in odd quantum
dot chains with weak interdot coupling63 or in the asymmetric
two-impurity Kondo problem.28 For EΔ′ < 0, the effective low-
energy model follows as

̂ = ̃ + * ̂· ̃=H H J S s(0)S 1
eff

leads K (12)

where Ŝ is now a spin-1 operator for the residual TQD state,
H̃leads is the free conduction electron Hamiltonian with the
Wilson chain “zero orbital” removed due to the first-stage
Kondo screening involving dot 1, and s(̃0) is its spin density at
the TQD. The key result is that the effective coupling ρJK* ∼ t2/
TK
2 > 0 is now antiferromagnetic, and the effective low-energy

model eq 12 is thus a realization of the famous single-channel
spin-1 Kondo model of Nozier̀es and Blandin.64

The rich physical behavior of the spin-1 Kondo
model35,61,62,64−66 is thus expected on the lowest-energy scales.
The antiferromagnetic coupling, JK* is renormalized upward
upon reduction of the temperature scale, resulting in quenching
(or “underscreening”) of the S = 1 “impurity” below
TK* ∼ D exp(−1/ρJK*) (≪|EΔ′ | ≪ TK),

64 such that the ground
state comprises a residual free spin-(1/2) local moment, with
leading RG-irrelevant corrections to the fixed point that are
ferromagnetic (and nonanalytic).61,62

In consequence, there is again a QPT upon tuning t′,
separating a Kondo-screened SC phase from a LM phase
(regime (c) of Figure 2). The transition itself is expected to
occur at EΔ′ = J′ − λJ2/TK ≃ 0, implying Jc′ ∼ J2/TK [or
equivalently tc′ ∼ t2/(UTK)

1/2; see Figure 2, arrow (c)].
To illustrate this complex behavior, Figure 5 shows full NRG

results for the TQD contribution to entropy and magnetic

susceptibility for systems close to the transition. Both systems
have TK/πΓ ≈ 10−4 and similar |EΔ′ |/πΓ ≈ 10−7. The solid line
corresponds to the LM phase, and the dashed line corresponds
to the SC phase. On the temperature scale T ∼ U, the dots
become singly occupied, and therefore, Simp = 3 ln(2), and
Tχimp = 3/4, corresponding to three free spin-(1/2)’s. As the
temperature is reduced below TK, dot 1 is screened by the

Kondo effect, leaving two quasi-degenerate spins on dots 2 and
3 (yielding thereby Simp = ln(2) and Tχimp = 2/4). For EΔ′ > 0
(dashed line), the residual TQD singlet state is the lowest, and
therefore, Simp = 0 and Tχimp = 0 when T ≪ |EΔ′ |. However, for
EΔ′ < 0 (solid line), the crossover is first to a free residual TQD
triplet state on the scale of |EΔ′ |; then, below T ∼ TK*, the
crossover is to the ultimate stable LM fixed point describing the
underscreened S = 1 Kondo state, with Simp = ln(2) and Tχimp =
1/4.
Similar behavior is observed in dynamical quantities, such as

the T = 0 spectral function for dot 1, the energy/frequency
dependence of which is shown in Figure 6. In the SC phase, the

classic three-peak structure is observed. At high energies ω = ±
U/2, the only spectral features are the Hubbard satellites,
whose origin is simply dot charge fluctuations.1 At low energies
|ω| ∼ TK, the narrow Kondo resonance is observed (see, in
particular, inset (A), dashed line), with the unitarity limit
πΓD1σ(ω) = 1 reached at the Fermi level, ω = 0, being
characteristic of the SC fixed point. In the LM phase however
(solid lines), first-stage Kondo screening of dot 1 on the scale
of TK is followed by second-stage underscreening of the
residual TQD triplet state, which, as above, is mediated via dot
1. This results in a slow crossover on the scale of TK* to the LM
fixed point, characterized by πΓD1σ(ω) ∼ 1/ln2|ω/TK*|
behavior, such that πΓD1σ(ω) = 0 only at ω = 0, characteristic
of the singular Fermi liquid and reflecting the marginally
irrelevant corrections to the fixed point.35,61,62,65,66

Finally, in Figure 7, we show the zero-bias conductance
through the device as a full function of temperature. Solid lines
are for EΔ′ > 0 in the SC phase, approaching progressively
closely (from (d−a)) the transition at EΔ′ = 0, while dashed
lines are for EΔ′ < 0 in the LM phase. All systems have a
common scale TK, and the data are rescaled in terms of T/TK,c*
(with T/TK,c* chosen arbitrarily as the T for which Gc(T)/G0 =
2/3). The δ = π/2 phase shift in the Kondo-screened SC
phase1 implies a unitarity T = 0 conductance Gc(0)/G0 = 1
from eq 7, while δ = 0 in the LM phase65 gives vanishing
conductance,65 Gc(0)/G0 = 0. The behavior at the transition
fixed point itself can again be understood here in terms of
coexisting LM and SC states, yielding a T = 0 conductance at

Figure 5. Thermodynamics for the case of small interdot tunnel-
couplings, t2/U ≪ TK. The main panel shows the TQD contribution
to entropy Simp(T) versus T/πΓ, while the inset shows Tχimp(T). The
solid line is for a system in the LM phase (EΔ′ < 0); the dashed line is
that in the SC phase (EΔ′ > 0). U/πΓ = 7, t/πΓ = 6 × 10−3, and t′/πΓ
= 1 × 10−3 (LM) or 6 × 10−3 (SC).

Figure 6. Single-particle spectrum of dot 1, πΓD1σ(ω) versus ω/πΓ at
T = 0, for systems with the same parameters as those in Figure 5.
Insets (A) and (B) show details of the low-energy behavior on a
logarithmic energy scale. The approach to the LM fixed point is
characterized by marginally irrelevant logarithmic corrections, as
highlighted in panel (B). However, for TK* ≪ |ω| ≪ TK, the spectrum
approaches the unitarity limit πΓD1σ(ω) = 1 due to the first-stage
Kondo screening of dot 1 [see panel (A)].
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the transition of Gc(0)/G0 = 1/3. The full temperature
dependence is of course rich, reflecting with decreasing T
renormalization group flow to the Kondo SC fixed point on the
scale of T ∼ TK, followed by flow to the transition fixed point at
TK,c* and finally flow to the stable LM or SC fixed points
describing the true ground state, on the scale T ∼ |EΔ′ |.

■ RESULTS: DISTORTIONS
We now turn to the more general case of broken-parity
symmetry, as occurs due to distortions of the triangular TQD
structure (Figure 1). The presence of symmetry-breaking
perturbations, such as t12 ≠ t13, of course precludes labeling
states by a parity quantum number because [H,P̂23] ≠ 0. In the
symmetric case considered above, the QPT between LM and
SC phases was characterized by a level crossing between parity-
distinct states. We show below that the parity-broken model
still supports LM and SC phases but that the level-crossing
transition becomes instead a QPT of Kosterlitz-Thouless
form.54 The schematic phase diagram, Figure 2, still applies
in the general case, but with the phase boundary now to be
understood as a line of SC critical end points, with the Kondo
scale vanishing as the transition is approached from the SC
phase.
Effective Models. We focus here on the strongly correlated

case of primary interest, U ≫ tij, Γ. At temperatures T≪ U,
each dot becomes essentially singly occupied, and an effective
TQD spin model analogous to eq 10 can similarly be derived
via a SWT upon perturbative elimination of virtual excitations
to two- and four-electron TQD states. For ease of comparison
with the parity-symmetric case, we retain t13 ≡ t and t23 ≡ t′,
defining the asymmetry in terms of the parameter x = t12 − t13.
The resultant effective low-energy model then has the form

δ

= + ̂ · ̂ + ̂ + ′ ̂ · ̂ + ̂ · ̂

+ ̂ · ̂

H H J J JS S S S S S s

S S

( ) (0)spin leads 1 2 3 2 3 K 1

1 2 (13)

where the effective exchange couplings J, J′, and JK are given in
eq 11 and where the asymmetry enters only through the final
term, with

δ = +tx x
U

4
(2 )2

(14)

The low-energy manifold of the isolated TQD again
comprises a pair of doublet states, denoted |A;Sz⟩ and |B;Sz⟩
(with an essentially irrelevant spin quartet occurring at higher
energies). For any degree of asymmetry, these states may be
expressed in terms of even- and odd-parity doublets |±;Sz⟩
(themselves obtained in the symmetric limit x = 0 = δ
considered above). They are given by

α β| ⟩ = + |− ⟩ + |+ ⟩A S S S; ; ;z z z
(15a)

β α| ⟩ = − |− ⟩ + |+ ⟩B S S S; ; ;z z z
(15b)

where

α β
δ

δ δ
= − = +

− ′ +

− ′ + +

⎛

⎝

⎜⎜⎜

⎞

⎠
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J J

J J
1

1
2
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1
2

1
2
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4

2
(16)

The energy difference between these isolated TQD doublet
states is

δ δ= − = − ′ + +Δ ⎜ ⎟
⎛
⎝

⎞
⎠E E B E A J J( ) ( )

1
2

3
4TQD TQD

2
2

(17)

such that EΔ > 0 for all finite values of J, J′, and δ (or t, t′, and
x). The effect of asymmetry is thus to turn the level crossing of
TQD states at δ = 0 to an avoided crossing when δ ≠ 0. There
is, in other words, a single, unique doublet TQD ground state
(the |A;Sz⟩ state) for all model parameters in the asymmetric
case. This is illustrated in the inset to Figure 8, where we show
the energies of the TQD doublet states as a function of J′ for
different values of the asymmetry δ (the solid line (a) is for the
symmetric case δ = 0).
The implication of eq 17 is that below the temperature/

energy scale EΔ, only the TQD doublet state |A;Sz⟩ is accessible.
As a consequence, one can derive a low-energy effective model,
valid for T ≪ EΔ, by projecting the spin model eq 13 onto the

Figure 7. Zero-bias conductance through the TQD, Gc(T)/G0 versus
T/TK,c* , for systems closely approaching the transition. TK,c* is the
crossover scale upon which the transition fixed point is reached at t =
tc. Plotted for U/πΓ = 4 and t′/πΓ = 10−2, varying t/πΓ = tc ± λTK,
with λ = 10−7, 10−5, 10−3, and 10−1 for lines (a−d), respectively. Solid
lines are for systems in the SC phase, and dashed lines are for the LM
phase. TK is the common scale for the first-stage Kondo effect
involving dot 1, as indicated on the plot.

Figure 8. Avoided crossing of the lowest TQD doublet states in the
asymmetric case shown in the inset, with δ/J = 0, 0.2, 0.4, and 0.6 for
lines (a−d), respectively. The main panel shows the effective coupling
of the lowest doublet to the leads JK,eff/JK versus J′/Jc′, for U/πΓ = 10,
t/πΓ = 0.1, and δ/πΓ = 10−4, obtained from eq 19 (solid line) and
extracted from NRG data in the SC phase via TK ∼ D exp(−1/ρJK,eff)
(points).
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ground-state TQD doublet manifold spanned by |A;Sz⟩. This
can be done to first-order in the Kondo coupling JK, leading to

∑= + | ⟩⟨ | ̂ | ′⟩⟨ ′|· ̂

= + ̂· ̂

′

H H J A S A S A S A S

H J

S s

S s

; ; ; ; (0)

(0)

S S

z z z z
eff leads K

,
1

leads K,eff

z z

(18)

where Ŝ is a spin-(1/2) operator for the doublet TQD state
|A;Sz⟩ and where the effective exchange coupling to the leads
follows as

α= −⎜ ⎟⎛
⎝

⎞
⎠J J 1

4
3K,eff K

2

(19)

From eq 16, we immediately find that JK,eff > 0 is
antiferromagnetic for J′ > J but is ferromagnetic, JK,eff < 0, for
J′ < J (and one also recovers asymptotically the results of the
parity-symmetric case, JK,eff → −(1/3)JK, for J ≫ J′,δ, and JK,eff
→ +JK for J′≫ J,δ). The effective coupling as a function of J′/Jc′
is plotted in Figure 8 as the solid line; points are JK,eff, extracted
from full NRG results, and show very good agreement.
Importantly, the antiferromagnetic effective Kondo coupling

vanishes continuously as (J′ − J) → 0+ [or (t′ − t) → 0+] for
any |δ| > 0

δ
= ′ − + ′ −J

J
J J J J

2
( ) ( )K,eff

K 2
(20)

(in contrast to the discontinuous change in the effective Kondo
coupling associated with a level-crossing QPT; see, e.g., Figure
4). As a consequence, in the full model, we expect a Kondo SC
phase for t′ > tc′ (≃t), with TQD degrees of freedom entirely
quenched1 below a Kondo scale TK ∼ D exp(−1/ρJK,eff), which
itself vanishes continuously as (J′ − Jc′) → 0+ [or (t′ − tc′) →
0+)]
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1

K
K c

c (21)

The form of the vanishing Kondo scale as the transition is
approached, eq 21, is that arising for a KT54 transition. The
point t′ = tc′ can thus be understood as the critical end point of a
line of Kondo SC fixed points. For t′ < tc′, there is no low-energy
scale, and the residual TQD doublet degree of freedom remains
free down to T → 0 at this LM fixed point.
Kosterlitz−Thouless (KT) Transition. This is explored

further in Figures 9 and 10, containing NRG results for the full
TQD model as the KT transition is approached from the SC
phase, t′ > tc′.
Figure 9 shows thermodynamic quantities Simp and Tχimp as a

function of temperature. On the scale T ∼ U, the dots become
singly occupied, and therefore, the entropy drops to
Simp = 3 ln(2), with a corresponding tripled Curie law
susceptibility, T χimp = (3/4). The quartet TQD state becomes
inaccessible on the scale T ∼ J, leaving the pair of quasi-
degenerate TQD doublet states (and hence Simp = ln(4)). The
higher-lying doublet is in turn projected out on the scale of EΔ.
This is the LM fixed point, with Simp = ln(2) and Tχimp = (1/4).
The lowest TQD doublet is then screened by the Kondo effect
on the scale of TK, which itself vanishes as the transition is

approached (as is evident directly from the figure). At the SC
fixed point, TQD degrees of freedom are entirely quenched,
giving Simp = 0 and Tχimp = 0.
Similar behavior is observed in the T = 0 spectral function of

dot 1 shown in Figure 10, together (inset) with the T
dependence of the zero-bias conductance through the TQD.
On the energy scale |ω| ∼ EΔ, the higher-energy TQD doublet
state |B;Sz⟩ is projected out, terminating the renormalization of
its coupling to the leads. Instead, the lowest TQD |A;Sz⟩
doublet flows to strong coupling, with the characteristic narrow
Kondo resonance evident in the spectrum on the scale of
|ω| ∼ TK and reaching the unitarity limit πΓD1σ(ω = 0) = 1 that
is characteristic1 of the strong coupling fixed point. The Kondo
resonance narrows progressively as TK diminishes and the QPT
is approached from the SC phase, vanishing continuously “on
the spot” at the transition itself, such that in (and throughout)
the LM phase, πΓD1σ(ω = 0) = 0. Corresponding behavior is
naturally seen in the T dependence of the conductance, which
is determined by the local spectrum as in eq 6. Throughout the
SC phase, it is likewise enhanced at low-temperatures T ≲ TK
due to the Kondo effect, with Gc(T = 0)/G0 = 1 in all cases. In
the LM phase, by contrast, where πΓD1σ(ω = 0) = 0, the T = 0

Figure 9. Thermodynamics for the parity-broken model. TQD
contribution to entropy Simp(T) (main panel) and magnetic
susceptibility Tχimp(T) (inset) versus T/πΓ. Plotted for U/πΓ = 10,
t/πΓ = 0.1, and δ/πΓ = 10−4, varing t′/πΓ = 9.8 × 10−2, 9.78 × 10−2,
9.76 × 10−2, 9.74 × 10−2, and 9.72 × 10−2 to approach progressively
the transition. Kondo scales TK are indicated by vertical arrows and
vanish continuously as the transition is approached.

Figure 10. Single-particle spectrum of dot 1, πΓD1σ(ω) versus ω/πΓ
(on a log scale) at T = 0, for systems with the same parameters as
those in Figure 9. Vertical arrows indicate the Kondo scales TK. The
inset shows the temperature dependence of the zero-bias conductance
Gc(T)/G0 for the same systems.
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conductance vanishes, the conductance thus changing dis-
continuously as the transition is crossed, which appears to be a
rather general signature of KT transitions in quantum dot and
related systems.65,67−70

■ SUMMARY AND DISCUSSION

A compact cluster of three quantum impurities, hybridizing
apically with a single channel of host conduction electrons, has
been shown to exhibit a rich range of physical behavior. Such a
model may describe apex-coupled impurity trimers on metallic
surfaces or semiconductor TQD devices.
In the parity-symmetric case where two of the impurities/

dots are in equivalent local environments, a level-crossing QPT
separates a Kondo-screened strong coupling (SC) phase and a
free local moment (LM) phase. For strong interdot tunnel-
coupling (and hence weak interactions), the transition in
essence occurs between states with either three or four
electrons occupying TQD MOs. For weaker couplings and
strong dot electron correlations, sites of the TQD are
essentially singly occupied. Within this TQD spin regime, the
QPT between SC and LM phases again arises, although
different mechanisms are uncovered, depending on the relative
interdot tunneling strengths. For weak interdot couplings in
particular, the Kondo effect screens a single dot, with the
residual TQD degrees of freedom forming either a local singlet
(SC) or an underscreened spin-1 Kondo state (LM). When
parity symmetry is broken by distortions of the triangular TQD
structure, we show that LM and SC phases are still supported,
with the transition between them now of Kosterlitz−Thouless
type, such that the low-energy Kondo scale vanishes
continuously as the transition is approached from the SC phase.
Given the ubiquity of SC and LM phases, an obvious

question arises: what characterizes (and distinguishes) such
phases more generally? One answer is to note that the T = 0
zero-bias conductance is pinned in the singly occupied case to a
unitarity value Gc

SC(T = 0)/G0 = 1 in the Kondo SC phase but
vanishes in the LM phase, Gc

LM(T = 0)/G0 = 0. The origin of
this can be traced via eq 7 to the scattering phase shift, δ,
experienced by conduction electrons in either phase. By a
straightforward extension to the TQD model of the analysis
given in ref 65, a Friedel−Luttinger sum rule65,71,72 can be
shown to relate exactly the phase shift to the excess charge
(nimp(T = 0)) via δ = (π/2)nimp(T=0) + IL, where the Luttinger
integral IL is given by

∫ ω
ω

ω
ω=

∂Σ
∂
σ

σ
−∞

I GIm Tr d
( )

( )L

0

(22)

(with Gσ(ω) and Σσ(ω) as the 3 × 3 matrices for the lead-
coupled TQD Green functions and self-energies, respectively).
We find that the SC and LM phases are each characterized by a
distinct value for the “topological” quantity IL; from extensive
NRG calculations of the Luttinger integral and regardless of the
bare underlying model parameters, we find IL = 0 to be
characteristic of the SC phase (as indeed is well-known for any
Fermi liquid phase71) and |IL| = (π/2) to be equally
characteristic of the LM phase. The latter is also precisely
found throughout the entire LM phase of a correlated two-level
quantum dot model,65 suggesting that the Luttinger integral is
indeed a universal characteristic of a LM phase; however, the
fundamental reasons for this await an answer.
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