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The construction of good effective models is an essential part of understanding and simulating complex
systems in many areas of science. It is a particular challenge for correlated many-body quantum systems
displaying emergent physics. We propose a machine learning approach that optimizes an effective model based
on an estimation of its partition function. The success of the method is demonstrated by application to the
single impurity Anderson model and double quantum dots, where nonperturbative results are obtained for
the old problem of mapping to effective Kondo models. We also show that an alternative approach based on
learning minimal models from observables may yield the wrong low-energy physics. On the other hand, learning
minimal models from the partition function recovers the correct low-energy physics but may not reproduce all
observables.
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The approach to understanding and simulating complex
quantum systems can be divided into two groups: ab initio
studies in which one tries to account for all microscopic de-
tails, or studies of simplified effective models that still capture
the essential physical phenomena of interest. A prerequisite
for the latter is to construct a good effective model. The
question of how to do this systematically, starting from a more
complex microscopic system, is an important one for many
areas of physics.

Effective models are often defined in a reduced Hilbert
space involving only those degrees of freedom relevant to
describe the low-temperature physics of a complex micro-
scopic model. They can be derived by perturbatively elim-
inating degrees of freedom, coarse graining, or by using
renormalization group (RG) methods [1–4]: At low energies,
microscopic details only enter through effective interactions
and renormalized coupling constants. For the purposes of
simulation, and to make realistic contact with experiment, the
parameters as well as the structure of an effective model must
be determined.

In this Rapid Communication, we use information theory
and machine learning (ML) methods to find good effective
models for quantum many-body systems. Our “model ML”
approach is based on comparing the low-energy eigenspec-
trum of the effective and microscopic models (see Fig. 1),
which gives a simple optimization condition on their partition
functions. We compare this to an alternative approach involv-
ing learning from local observables. The two methods only
agree at the Gibbs-Bogoliubov-Feynman [5] (GBF) bound.
For minimal effective models comprising only RG-relevant
terms, learning from observables may not yield the same
effective model parameters compared with learning from the
partition function, since observables can flow under RG while
the partition function does not [1,2,6]. Although the correct
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low-energy physics is obtained when the partition functions of
bare and effective models agree, local observables may differ.
However, minimally constrained effective models, including
marginal and irrelevant RG corrections, may reproduce the
correct low-energy physics as well as the correct value of ob-
servables. Applications of ML optimization using observables
have been discussed in Refs. [7–9].

Effective models are also used in self-learning Monte Carlo
[8–11]. ML is used to optimize effective Hamiltonians that
can be treated more efficiently while reproducing the same
Monte Carlo update weights as the bare Hamiltonian for sam-
pled configurations. Such methods are not straightforwardly
applicable to systems where the effective model involves
rather different degrees of freedom, or the emergent physics
is nonperturbative.

The full potential for applying ML concepts in physics is
still being explored. Intense recent activity in the field covers

FIG. 1. Schematic comparison of bare (left) and effective (right)
models: (a) Finite-size spectra, which agree up to some high-energy
cutof Ecut. (b) Density of states (Boltzmann weighting e−βE as dotted
line). (c) Spectrum of the thermal density matrix. (d) Thermody-
namics, such as entropy, match at low temperatures T � Ecut when
Zeff = Zbare.
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a diverse range of topics, including (i) finding and describing
eigenstates [12–18], (ii) the inverse problem of finding parent
Hamiltonians [19–22], (iii) predicting properties of materials
[23–25], (iv) identifying phases of matter [26–32], (v) improv-
ing numerical simulations [8–11,33–39], and (vi) connections
between ML and RG [40–45].

Concepts from physics are also often used in ML algo-
rithms [46–48]—perhaps most notably in Boltzmann ma-
chines [49,50] where an unknown probability distribution is
approximated by the physical Boltzmann weights of an auxil-
iary energy-based model. However, ML is generally treated as
a “black box” method, since these models are typically of high
complexity and abstraction with no physical meaning [51].
The methodologies described in this Rapid Communication
constitute generative ML because samples from a target distri-
bution are used to train a model that can generalize from those
to generate new samples. Here, though, the auxiliary model
is the actual low-energy effective model of interest, and has
physical meaning. Importantly, we show that the mapping can
be achieved at relatively high temperatures, without having to
completely solve the bare Hamiltonian.

Partition function condition on effective models. As illus-
trated in Fig. 1, the goal is to find an effective model with the
same low-energy eigenspectrum, or density of states ρ(ω), as
the bare model. Since the effective model lives in a restricted
Hilbert space, its high-energy spectrum is typically more
sparse than the bare model. The regime of applicability of the
effective model is therefore restricted below some cutoff Ecut.
At low temperatures T � Ecut, the thermally weighted density
of states (density matrix spectrum) q(ω) = exp(−βω)ρ(ω)
should therefore agree. This guarantees that the bare and
effective models have the same low-temperature thermody-
namics, including the same emergent energy scales. Note that
if qbare(ω) � qeff (ω) at a given temperature, then the partition
functions Z = ∫

dωq(ω) necessarily match.
In principle, optimizing an effective model could be

achieved by minimizing the difference between the bare and
effective probability distributions P(ω) = q(ω)/Z by mini-
mizing their Kullback-Leibler (KL) divergence [52],

DKL =
∫

dωPeff (ω) log[Peff (ω)/Pbare(ω)]. (1)

ML algorithms based in this way on optimizing with
respect to the density matrix are referred to as “quantum
Boltzmann machines” [48]. The problem is that this rigorous
prescription only applies in the eigenbasis of the models, and
the gradient descent update required to find the optimal effec-
tive model involves taking derivatives of Eq. (1) with respect
to tuning parameters. In most cases this is not practicable, and
the ML algorithm itself would need to be run on a quantum
computer [46].

Our central result is that this can be avoided if we re-
strict our attention to effective models that can in prin-
ciple be derived by a continuous RG transformation from
the bare/microscopic model. In particular, the low-energy
spectrum of the effective model should remain in one-to-
one correspondence with the bare model, with the same
quantum numbers. Symmetries of the bare model should be
preserved (although the effective model may have larger sym-
metries). We exclude, for example, a large class of effective

models involving a noninteracting quantum gas fine-tuned
to trivially reproduce the desired eigenspectrum, or other
unphysical models. While an RG-derivable effective model
Ĥeff = ∑

i θiĥi may have high physical complexity, its para-
metric complexity {θi} is typically modest. A given effective
model has correspondingly modest expressibility in terms
of describing different physical systems; the structure of an
effective model must be appropriate to the physics being de-
scribed. This is unlike the standard philosophy for Boltzmann
machines that employ an unphysical auxiliary energy-based
model to represent Pbare(ω), with high expressibility but also
high parametric complexity [49].

Since the RG process can be regarded as a “quantum
channel” [6] (a completely positive, trace preserving linear
map [53]), the partition function is invariant under RG [1]. An
RG-derivable effective model therefore satisfies the condition,
Zeff = Zbare. Optimization can therefore be done directly on
the level of the partition functions.

Our model ML does not perform RG: Given a suitable
structure for the effective model, the method finds the op-
timized model parameters by matching partition functions.
Even though the partition function is a single number,
the method works because we use prior knowledge to re-
strict the search space. With loss function LZ = [log(Zeff ) −
log(Zbare )]2, the gradient descent update for tuning a parame-
ter θi of the effective model is

∂LZ/∂θi = −2β[log(Zeff ) − log(Zbare )] × 〈ĥi〉eff . (2)

The partition functions themselves can be estimated by any
suitable method at one or more temperatures T < Ecut.

Model machine learning for the Anderson model. As a sim-
ple but nontrivial proof-of-principle demonstration of model
ML, which can be benchmarked against exact results, we take
the Anderson impurity model (AIM) [54],

ĤA = Ĥbath +
∑

σ

εn̂dσ + Un̂d↑n̂d↓ + V
∑

σ

(d†
σ c0σ + c†

0σ dσ ),

(3)

where Ĥbath = ∑
k,σ εkc†

kσ
ckσ

, n̂dσ = d†
σ dσ , and V c0σ =∑

k Vkckσ . For simplicity we consider particle-hole symmetry
ε = −U/2, and a flat conduction electron density of states in
a band of half width D = 1.

The Kondo Hamiltonian is the low-energy effective model
[54,55], describing impurity-mediated scattering,

ĤK = Ĥbath + J �̂Sd · �̂S0, (4)

where �̂Sd is a spin- 1
2 operator for the impurity, and �̂S0 =

1
2

∑
σ,σ ′ �σσσ ′c†

0σ c0σ ′ is the spin density of conduction electrons
at the impurity. For generality, we specify the Kondo con-
duction electron bandwidth as DK. For a pure Kondo model,
Eq. (4), the Kondo temperature determining the low-energy
physics is given by [56,57]

TK(J, DK ) = αDK

√
ρJ exp[−1/ρJ + γ ρJ], (5)

where ρ = 1/2DK is the Fermi level free density of states,
γ = π2/4, and α = O(1) [57]. The Kondo model is the
minimal model, containing only RG-relevant terms consistent
with bare symmetries of the AIM [55]. Traditionally, the
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FIG. 2. Model ML derivation of the Kondo model from the Anderson impurity model. (a) Impurity contribution to entropy S(T ); (b) T = 0
spectrum of the t matrix, t (ω). AIM results for U = 0.5 and 8V 2/U = 0.25 shown as circle points. Lines are for Kondo models with J = JML

optimized by model ML (red lines), Jobs obtained by observable matching (green lines), and JSW for Schrieffer-Wolff (blue lines). Insets show
the same but for reference AIM with 8V 2/U = 0.4. (c) Ratio of partition functions ZK/ZA for the model ML optimized Kondo model and the
reference AIM; (d) corresponding ratio of spin-spin correlators.

Kondo model is derived from the AIM by the Schrieffer-Wolff
(SW) transformation [3], which perturbatively eliminates ex-
citations out of the singly occupied impurity manifold. SW
yields JSW = 8V 2/U to second order in the impurity-bath
hybridization. More sophisticated methods are required to
capture nonperturbative renormalization effects neglected by
straight SW [55,58–60]. The full solution of both Anderson
and Kondo models enables comparison of TK [55,59]; the
results are often interpreted in terms of a renormalized Kondo
bandwidth, DK → Deff � D. SW itself, even to infinite order
[61], does not incorporate bandwidth renormalization.

Here, we use the numerical renormalization group (NRG)
method [4,57,62] to determine the partition functions of the
Anderson and Kondo models (ZA and ZK) at temperature
T . The Kondo coupling J is optimized by minimizing LZ .
NRG results are presented in Fig. 2, comparing the bare
AIM (circle points) with effective Kondo models (DK = D =
1): J determined by model ML (red lines), the SW result
JSW = 8V 2/U (blue lines), and J obtained by observable
matching (green lines, discussed shortly). Figure 2(a) shows
the impurity entropy S(T ), for U = 0.5 and JSW = 0.25 (in-
set for U = 0.5 and JSW = 0.4), while Fig. 2(b) shows the
scattering t-matrix spectrum t (ω), at T = 0 for the same
parameters. Figures 2(c) and 2(d) show the ML optimization
procedure.

Figures 2(a) and 2(b) demonstrate that model ML perfectly
determines the true coupling J of the effective Kondo model—
even in the case where an incipient local moment is never fully
developed (insets). Deviations between the AIM and Kondo
model with J = JML set in only at high-temperature scales
T ∼ U (impurity charge fluctuations cannot be described by
the Kondo model [54]).

The pure SW result substantially overestimates the cou-
pling, leading to the wrong Kondo scale. For these parameters,
our model ML results are consistent [58] with Haldane’s
perturbative prediction Deff ∼ U (obtained in the limit U �
D, and neglecting ρJSW corrections). However, such ana-
lytic estimates are far from straightforward, and not easily
generalized. Model ML abstracts and automates the process:
Fig. 3 uses model ML to generalize the result beyond the

perturbative regime U � D, while Fig. 4 generalizes to a
double quantum dot system.

In the AIM and Kondo models, the density of states
ρ(ω) = − 1

π

∑
k Im Gkk (ω), is related to the t matrix via

Gkk′ (ω) = G0
kk′ (ω) + G0

kk (ω)tkk′ (ω)G0
k′k′ (ω), where Gkk′ and

G0
kk′ are the full and free-electron Green’s functions [54].

All nontrivial correlations are encoded in the t-matrix spec-
trum t (ω) [57] plotted in Fig. 2(b). Matching the low-energy
density of states as per Fig. 1(b) is therefore equivalent to
matching the low-energy t matrix. However, we have shown
that this is achieved automatically by satisfying the simpler
condition ZK = ZA.

Figure 3(a) shows the evolution of the Kondo coupling J
obtained by model ML for a reference AIM with fixed JSW =
0.3, but varying U (red line). Figure 3(b) shows that the Kondo
temperature TK(JML, D) of the ML-optimized Kondo model
agrees perfectly with the true T AIM

K of the AIM (circle points).
We find [57]

T AIM
K � TK(JSW, D)

U

U + 3.2D + 17.3JSW
≡ TK(JSW, Deff ),

(6)

where the Kondo bandwidth renormalization is Deff/D =
T AIM

K /TK(JSW, D), consistent with the known asymptotes
Deff ∼ U for U and ρJ � D [55,58,59], and recovering
Deff → 1 for U  D where pure SW suffices. Inverting
Eq. (6) provides an accurate estimate of the true coupling
J of the AIM in terms of the pure SW result. For more
complex systems, a neural network could be used to learn
the relationship between bare and effective parameters from
sample data of explicit model ML optimizations.

Figure 3(c) shows how the results of model ML depend on
temperature. We perform optimization of the Kondo coupling
J by matching partition functions at temperature T for three
reference AIM with the same TK but different U,V . We find
that JML is robust and essentially constant for all T � U ,
where one expects the Kondo model to apply (in practice, J
is obtained with less than 3% error for U/T > 100). This has
the important implication that model ML can be performed
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FIG. 3. (a) Kondo coupling J optimized by model ML (red line) and observable matching (green line) for a reference AIM with fixed
8V 2/U = 0.3, varying U . (b) Corresponding Kondo temperature TK (circle points for the bare AIM). The inset to (a) shows the ratio of
spin-spin correlators in the model ML optimized Kondo model and the bare AIM. (c) Temperature dependence of J obtained by model ML
(red lines) for three AIMs with the same TK but varying U,V [S(T ) also plotted for comparison].

using estimates of the partition functions at relatively high
temperatures, making it amenable to treatment with, e.g.,
quantum Monte Carlo methods [63–66]. Note that for T � U ,
the Kondo model is not a good effective model, and the
resulting JML vanishes as per Eq. (2).

Double quantum dot (DQD). We now apply model ML to
the more complex case of a parallel DQD (Fig. 4),

ĤD = Ĥbath +
∑
α,σ

εn̂ασ +Un̂α↑n̂α↓ +V
∑
α,σ

(d†
ασ c0σ + c†

0σ dασ ),

(7)

where α = 1, 2 labels the two dots. The physics of the DQD
is much richer than that of the single dot case, due to the
interplay between Kondo physics and an emergent Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction between the
dots, leading to an effective underscreened spin-1 Kondo
state [67].

An effective DQD spin-1 state forms below the emergent
scale JRKKY, which is then partially quenched to leave a
residual spin- 1

2 and a singular Fermi liquid below TK. As
shown in Fig. 4, model ML finds the correct J to describe
the low-temperature physics (T � JRKKY). Equations (5) and
(6) again hold but with γ = π2/2 (inset).

FIG. 4. Impurity entropy S(T ) vs T for the parallel DQD, with
U = 0.5 and 8V 2/U = 0.2 (black line) compared with an effective
spin-1 Kondo model with J determined by model ML (red line).
Inset: JML vs U for the same 8V 2/U = 0.2.

Optimization using observables. ML employing heuristic
cost functions based on physical observables might seem
appealing if the goal is to reproduce specific observables of
the bare model within the simpler description of an effec-
tive model. However, this is not always possible in minimal
effective models. In general, a minimal model optimized to
capture the proper low-energy physics cannot reproduce the
value of all local observables in the bare model. This is due to
information monotonicity along RG flow [6].

This result is presaged by the GBF inequality [5] for the
free energy, Feff � Fbare + 〈Ĥeff − Ĥbare〉bare. Differentiating
with respect to the coupling constants of the effective model
Ĥeff = ∑

i θiĥi, we obtain 〈ĥi〉eff � 〈ĥi〉bare. GBF implies that,
when optimizing the effective model with respect to θi, the
corresponding observable 〈ĥi〉 is merely bounded by its value
in the bare model, not necessarily equal to it. ML using
observables and ML involving the partition function only
agree at the GBF bound.

In the case of mapping AIM to Kondo, we find that the
proper effective model (J determined by model ML) yields
〈�Sd · �S0〉K � 〈�Sd · �S0〉A, with the GBF bound satisfied only in
the SW limit U → ∞ [see the inset to Fig. 3(a)].

To compare with model ML, we implement optimization
of the effective Kondo model using the observable-based cost
function LJ = [〈�Sd · �S0〉K − 〈�Sd · �S0〉A]2. The green lines in
Fig. 2 show the result of minimizing LJ . The Kondo model
with J = Jobs has the same impurity-bath spin correlation as
the reference AIM, but does not yield the correct low-energy
physics or Kondo scale [see Figs. 2(a) and 2(b)]. Figures 2(c)
and 2(d) show that 〈�Sd · �S0〉K = 〈�Sd · �S0〉A and ZK = ZA can-
not be simultaneously satisfied. Figure 3(a) shows how Jobs

varies with U for fixed JSW. Only for U → ∞ does Jobs →
JML. For U < 1, Jobs is a poor approximation to the true J
(� JML) [see Fig. 3(b)].

Conclusion and applications. We have shown that the
parameters of simplified low-energy effective models can be
obtained using ML techniques. Optimization on the level of
the partition function, estimated at a relatively high tempera-
ture, yields the correct low-energy physics for minimal RG-
derivable effective models. However, not all local observables
are necessarily reproducible in such a model. It remains an
open question as to whether minimally constrained effective
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models, containing higher-order terms beyond the minimal
model, are able to capture simultaneously the universal low-
energy physics as well as all local observables.

The model ML framework we introduce is general; ap-
plications include deriving effective models for complex
molecular junctions [68], and solving inverse problems for
rational design. Model ML may also be adapted to find

the effective equilibrium problem for nonequilibrium sys-
tems [69], or to find simplified/coarse-grained effective de-
scriptions within multiorbital/cluster dynamical mean-field
theory [39,70].
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DETAILS OF NRG CALCULATIONS

In this work, we used Wilson’s NRG method [1],
formulated in the complete Anders-Schiller basis [2],
to calculate the partition functions of Anderson and
Kondo models at finite temperature T . Numerical
results for the impurity contribution to entropy were
obtained by standard thermodynamic NRG [1], while
the dynamical t-matrix and local spin-spin correlator
observables were obtained using the full density matrix
approach [3]. The spectrum of the t-matrix is defined
t(ω) = −πρIm

∑
kk′ tkk′(ω). All parameters are given

in units of the conduction electron bandwidth, here
set to D = 1. Calculations were performed with NRG
discretization parameter Λ = 2.5, retaining Ns = 3500
states at each iteration, and exploiting Q and Sz

quantum numbers. Interleaved NRG (iNRG) could be
used with model ML in principle [4]. We note that
for the purposes of model ML, the partition functions
need not be calculated exactly: within some given level
of approximation applied to both bare and effective
models, only the difference Zbare − Zeff needs to be
estimated to perform the optimization [5]. Although
NRG is used here, the ML methods we describe do not
depend on the techniques used to estimate the partition
functions or observables.

Figure S1. Kondo scale TK of the pure Kondo model, Eq. 4,
as a function of Kondo coupling ρJ , determined from NRG
(points), compared with the full analytic result Eq. 5 (red
line). DK = 1. The agreement is quantitatively precise over
the entire range of ρJ considered. The other lines show the
breakdown of lower-order approximations to TK at larger ρJ .

Figure S2. Kondo scale TK of the (symmetric) Anderson im-
purity model, Eq. 3, as a function of interaction strength U
for various JSW = 8V 2/U , determined from NRG (points),
compared with Eq. 6. D = 1. Good agreement is seen for all
U and J values considered, even in non-perturbative regimes.

KONDO SCALES

All physical observables are universal functions of
T/TK in the scaling limit of the AIM or Kondo mod-
els, and so the definition of the Kondo temperature TK
can be chosen somewhat arbitrarily up to an overall con-
stant. In this work, we choose α = 1.41 in Eq. 5, so that
the conductance half-width-at-half-maximum through an
Andersonian dot is precisely at T = TK. As such,
this is a natural experimentally-relevant measure. How-
ever, for the Anderson / Kondo models, this defini-
tion is equivalent to choosing Simp(T = TK) ' 0.5,
t(ω = TK, T = 0) ' 0.63, TKχimp(T = TK) ' 0.1, or
TK = 0.236/χimp(T = 0). In practice we use the latter.

In Fig. S1 we confirm that the Kondo scale for a
pure Kondo model follows Eq. 5 very precisely up to
J/DK = 0.9. This is shown using high-quality NRG
calculations, in which we retain Ns = 6000 states per
iteration, and perform the Λ→ 1 extrapolation [6]. Full
quantitative agreement requires inclusion of the factor
proportional to γ = π2/4 (note that there is some dis-
agreement/confusion in the literature about this factor,
which we definitively pin down here).

In Fig. S2 we confirm the accuracy of Eq. 6 for the
Kondo scale of the (symmetric) Anderson model in terms
of JSW and U , over the whole range U/D = 10−2 to 102,
and for JSW/D = 0.1, 0.2, 0.3, 0.4, 0.5.
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