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Quantum dot devices allow one to access the critical point of the two-channel Kondo model. The effective
critical theory involves a free Majorana fermion quasiparticle localized on the dot. As a consequence, this critical
point shows both the phenomenon of non-Fermi-liquid physics and fractionalization. Although a violation of
the Wiedemann-Franz law is often considered to be a sign of non-Fermi-liquid systems, we show by exact
calculations that it holds at the critical point, thereby providing a counterexample to this lore. Furthermore,
we show that the fractionalized Majorana character of the critical point can be unambiguously detected from
the heat conductance, opening the door to a direct experimental measurement of the elusive Majorana central
charge c = 1

2 .
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Originally conceived to understand the behavior of mag-
netic impurities in metals [1], the single-channel Kondo model
also successfully describes simple quantum dot devices [2–4]
and their low-energy Fermi-liquid (FL) behavior [5]. Such
circuit realizations of fundamental quantum impurity models
are exquisitely tunable and allow the nontrivial dynamics of
strongly correlated electron systems to be probed experimen-
tally through quantum transport. The FL properties of such
systems, as well as their bulk counterparts, are evidenced by
their low-temperature thermoelectric transport, which satisfies
the Wiedemann-Franz (WF) law [6,7]. Conversely, violations
of the WF law are observed in various systems with non-
Fermi-liquid (NFL) properties [8–17].

Another advantage of nanoelectronics devices incorporat-
ing quantum dots is that more exotic states of quantum matter
can be engineered. In particular, there has been considerable
interest recently, from both theory and experiment, in mul-
tichannel Kondo systems [18] which exhibit NFL quantum
critical physics due to frustrated Kondo screening, and the
emergence of non-Abelian anyonic quasiparticles [19–21].
The NFL two-channel Kondo (2CK) critical point, realized
experimentally in Refs. [22–24], is described by an effective
theory involving Majorana fermions [25], while the three-
channel Kondo (3CK) critical point realized in Ref. [26]
involves Fibonacci anyons [21]. This NFL character and the
fractionalization is most clearly seen in the dot entropy of
S = kB ln(

√
2) for 2CK and kB ln(φ) for 3CK (with φ the

golden ratio). However, the experimental quantity measured
up until now in 2CK and 3CK devices has been the charge
conductance [22,23,27,28]. In particular, recent charge-Kondo
implementations demonstrate precise quantitative agreement
between theoretical predictions and experimental measure-
ments for the entire universal scaling curves [24,26,29,30].
This confirms the underlying theoretical description, but as
yet there is no direct experimental evidence of either the NFL
character or the fractionalization in these systems.

Thermoelectric transport in multichannel Kondo systems
is far less well understood. In this Rapid Communication,
we present exact analytic results for heat transport in the
charge-2CK (C2CK) setup depicted in Fig. 1, relevant to
recent experiments [24]. Our choice of system is motivated by
the unprecedented control in such a device to probe the NFL
critical point; our theoretical predictions are within reach of
existing experiments. The C2CK setup allows the WF law [6]
to be studied at an exactly solvable NFL critical point. A vio-
lation of the WF law has often been used as an empirical rule
of thumb to identify NFL physics [8–14]. Nevertheless, we
explicitly find that it is satisfied at the charge-2CK NFL criti-
cal point. Furthermore, as shown below, the heat conductance
is a universal quantity in the critical C2CK system (unlike in
the standard spin-2CK implementation), and provides a route
to measure experimentally the Majorana central charge.

We emphasize that we study the nonperturbative regime
where both source and drain leads are strongly coupled to the
dot (although we focus on linear response corresponding to a
small voltage bias and temperature gradient). For this setup,
the numerical renormalization group [31] (usually considered
to be the numerical method of choice for solving generalized
quantum impurity problems) cannot be used to calculate heat
transport.

Charge 2CK setup, model, and observables. Figure 1 shows
schematically the C2CK system studied experimentally in
Ref. [24]. Reference [30] demonstrated that this quantum dot
device realizes an essentially perfect experimental quantum
simulation of the C2CK model of Matveev [29], by comparing
experimental data for charge conductance with numerical
renormalization group calculations. Here, we compute exact
thermoelectric transport analytically at the 2CK critical point
for the same model.

The key ingredient required to realize 2CK physics is en-
suring that the two leads constitute two distinct, independent
channels (not mixed by interchannel charge transfer). This
is achieved in the C2CK device by exploiting a mapping
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FIG. 1. Schematic of the C2CK device. Gate voltages VL,R gov-
ern the transmission coefficients tL,R at the left and right quantum
point contacts, while Vg controls the dot charge. Coherent transport
across the dot is suppressed by the intervening ohmic contact. Ther-
moelectric transport is measured in response to a potential difference
�φ (voltage bias or temperature gradient). A spinless system at the
dot charge degeneracy point maps to a 2CK model.

between charge and (pseudo)spin states [29]. The physical
system is effectively spinless (due to the application of a
large polarizing magnetic field), and a large dot is tuned to
a step in its Coulomb-blockade staircase (using gate voltage
Vg), such that dot charge states with N and N + 1 electrons
are degenerate. Regarding this pair of macroscopic dot charge
states as a pseudospin (such that Ŝ+ = |N + 1〉〈N | and Ŝ− =
(S+)†) and simply relabeling dot electrons as “down” spin,
and lead electrons as “up” spin, yields a 2CK pseudospin
model—provided there is no coherent transport between elec-
tronic systems around each quantum point contact (QPC). In
practice, this is achieved by placing an ohmic contact (metallic
island) on the dot to separate the channels [24] (gray box in
Fig. 1). The resulting C2CK Hamiltonian reads

HK =
∑

α=L,R

⎡
⎣∑

k

(ε
α↑kc†

α↑kc
α↑k + ε

α↓kc†
α↓kc

α↓k )

+ tα
∑
k,k′

(c†
α↑kc

α↓k′ Ŝ− + c†
α↓kc

α↑k′ Ŝ+)

⎤
⎦ + �EŜz, (1)

where cασk are electronic operators, and α = L, R denotes
whether the electron resides to the left or right of the gray
metallic island in Fig. 1. The label σ describes whether
the electron lives in the leads (↑) or on the dot (↓). The
effective continuum of states on the large dot is characterized
by the dispersion εα↓k , while the leads have dispersion εα↑k .
The term �EŜz describes detuning away from the dot charge
degeneracy point, which acts as a pseudospin field. Equation
(1) is a maximally spin-anisotropic version of the regular
spin-2CK model [18]. A major advantage of this setup over
the conventional spin-2CK paradigm is that the pseudospin
“exchange” coupling in the effective model is simply related
to the QPC transmission, and can be large. In turn this means
that the 2CK Kondo temperature TK can be high, and hence the
critical point is comfortably accessible at experimental base
temperatures [24]. The critical point arises for �E = 0 and√

νL↑νL↓tL = √
νR↑νR↓tR, where νασ is the Fermi-level den-

sity of states of channel ασ (in turn related to the dispersions
εασk). This condition can be achieved [24] by tuning the gate
voltages Vg, VL, and VR (Fig. 1).

We now consider applying a voltage bias �V , and/or
temperature gradient �T , between the left and right leads.

The thermoelectric transport coefficients are determined from
the resulting charge current Ic and heat current IQ,(

Ic

IQ

)
=

(
χcc χcQ

χQc χQQ

)(
�V

�T/T

)
, (2)

where Ic,Q ≡ 〈Îc,Q〉. The current operators are given by

Îc = e

2

d

dt
(NL,↑ − NR,↑) = − ie

2h̄
[NL,↑ − NR,↑, H],

ÎQ = i

2h̄
[HL,↑ − HR,↑ − μ(NL,↑ − NR,↑), H]. (3)

With Ic = G�V defined at �T = 0, and IQ = κ�T defined at
Ic = 0, we wish to calculate the charge conductance G = χcc

and heat conductance κ = (χQQ − χQcχcQ/χcc)/T .
The charge and heat conductances in linear response can

be obtained from the Kubo formula in terms of equilibrium
current-current correlation functions [32,33],

χi j = lim
ω→0

−Im Ki j (ω, T )

h̄ω
, (4)

where i, j = c, Q, and Ki j (ω, T ) is the Fourier transform of
the retarded autocorrelator Ki j (t, T ) = −iθ (t )〈[Îi(t ), Î j (0)]〉.

Emery-Kivelson effective model. A generalized version of
the 2CK model can be solved exactly at a special point
in its parameter space, corresponding to a specific value of
the exchange anisotropy [25]. The C2CK model Eq. (1) (as
well as the regular spin-2CK model) does not satisfy this
condition. The complete renormalization group (RG) flow
and full conductance line shapes at this Emery-Kivelson (EK)
point are therefore different from those of the physical system
of interest. However, spin anisotropy is RG irrelevant in the
2CK model [19,20,34], meaning that the same spin-isotropic
critical point is reached asymptotically at low temperatures,
independently of any anisotropy in the bare model. The EK
solution can therefore be used to understand the NFL critical
fixed point of the C2CK system [35,36]. This approach has
been validated for the entire NFL to FL crossover arising due
to small symmetry-breaking perturbations in Refs. [28,30]
and we adopt the same strategy.

After bosonization, canonical transformation, and
refermionization, the EK effective model reads [25]

H =
∑

ν

∑
k

εkψ
†
ν,kψν,k + g⊥[ψ†

s f (0) + ψs f (0)](d† − d )

+ �E

2
(d†d − dd†), (5)

where ψν,k (with ν = c, s, f , s f ) are effective lead fermion
fields, and the impurity spin is parametrized by a fermionic
operator d = iŜ+. For all further calculations, we set εk =
h̄vF k for the full range of k, where vF is the Fermi velocity. As
a result of the mapping, the effective model takes the form of
a noninteracting Majorana resonant level at the critical point
�E = 0. We introduce Majorana operators,

â = (d† + d )/
√

2 and b̂ = (d† − d )/i
√

2, (6)

such that {â, â} = {b̂, b̂} = 1 and {â, b̂} = 0. The effective the-
ory, Eq. (5), successfully accounts for the residual fractional
dot entropy at the C2CK critical point, arising from the strictly
decoupled â Majorana.
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FIG. 2. The only Feynman diagrams contributing to (a) the
charge conductance G, and (b) the heat conductance κ . n represents
the external bosonic Matsubara frequency, and we sum over the
remaining fermionic Matsubara frequencies ωn.

A remarkable feature of the EK mapping is that it holds
even with a finite voltage bias between leads, allowing charge
transport to be calculated beyond linear response [37]. How-
ever, this approach cannot be used for nonequilibrium trans-
port in the presence of a temperature difference between
the leads because the EK mapping mixes the two electronic
baths, and so the EK channels cannot be assigned a definite
temperature. In the following, we therefore confine attention
to thermoelectric transport in linear response using the Kubo
formula [32].

Current operators in the EK basis. Transforming the charge
and heat current operators, Eq. (3), into the EK basis and
writing in terms of dot Majorana operators â and b̂ from
Eq. (6), we find

Îc = eg⊥√
2Lh̄

∑
k

(ψ†
s f ,k − ψs f ,k )b̂, (7)

for the charge current, but for the heat current,

ÎQ = iπvF g⊥
(2L)3/2

∑
k,k′,k′′

(2 ψ
†
f ,k′ψ f ,k′′ + δk′,k′′ )(ψ†

s f ,k + ψs f ,k )â

− πvF g⊥√
2L3/2

∑
k,k′,k′′

(ψ†
c,k′ψc,k′′ + ψ

†
s,k′ψs,k′′ )(ψ†

s f ,k − ψs f ,k )b̂

+ πvF

2L

∑
k,k′

(εk′ − εk )(ψ†
f ,kψ f ,k′ + ψ

†
s f ,kψs f ,k′ )âb̂. (8)

Here, L is the length of a lead, and we have set μ = 0.
Linear response coefficients. The calculation of the

charge conductance G is rather straightforward [37], in-
volving as it does only one-loop Feynman diagrams of
the type shown in Fig. 2(a). Here, we represent diagram-
matically the local (imaginary time) bare bath propagators
L0

ν (τ ) = −1/L
∑

k〈T̂ ψ
ν,k (τ )ψ†

ν,k (0)〉0 (with ν = c, s, f , s f )
using “straight” lines, while the fully renormalized Majorana
Green’s function Dbb(τ ) = 〈T̂ b(0)b(τ )〉 is represented dia-
grammatically as a “wiggly” line. For more details on the
calculation and the definition of the Green’s function, see the
Supplemental Material [35].

At the critical point, the EK calculation yields the well-
known leading order in temperature result for the charge

conductance [30,37],

G = e2

2h
. (9)

By contrast, the heat conductance calculation is far more
involved. In this case, one must compute three-loop Feynman
diagrams of the type shown in Fig. 2(b). After a lengthy
calculation [35], we find the following form for the leading-
order low-temperature heat conductance,

κ = π2k2
BT

6h
, (10)

and the off-diagonal components χcQ = χQc vanish. These
are exact results at the critical point of the C2CK system.
Equation (10) is our central result, the physical consequences
of which are explored in detail in the following.

Applicability of the EK solution. The leading-order finite-
temperature corrections to Eqs. (9) and (10) are linear
in T . They originate from the leading irrelevant opera-
tor, of scaling dimension 3/2, which is HI = iλ

L b̂â
∑

k,k′ :
ψ

†
s,kψs,k′ : [25], corresponding to spin anisotropy. In the

Supplemental Material [35] we show that this implies G =
e2

2h (1 − π3λ2

8h2v2
F

T
TK

+ · · · ), where TK is the Kondo temperature.
A similar calculation for the heat conductance is five-loop,
which we did not attempt. However, the structure of the
perturbation theory implies a similar generic form, κ =
π2k2

BT
6h (1 − bλ2 T

TK
+ · · · ). Both G and κ are finite at the EK

point, with leading corrections controlled by powers of T/TK

which vanish at the critical C2CK fixed point as T/TK → 0.
Wiedemann-Franz law. For weakly interacting metals,

Wiedemann and Franz found [6] a remarkable relation be-
tween the low-temperature electrical and thermal conductiv-
ities: limT/TF →0 κ/(T σ ) = L0, where L0 = π2k2

B/3e2 is the
Lorenz number which involves only fundamental constants
and TF is the Fermi temperature (the relation is asymptotic,
based on a leading-order expansion in T/TF ). Metals are good
conductors of both charge and heat, since the carriers in both
cases are itinerant electrons. Such a relation also holds in the
context of many nanoelectronics systems at low temperatures
(where the conductance G plays the role of σ ), even with
strong electronic correlations [7]—provided the system is a
Fermi liquid at low temperatures. Indeed, a violation of the
WF law is often considered a hallmark of non-Fermi-liquid
physics, since there the carriers are not simply bare electrons
or “dressed” fermionic quasiparticles as in FL theory, but
more complicated objects, possibly with different and even
fractionalized quantum numbers.

The C2CK system offers a rare opportunity to test the
WF law at an exactly solvable NFL critical point, and to
make a concrete prediction for experiments. Interestingly—
and contrary to conventional expectation—we find that the
WF law is satisfied at the C2CK NFL critical point,

lim
T/TK →0

κ

T G
= π2k2

B

3e2
. (11)

Since G and κ are both finite at the C2CK critical fixed point,
and corrections to the fixed point are strictly RG irrelevant,
Eq. (11) is exact.
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The WF law is expected to be violated in the FL phase
of the C2CK model. After preparing the C2CK system at the
NFL critical point, consider introducing a small symmetry-
breaking perturbation (coupling the dot more strongly to
one lead than the other). The system flows under RG on
further reducing temperature to a Fermi-liquid state, in which
the dot pseudospin is fully Kondo screened by one lead,
while the other asymptotically decouples [29]. The resulting
charge conductance G → 0 in the FL phase [30], since one
of the two physical leads involved in transport decouples. For
the same reasons, κ/T → 0. The WF ratio, obtained in the
limiting process of T/TK → 0, is therefore expected to take a
nonuniversal value with a different Lorenz ratio L �= L0 due to
the leading temperature-dependent corrections to the FL fixed
point values of G and κ .

Measuring the Majorana central charge. The EK effective
model for the C2CK system is essentially a one-dimensional
(1D) boundary problem. Critical systems in 1D are described
by conformal field theories in 1 + 1 dimensions, as charac-
terized by the so-called conformal charge c. Recently, it was
conjectured that heat transport is directly proportional to the
conformal charge of the underlying conformal field theory
[38]. For translationally invariant critical systems with left and
right leads held at temperatures TL and TR, the heat current is
given by IQ = π2k2

Bc(T 2
L − T 2

R )/6h. Within linear response,
we take TR = T and TL = T + �T , and expand to leading
order in �T ,

IQ = π2k2
B

3h
cT �T + O[(�T )2], (12)

which allows us to identify κ as

κ = π2k2
B

3h
cT . (13)

Comparing this to Eq. (10), we find that the central charge
of the underlying effective critical theory is c = 1

2 . This is
consistent with the known result of c = 1

2 for one-dimensional
Majorana fermions in the unitary limit [20]. We argue that
heat transport measurements therefore provide clear experi-
mental access to the fractionalized nature of the excitations in
the C2CK system.

Comparison with spin-2CK. The above results are specific
to the C2CK setup relevant to recent experiments [24,26].
Here, we briefly contrast to the standard spin-2CK setup of
Refs. [22,23], in which one of the two conduction electron
channels is “split” into source and drain leads, with their
hybridization to the quantum dot parametrized by �s and
�d , respectively (the other channel is a Coulomb-blockaded
quantum box). Although the effective EK model at the 2CK
critical point is the same, the form of the current operators
[the analog of Eqs. (7) and (8)] is obviously different. Indeed,
the “proportionate coupling” geometry of that setup affords
a significant simplification, with charge and heat conduc-
tances expressible simply in terms of the scattering t-matrix
spectrum t (T, ω) as shown in Ref. [7]. At the spin-2CK
critical fixed point, the charge conductance for T/TK → 0
follows as G = 2γ e2t (0, 0)/h, while the heat conductance
is κ = 2γπ2k2

BT t (0, 0)/3h, where the geometrical factor is
γ = 4�s�d/(�s + �d )2, and at the 2CK fixed point we have
[20,28] t (0, 0) = 1

2 . The spin-2CK conductances are therefore

not universal and depend on system geometry through γ .
There is no interpretation in terms of the central charge since
the setup is not a translationally invariant 1D system. On
the other hand, the WF law is satisfied since L = κ/T G =
π2k2

B/3e2 = L0. In this setup, channel asymmetry produces
a flow away from the NFL critical point and towards a low-
temperature FL state, in which the leads probing transport can
be either in strong coupling (SC) or weak coupling (WC) with
the dot (depending on which channel couples more strongly).
At SC, t (0, 0) = 1 and the WF law is again satisfied. However,
at WC, t (0, 0) = 0 and the leading (quadratic) Fermi-liquid
corrections to the t matrix must be considered [28]. In this
case we find a different universal ratio L = 7π2k2

B/5e2 �=
L0. A similar analysis can be performed for the spin-3CK
situation [39], where the NFL fixed point is characterized by
t (0, 0) = cos(2π/5).

Failure of NRG for heat transport via Kubo. Finally, we
comment that our exact analytic results for heat conductance
in the C2CK system are, perhaps surprisingly, inaccessible
with the numerical renormalization group [31] (NRG). If
a system satisfies “proportionate coupling,” thermoelectric
transport coefficients may be related to moments of the scat-
tering t matrix, and NRG can be used to obtain accurate
results, as demonstrated in Refs. [7,40] for the Anderson
model. However, the geometry of the setup depicted in Fig. 1
does not admit any such formulation of the conductances in
terms of the t matrix, and one must fall back on the Kubo
formula, Eq. (4). The latter uses the heat current operator
Eq. (3), which involves the lead Hamiltonian Hα,↑. In NRG,
a specific discretized form of Hα,↑ is used, but these “Wilson
chains” do not act as proper thermal reservoirs [41]. We find
that exact FL results for even the simple resonant level model
cannot be reproduced with the Kubo formula when Wilson
chains are used for leads. NRG can of course be used to
compute impurity dynamical quantities or the t matrix [31],
and the Kubo formula may still be used for charge transport
within NRG [26,30,42,43].

Conclusions and outlook. We studied charge and heat
transport in the C2CK system recently realized experimentally
[24], by exploiting the exact solution of the related EK model
[25] and RG arguments. In particular, our result for the
low-temperature heat conductance at the NFL critical point,
κ = π2k2

BT/6h, is exact. Our results show that the WF law
is satisfied, despite being a NFL. Furthermore, we demon-
strate that the heat transport provides an experimental route
to determine the central charge of the underlying conformal
field theory, which in this case is c = 1

2 because an effective
Majorana fermion mediates charge and heat transport through
the dot. It would be interesting to extend this study to the
charge-3CK system in the regime where all leads are coupled
nonperturbatively. This is a formidable theoretical challenge
since there is no equivalent exact solution available as with
C2CK, and one should expect WF to be violated. We note
that heat transport measurements in a C3CK system are within
existing experimental reach [26].

Note added. Recently, we became aware of Ref. [44],
which considers the closely related problem of thermoelectric
transport in a three-channel charge Kondo problem with an
additional weakly coupled probe lead.
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EMERY-KIVELSON MAPPING OF THE CURRENT OPERATORS

We show how the heat current operator with µ = 0 is given by Eq. (8) in the EK basis. The �rst part of the
mapping procedure1 is the introduction of a bosonic �eld Φασ(x) for each of the fermionic �elds cασ(x):

cασ(x) =
1√

2πa0
eiφασe−iΦασ(x); (S1)

the exponentials eiφασ act as Klein factors to ensure the correct anticommutation relations between the fermionic �elds.
Following the usual bosonization prescription, the various components of the �charge� operators Q̂c = −e(NL,↑ −
NR,↑)/2 and Q̂E = (HL,↑ −HR,↑)/2 transform according to

∞∫
−∞

dx c†ασ(x)cασ(x) =
1

2π

∞∫
−∞

dx ∂xΦασ(x), (S2)

∞∫
−∞

dx c†ασ(x)∂xcασ(x) = − i

4π

∞∫
−∞

dx (∂xΦασ(x))
2
, (S3)

where normal ordering of the fermionic �elds is implied. In terms of the linear combinations

Φc(x) ≡ 1

2

(
ΦL↑(x) + ΦL↓(x) + ΦR↑(x) + ΦR↓(x)

)
, (S4)

Φs(x) ≡ 1

2

(
ΦL↑(x)− ΦL↓(x) + ΦR↑(x)− ΦR↓(x)

)
, (S5)

Φf (x) ≡ 1

2

(
ΦL↑(x) + ΦL↓(x)− ΦR↑(x)− ΦR↓(x)

)
, (S6)

Φsf (x) ≡ 1

2

(
ΦL↑(x)− ΦL↓(x)− ΦR↑(x) + ΦR↓(x)

)
, (S7)

this leads to

Q̂c = − e

4π

∞∫
−∞

dx
(
∂xΦf (x) + ∂xΦsf (x)

)
, (S8)

Q̂E =
h̄vF
8π

∞∫
−∞

dx
(
∂xΦc(x) + ∂xΦs(x)

)(
∂xΦf (x) + ∂xΦsf (x)

)
. (S9)

The next step of the EK mapping procedure is the unitary transformation Ô → ÛÔÛ†, with Û = eiχsŜ
z

and
χs ≡ Φs(0)− φs. Using the commutation relation

[Φµ(x), ∂xΦν(x′)] = 2πi δµ,ν δ(x− x′) (S10)

together with d ≡ iŜ+ (such that Ŝz = −(d†d− 1/2)), it is straightforward to show that

Q̂E →
h̄vF
8π

∞∫
−∞

dx
(
∂xΦc(x) + ∂xΦs(x)

)(
∂xΦf (x) + ∂xΦsf (x)

)
+
h̄vF

4

(
d†d− 1

2

)(
∂xΦf (x) + ∂xΦsf (x)

)∣∣∣
x=0

(S11)
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under this unitary transformation, while Q̂c remains unchanged. The �nal step of the mapping procedure consists of
refermionization. Using relations similar to those involved in the initial bosonization step and noting that

∞∫
−∞

dxψ†µ(x)ψµ(x)ψ†ν(x)ψν(x) =
1

4π2

∞∫
−∞

dx
(
∂xΦµ(x)

)(
∂xΦν(x)

)
(S12)

for µ 6= ν (normal ordering of the fermionic �elds again implied), we �nd that the charge operators �nally become

Q̂c = −e
2

∞∫
−∞

dx
(
ψ†f (x)ψf (x) + ψ†sf (x)ψsf (x)

)
, (S13)

Q̂E =
πh̄vF

2

∞∫
−∞

dx
(
ψ†c(x)ψc(x) + ψ†s(x)ψs(x)

)(
ψ†f (x)ψf (x) + ψ†sf (x)ψsf (x)

)
+
πh̄vF

2

(
: ψ†f (0)ψf (0) : + : ψ†sf (0)ψsf (0) :

)(
d†d− 1

2

)
. (S14)

We now calculate the current operators by Fourier transforming the charge operators to momentum space and
evaluating the commutators with the Hamiltonian from Eq. (5). Starting with electric transport:

Îc = − ie
2h̄

∑
k

[
ψ†f,kψf,k + ψ†sf,kψsf,k, Ĥ

]
= − ieg⊥

2h̄
√
L

∑
k

(
ψ†sf,k − ψsf,k

) (
d† − d

)
. (S15)

Although more cumbersome, the energy current operator can be obtained in the same way, leading to

ÎE =
iπvF g⊥
2L3/2

∑
k,k′,k′′

(
ψ†c,k′ψc,k′′ + ψ†s,k′ψs,k′′

)(
ψ†sf,k − ψsf,k

) (
d† − d

)
+
iπvF g⊥
4L3/2

∑
k,k′,k′′

(
2ψ†f,k′ψf,k′′ + δk′,k′′

)(
ψ†sf,k + ψsf,k

) (
d† + d

)
+
iπvF
4L

∑
k,k′

(εk′ − εk)
(
ψ†f,kψf,k′ + ψ†sf,kψsf,k′

) (
d†d− dd†

)
. (S16)

STRUCTURE OF THE GREEN FUNCTION

In order to derive the linear response heat conductance at the NFL �xed point, we �rst consider the propagator
structure of the model from Eq. (5) with ∆E = 0. Only considering the ν = sf modes for now (since the ν = c, s, f
modes are decoupled), the Green function has the following matrix structure:

G ≡
(

L Gld

Gdl D

)
=

(
L−1

0 −g⊥/h̄
−g†⊥/h̄ D−1

0

)−1

, (S17)

where L and D are the full equilibrium Green functions of the ν = sf lead modes and the dot, respectively, and
the subscript 0 refers to the bare propagators in absence of tunneling. To incorporate the Majorana nature of the
tunneling processes, we switch to the Nambu spinor basis, for example working with d† ≡ (d† d). In momentum
space, all components of the tunneling matrix (labeled by index k) can be deduced from Eq. (5), and are given by

g⊥,k =
g⊥√
L

(
−1 1
−1 1

)
≡ g⊥√

L
g, (S18)
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independent of k. Moreover, all of the momentum space components of the Green functions are 2 × 2 matrices as
well; block inversion of the right-hand side of Eq. (S17) leads to

D =
(
D−1

0 −ΣΣΣd
)−1

, (S19)

Gld,k =
g⊥

h̄
√
L
L0,k · g ·D, (S20)

Lkk′ = δk,k′L0,k +
g2
⊥

h̄2L
L0,k · g ·D · g† · L0,k′ , (S21)

with the dot self-energy being equal to

ΣΣΣd =
g2
⊥
h̄2 g† ·

( 1

L

∑
k

L0,k

)
· g ≡ g2

⊥
h̄2 g† · L′0 · g. (S22)

For future reference, we also introduce the Majorana Green functions on the dot, corresponding to the Majorana
fermions a and b; they are given by

Daa =
1

2
(D11 +D12 +D21 +D22) , (S23)

Dbb =
1

2
(D11 −D12 −D21 +D22) , (S24)

Dab =
1

2i
(D11 −D12 +D21 −D22) , (S25)

Dba =
1

2i
(−D11 −D12 +D21 +D22) , (S26)

where Dij are the original components of the 2× 2 matrix D. Finally, it should be noted that all of the above �elds
and Green functions have implied time-dependence.
In terms of fermionic Matsubara frequencies ωn, the required Green functions are given by

L0,k(iωn) = h̄

(
(ih̄ωn − εk)−1 0

0 (ih̄ωn + εk)−1

)
, (S27)

D(iωn) ≡ Gdd(iωn) =

∞∫
−∞

dε
ρρρ(ε)

ih̄ωn − ε
, ρρρ(ε) ≡ − 1

π
Im
[
DR(ε)

]
, (S28)

where ρρρ can be interpreted as a density of states,2 and the retarded dot Green function is given by3

DR(ε) =
h̄

ε(ε+ iΓ)

(
ε+ i

2Γ i
2Γ

i
2Γ ε+ i

2Γ

)
. (S29)

Here, the parameter Γ has been introduced for notational convenience and for later reference; it is de�ned as

Γ ≡ 2g2
⊥

dk

dεk
=

2g2
⊥

h̄vF
. (S30)

We thus �nd:

Daa(iωn) =
1

iωn
, (S31)

Dbb(iωn) = − ih̄

h̄ωn + sgn(ωn)Γ
, (S32)

Dab(iωn) = Dba(iωn) = 0. (S33)

Finally, we use the above to point out that the Green functions satisfy the following equations:∑
µν

Gdd,µν(iωn) = 2Daa(iωn), (S34)

∑
µν

Gld,k,µν(iωn) =
4g⊥√
L

h̄ωn
(h̄ωn)2 + ε2k

Dba(iωn) = 0, (S35)

∑
µν

Gll,kk′,µν(iωn) = −2ih̄ δk,k′
h̄ωn

(h̄ωn)2 + ε2k
− 8g2

⊥
L

h̄ωn
(h̄ωn)2 + ε2k

h̄ωn
(h̄ωn)2 + ε2k′

Dbb(iωn), (S36)
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′∑
µν

Gdd,µν(iωn) = 2Dbb(iωn), (S37)

′∑
µν

Gld,k,µν(iωn) =
4g⊥√
L

εk
(h̄ωn)2 + ε2k

Dbb(iωn), (S38)

′∑
µν

Gll,kk′,µν(iωn) = −2ih̄ δk,k′
h̄ωn

(h̄ωn)2 + ε2k
+

8g2
⊥
L

εk
(h̄ωn)2 + ε2k

εk′

(h̄ωn)2 + ε2k′
Dbb(iωn), (S39)

Gld,k,11(iωn)−Gld,k,22(iωn)−Gld,k,12(iωn) +Gld,k,21(iωn) =
4ig⊥√
L

h̄ωn
(h̄ωn)2 + ε2k

Dbb(iωn), (S40)

where the unprimed sums denote normal sums over all components, and the primed sums are signed sums in which
the o�-diagonal components µ 6= ν pick up a minus sign.

CALCULATING THE LINEAR HEAT SUSCEPTIBILITY

In terms of the imaginary time τ , the required autocorrelator is given by

Kτ
ij(τ − τ ′, T ) = −

〈
T̂ Îi(τ)Îj(τ

′)
〉
, (S41)

where i, j = c,Q, and T̂ is the imaginary time ordering operator. To calculate the heat susceptibility, we �rst
decompose the heat current operator into �ve separate terms: ÎQ =

∑5
i=1 Îi, with

Î1 = − πvF g⊥√
2L3/2

∑
k,k′,k′′

(
ψ†c,k′ψc,k′′ + ψ†s,k′ψs,k′′

)(
ψ†sf,k − ψsf,k

)
b, (S42)

Î2 =
iπvF g⊥√

2L3/2

∑
k,k′,k′′

ψ†f,k′ψf,k′′
(
ψ†sf,k + ψsf,k

)
a, (S43)

Î3 =
iΛg⊥

23/2h̄
√
L

∑
k

(
ψ†sf,k + ψsf,k

)
a, (S44)

Î4 =
πvF
2L

∑
k,k′

(εk′ − εk)ψ†f,kψf,k′ab, (S45)

Î5 =
πvF
2L

∑
k,k′

(εk′ − εk)ψ†sf,kψsf,k′ab. (S46)

Here, Λ is the energy cut-o� that is introduced by writing
∫∞
−∞ dεk →

∫ Λ

−Λ
dεk. In addition, it is useful to decompose

the heat current autocorrelator in a similar way:

Kτ
QQ(τ > 0, T ) = −

5∑
i,j=1

〈
Îi(τ)Îj(0)

〉
≡

5∑
i,j=1

Cij(τ). (S47)

The main task is thus the identi�cation and subsequent evaluation of all non-zero components of Cij(τ), most of
which are three-loop diagrams. Using Wick's theorem, we �nd that all terms except the diagonal components Cii
and the combination (C24 +C42) vanish due to the fact that they are proportional to bubble diagrams; the interested
reader can verify this explicitly with the methods that are also used below. We will now discuss each of the remaining
components separately.

• Diagonal component C11C11C11

Using Wick's theorem together with the fact that the ν = c, s modes are decoupled from the ν = sf modes and the
dot, the �rst component can be written as

C11(τ) =
(πvF g⊥)2

4L3

∑
k,k′,k′′

q,q′,q′′

〈(
ψ†sf,k(τ)− ψsf,k(τ)

)(
d†(τ)− d(τ)

)(
ψ†sf,q(0)− ψsf,q(0)

)(
d†(0)− d(0)

)〉

×
〈(
ψ†c,k′(τ)ψc,k′′(τ) + ψ†s,k′(τ)ψs,k′′(τ)

)(
ψ†c,q′(0)ψc,q′′(0) + ψ†s,q′(0)ψs,q′′(0)

)〉
. (S48)
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To simplify the second line, we refer to the previous statement that bubble diagrams vanish, such that the excitation
densities corresponding to the ν = c, s modes are equal to zero. The cross terms do therefore not contribute. Carefully
applying Wick's theorem and the de�nitions of the Green functions, we �nd

C11(τ) = − (πvF g⊥)2

4L3

∑
k,k′,k′′

q,q′,q′′

′∑
µν

′∑
ρσ

(
Gld,k,µν(τ)Gld,q,ρσ(−τ) +Gll,kq,µν(τ)Gdd,ρσ(τ)

)
×
(
Gcc,k′q′′,22(τ)Gcc,k′′q′,11(τ) +Gss,k′q′′,22(τ)Gss,k′′q′,11(τ)

)
. (S49)

From Eq. (S38) it follows that the �rst term on the right-hand side is odd in both k and q, and therefore vanishes
upon integrating over these momenta. Transformed to bosonic Matsubara frequencies Ωn, the above thus becomes

C11(iΩn) = − (πvF g⊥)2

4L3

1

(h̄β)3

∑
k,k′,k′′

q,q′,q′′

′∑
µν

′∑
ρσ

∑
n′,n′′,n′′′

Gll,kq,µν
(
− i(ωn′ + ωn′′ + ωn′′′ − Ωn)

)
Gdd,ρσ(iωn′′′)

×
(
Gcc,k′q′′,22(iωn′)Gcc,k′′q′,11(iωn′′) +Gss,k′q′′,22(iωn′)Gss,k′′q′,11(iωn′′)

)
, (S50)

where the sums over n′, n′′ and n′′′ all go from −∞ to ∞. Since the ν = c, s modes are completely decoupled, the
corresponding Green functions satisfy Gcc,kk′(iωn) = Gss,kk′(iωn) = δk,k′L0,k(iωn), see Eq. (S27). Plugging in the
expressions from Eqs. (S37) and (S39), omitting the terms that are odd in any of the momenta and relabeling the
remaining momenta:

C11(iΩn) =
2(πvF g⊥)2

(Lβ)3

∑
k,k′,k′′

∑
n′,n′′,n′′′

1

ih̄ωn′ − εk
1

ih̄ωn′′ − εk′
1

ih̄(ωn′ + ωn′′ + ωn′′′ − Ωn)− εk′′
Dbb(iωn′′′). (S51)

Having found an explicit formula for the three-loop diagram C11(iΩn), we continue by evaluating two of the
Matsubara sums. We do so by using the following identity for the Fermi-Dirac distribution nF (ε):

1

β

∞∑
n=−∞

1

ih̄ωn − ε
1

ih̄ωn − ε′
=
nF (ε)− nF (ε′)

ε− ε′
. (S52)

Furthermore, it is straightforward to show that nF (ε − ih̄Ωn) = nF (ε) and nF (ε − ih̄ωn) = −nB(ε) for bosonic and
fermionic Matsubara frequencies, respectively, where nB(ε) is the Bose-Einstein distribution. Applying Eq. (S52)
twice and taking the continuum limit of all momentum sums, we obtain

C11(iΩn) =
Γ

8πh̄2β

∞∫
−∞

dεk

∞∫
−∞

dεk′

∞∫
−∞

dεk′′
∞∑

n′=−∞

Dbb(iωn′)

(
nF (εk′)− nF (εk′′)

)(
nF (εk) + nB(εk′′ − εk′)

)
ih̄ωn′−n − (εk′′ − εk − εk′)

. (S53)

Also switching to new variables ε ≡ (εk + εk′ − εk′′)/2, ε′ ≡ (εk − εk′ − εk′′)/2, ε′′ ≡ εk + εk′ + εk′′ :

C11(iΩn) =
Γ

8πh̄2β

∞∫
−∞

dε

∞∫
−∞

dε′
∞∫
−∞

dε′′
∞∑

n′=−∞

Dbb(iωn′)

×
(
nF (ε− ε′)− nF (−ε+ ε′′/2)

)(
nF (ε′ + ε′′/2) + nB(−2ε+ ε′ + ε′′/2)

)
ih̄ωn′−n + 2ε

=
Γ

4πh̄2β

∞∫
−∞

dε

∞∫
−∞

dε′
∞∑

n′=−∞

(ε+ ε′) cosh(βε)

sinh(βε) + sinh(βε′)

1

ih̄ωn′−n + 2ε
Dbb(iωn′)

=
Γ

4πh̄2β

∞∫
−∞

dε

∞∑
n′=−∞

(
π2

2β2
+ 2ε2

)
1

ih̄ωn′−n + 2ε
Dbb(iωn′)

→ − Γ

4πh̄β

Λ′∫
−Λ′

dε

∞∑
n′=−∞

(
π2

2β2
+ 2ε2

)
h̄ωn′−n

(h̄ωn′−n)2 + (2ε)2

1

h̄ωn′ + sgn(ωn′)Γ
, (S54)
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where Λ′ = 3Λ/2 is the cut-o� of the rede�ned variable ε, and we used Eq. (S32) for the dot Green function. Next,
we write out the Matsubara frequencies explicitly, perform the �nal integral, and take the limit Λ′ →∞ to �nd

C11(iΩn) = − Γ

16πh̄β2

∞∑
n′=−∞

π2sgn
(
n′ − n+ 1

2

) (
1
2 − 2

(
n′ − n+ 1

2

)2)
+ 4βΛ′

(
n′ − n+ 1

2

)
n′ + 1

2 + sgn
(
n′ + 1

2

)
βΓ
2π

. (S55)

Note that this result for the integral assumes that ωn′ remains �nite, which is not true for all terms of the sum.
The actual expression involves objects such as arctan(Λ′/h̄ωn′−n), e�ectively introducing a cut-o� N in the sum
over n′. Although the naive introduction of a hard cut-o� N does lead to errors in the expression for the current
autocorrelator Kτ

QQ(iΩn>0, T ), the desired dc limit of the linear susceptibility is still exact due to the fact that the
erroneous region h̄ωn′ ∼ Λ′ does not contribute to the linear order term in n. The latter follows from the fact that the
autocorrelator can be rewritten to only contain the combination Dbb(iωn′−n)−Dbb(−iωn′+n): for terms in the region
h̄ωn′ ∼ Λ′ →∞ (i.e. n′ � n), this combination is both analytic and even in n, see Eq. (S32). The errors introduced
by writing arctan(Λ′/h̄ωn′−n)→ sgn(ωn′−n)π/2 therefore only depend on even powers of n.
The most obvious way to calculate the linear susceptibility is to expand the current autocorrelator in n and extract

the linear part. However, this is only possible if the correlator is analytic, which the summand of the above expression
is not. To work around this, we split the sum into di�erent parts in which the sign functions reduce to constants.
Restricting ourselves to n > 0, the three di�erent parts are: (i) n′ < 0, with both sign functions equal to −1; (ii)
0 ≤ n′ < n, where one of the sign functions is −1 while the other is +1; (iii) n′ ≥ n, with both sign functions equal

to +1. Writing n′ → −n′ − 1 in the �rst part, using
∑∞
n′=n =

∑∞
n′=0−

∑n−1
n′=0 in the third part, and subsequently

combining the parts that sum over n′ ∈ {0, . . . , n− 1}, we obtain the following analytic form:

C11(iΩn>0) = − Γ

16πh̄β2

(
− 2π2

n−1∑
n′=0

1
2 − 2

(
n′ − n+ 1

2

)2
n′ + 1

2 + βΓ
2π

+

∞∑
n′=0

π2
(

1
2 − 2

(
n′ + n+ 1

2

)2)
+ 4βΛ′

(
n′ + n+ 1

2

)
n′ + 1

2 + βΓ
2π

+

∞∑
n′=0

π2
(

1
2 − 2

(
n′ − n+ 1

2

)2)
+ 4βΛ′

(
n′ − n+ 1

2

)
n′ + 1

2 + βΓ
2π

)
. (S56)

The second and third sums of this expression diverge, being proportional to Λ2. However, these lines combined only
contain terms that are either constant or quadratic in n. For the purpose of �nding the linear susceptibility, the above
autocorrelator therefore simpli�es to

C11(iΩn>0) = const. +
πΓ

8h̄β2

n−1∑
n′=0

1
2 − 2

(
n′ − n+ 1

2

)2
n′ + 1

2 + βΓ
2π

+O(Ω2
n). (S57)

Finally evaluating the remaining sum, expanding the result to linear order in n, and performing analytic continuation
to real frequencies, we �nd

CR

11(ω) = const.− iΓ

16h̄β

[
βΓ

π
+

(
1

2
− β2Γ2

2π2

)
ψ(1)

(
1

2
+
βΓ

2π

)]
h̄ω +O(ω2). (S58)

If we furthermore identify βΓ as TK/T →∞ and utilize the expansion of the trigamma function

1

x
ψ(1)

(
1

2
+

1

x

)
= 1− x2

12
+O

(
x4
)
, (S59)

we �nd that this term of the heat current autocorrelator reduces to

CR

11(ω) = const.− iπω

12β2
+O(ω2) (S60)

at the NFL �xed point.

• The ν = fν = fν = f terms: C22 + C44 + C24 + C42C22 + C44 + C24 + C42C22 + C44 + C24 + C42

Going through the same procedure as for C11 and using that the sum over all components of Gld,k(iωn) is equal to
zero, we �nd

C22(iΩn) = − (πvF g⊥)2

4L3

1

(h̄β)3

∑
k,k′,k′′

q,q′,q′′

∑
µν

∑
ρσ

∑
n′,n′′,n′′′

Gff,k′q′′,22(iωn′)Gff,k′′q′,11(iωn′′)

×Gll,kq,µν(iωn′′′)Gdd,ρσ
(
− i(ωn′ + ωn′′ + ωn′′′ − Ωn)

)
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=
h̄(πvF g⊥)2

(Lβ)3

∑
k,k′,k′′

∑
n′,n′′,n′′′

(
1 +

4g2
⊥

h̄L

∑
k′′′

1

ih̄ωn′′′ − εk′′′
Dbb(iωn′′′)

)

× 1

ih̄ωn′ − εk
1

ih̄ωn′′ − εk′
1

ih̄ωn′′′ − εk′′
1

ih̄(ωn′ + ωn′′ + ωn′′′ − Ωn)
. (S61)

Also evaluating the sums in the same way as for C11 (i.e. performing two frequency sums using Eq. (S52), taking the
continuum limit of the momentum sums, introducing the coordinates ε ≡ (εk + εk′)/2, ε

′ ≡ εk − εk′ , and evaluating
the integrals over εk′′ , εk′′′ and ε

′):

C22(iΩn) = − Γ

8h̄β

Λ∫
−Λ

dε

∞∑
n′=−∞

ε

tanh(βε)

h̄ωn′−n

(h̄ωn′−n)2 + (2ε)2

h̄ωn′

|h̄ωn′ |+ Γ
. (S62)

Before going any further, we also calculate the component

C44(τ) =
(πvF )2

4L2

∑
k,k′

q,q′

(εk′ − εk)(εq′ − εq)
〈
a(τ)a(0)

〉〈
b(τ)b(0)

〉 〈
ψ†f,k(τ)ψf,k′(τ)ψ†f,q(0)ψf,q′(0)

〉
. (S63)

Once again following the same procedure as for the previous components, this becomes

C44(iΩn) =
(πvF )2

4L2β3

∑
k,k′

∑
n′,n′′,n′′′

(εk′ − εk)2 1

ih̄ωn′ + εk

1

ih̄ωn′′ − εk′
1

ih̄(ωn′ + ωn′′ + ωn′′′ − Ωn)
Dbb(iωn′′′)

= − 1

2h̄β

Λ∫
−Λ

dε

∞∑
n′=−∞

ε3

tanh(βε)

h̄ωn′−n

(h̄ωn′−n)2 + (2ε)2

1

h̄ωn′ + sgn(ωn′)Γ
. (S64)

Finally, without explicitly going through the calculation, the combination (C24 + C42) can analogously be derived to
be equal to

C24(iΩn) + C42(iΩn) = − Γ

h̄β

Λ∫
−Λ

dε

∞∑
n′=−∞

ε3

tanh(βε)

1

(h̄ωn′−n)2 + (2ε)2

1

|h̄ωn′ |+ Γ
. (S65)

We now extract the contribution of the above four components to the linear susceptibility by combining the com-
ponents and discussing them together, starting with Eqs. (S62) and (S65). Combined, these �rst three terms can be
written as

C22(iΩn) + C24(iΩn) + C42(iΩn) = − Γ

2h̄β

Λ∫
−Λ

dε

∞∑
n′=−∞

ε3

tanh(βε)

1

(h̄ωn′−n)2 + (2ε)2

1

|h̄ωn′ |+ Γ

− Γ

8h̄β

Λ∫
−Λ

dε

∞∑
n′=−∞

ε

tanh(βε)

1

|h̄ωn′ |+ Γ

− ΓΩn
8β

Λ∫
−Λ

dε

∞∑
n′=−∞

ε

tanh(βε)

h̄ωn′−n

(h̄ωn′−n)2 + (2ε)2

1

|h̄ωn′ |+ Γ
. (S66)

The �nal two lines of this expression do not contribute to the linear susceptibility: the second term does not depend
on n at all, while the third term is at least quadratic on Ωn (to see this, simply note that the summand is odd in ωn′

if n = 0). With that in mind, we unite the four components. Splitting the remaining sums over n′ into an n′ < 0 part
and an n′ ≥ 0 part, and writing n′ → −n′ − 1 in the former, we �nd

C22(iΩn) + C44(iΩn) + C24(iΩn) + C42(iΩn) = const.− 1

2h̄β

Λ∫
−Λ

dε

∞∑
n′=0

ε3

tanh(βε)

1

h̄ωn′ + Γ

×
(

h̄ωn′+n + Γ

(h̄ωn′+n)2 + (2ε)2
+

h̄ωn′−n + Γ

(h̄ωn′−n)2 + (2ε)2

)
+O(Ω2

n). (S67)
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Figure S1. The component C55(iΩn) at the NFL �xed point, numerically calculated as a function of dimensionless Matsubara
frequency h̄Ωn/Γ with Λ/Γ = 102. Left: C55(iΩn) minus its zeroth order term, rescaled with a constant prefactor to make it
dimensionless. Right: log-log plot of minus the same object, divided by the dimensionless frequency. The solid line is a function
of the form y = ax (its slope in the log-log plot therefore being equal to 1), con�rming that the susceptibility is perfectly linear
in the frequency over this domain. Note that these curves are independent of temperature in the regime T � TK .

Contrary to the previously calculated autocorrelators, the remaining integral cannot be evaluated exactly. As such,
we are required to expand in n before having evaluated all of the sums and integrals. Formally, this is the incorrect
order of operations, therefore leading to incorrect results if not done carefully. For example, although Eq. (S67) seems
to imply that the remaining sum only contributes to even powers of n, this is not necessarily true. The reason for
this is hidden in the fact that ωn′−n < 0 for some of the terms, such that the usual identities involving digamma
and trigamma functions cannot be applied directly. As a result, the sum over the terms involving ωn′−n evaluates to
a di�erent analytic function than the sum over the terms that depend on ωn′+n. The evaluated sum is thus of the
form (f(−n) + g(n)) instead of (f(−n) + f(n)), therefore generally supplying odd powers of n as well. Taking this
into account, we have to explicitly evaluate the sum before expanding it in n. Doing so, we �nd that the resulting
power series does indeed contain odd powers of n, but the linear term is missing. The combination of components
from Eq. (S67) does therefore not contribute to the linear susceptibility.

• Diagonal component C33C33C33

The component C33 is very similar to C22, such that we can straightforwardly modify the previous steps to �nd

C33(iΩn) = − (Λg⊥)2

16h̄2L

1

h̄β

∑
k,k′

∑
µν

∑
ρσ

∞∑
n′=−∞

Gll,kk′,µν(iωn′)Gdd,ρσ(−iωn′−n)

= − ΓΛ2

16h̄β

∞∑
n′=−∞

1

h̄ωn′−n

h̄ωn′

|h̄ωn′ |+ Γ
. (S68)

Evaluating the sum in the same fashion as before, it can be shown that the latter sum does not contain a linear term
in n. Consequently, this component does also not contribute to the linear susceptibility.

• Diagonal component C55C55C55

This component is by far the most complicated due to the fact that the ν = sf modes are coupled to the b Majorana
mode, combined with the fact that the propagators corresponding to these modes contain non-zero o�-diagonal
components. Keeping that in mind, Wick's theorem gives us 15 terms to consider. Five of these terms are vanishing
bubble diagrams, while the remaining four bubble diagrams do not have a linear term. For the purpose of �nding
the linear susceptibility, we therefore only have to consider six terms. Without explicitly performing the lengthy
calculation, we note that these combined terms can be expressed in the following way:

C55(iΩn) = const. + C44(iΩn)− (πh̄vF g⊥)2

(Lh̄β)3

∑
k,k′,k′′

∑
n,n′,n′′

(εk − εk′)(εk − εk′′)
1

ih̄ωn′′′ − εk
1

ih̄ωn′′ + εk′′

×
(

1

ih̄ωn′ + εk′
− 1

ih̄ωn′′ + εk′

)
1

ih̄(ωn′ + ωn′′ + ωn′′′ − Ωn)
Dbb(iωn′)Dbb(iωn′′) +O(Ω2

n). (S69)

It can be shown that the isolated component C44 does in fact contain a linear term in Ωn, however, this term goes to
zero with T/TK . As such, C44 does not contribute to the linear susceptibility at this point, and we can instead focus
on the other terms.
Contrary to all of the previously calculated terms, the remaining terms cannot be calculated exactly, nor can they

be successfully expanded in Ωn before evaluation. The reason for this is the presence of an additional Dbb propagator
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that is interwoven in the sums. Instead of using analytical methods, we therefore calculate the sums numerically as
a function of Ωn, and show that the corresponding contribution to the linear susceptibility goes to zero at the NFL
�xed point. The results for βΓ → ∞ (i.e. at the NFL �xed point) are shown in Fig. S1, where we have set the only
remaining parameter Λ/Γ to 102 as an example. As can be deduced from the left panel, the lowest non-trivial order
term of the component C55(iΩn) is quadratic in Ωn, similar to what we have seen for most of the other components.
In addition, the right panel shows a log-log plot of the corresponding contribution to the linear susceptibility χ55(iΩn)
up to a constant prefactor. Upon analytically continuing the data to real frequencies, the plot con�rms that this
contribution to the susceptibility is perfectly linear in ω over the entire small-ω region, such that it goes to zero in
the dc limit ω → 0.

To summarize, we have shown that only the component C11 has a linear term in the frequency at the NFL �xed point.
Explicitly, we thus �nd that the full NFL heat current autocorrelator is given by

KQQ(ω, T ) = const.− iπω

12β2
+O(ω2). (S70)

From Eq. (4), we now �nally obtain the following dc heat susceptibility:

χQQ =
π2k2

BT
2

6h
. (S71)

We also brie�y comment on the o�-diagonal terms χQc and χcQ. Referring back to Eqs. (7) and (S42)-(S46), we

immediately see that any terms involving Î1, Î2 or Î4 are proportional to vanishing bubble diagrams. Moreover, the
charge current operator does not contain the a Majorana fermion, such that the products of Îc with either Î3 or
Î5 contain exactly one a operator. At the NFL �xed point, the a Majorana fermion is completely decoupled from
all other modes, and all terms involving Î3 and Î5 are therefore equal to zero as well. We thus conclude that the
o�-diagonal terms χQc and χcQ are equal to zero at the NFL �xed point, and as such the temperature gradient does
not induce thermopower. Consequently, the two choices V = 0 and Ic = 0 coincide, such that the heat conductance
κ is unambiguously given by

κ =
χQQ
T

=
π2k2

BT

6h
(S72)

at the NFL �xed point of the C2CK model. This is the main result from Eq. (10).

CORRECTIONS TO THE EMERY-KIVELSON POINT CHARGE CONDUCTANCE

We explicitly calculate the corrections to the linear response charge conductance away from the EK point to lowest
order in λ ≡ 2πh̄vF − Jz and T/TK . Our starting point is the interaction term from Ref.1,

ĤI = λ : ψ†s(0)ψs(0) :

(
d†d− 1

2

)
=
iλ

L
ba
∑
k,k′

: ψ†s,kψs,k′ :, (S73)

which we will treat as a perturbation to the non-interacting Hamiltonian from Eq. (5).4 First, we consider the NFL
(i.e. leading order) charge current autocorrelator; repeating a much simpler version of the calculations for the heat
conductance shown above, we �nd that it is given by

Kτ
cc(iΩn>0, T ) = − e2Γ

8πh̄3β

∞∑
n′=−∞

∞∫
−∞

dεkTr[L0,k(iωn′)]Dbb(−iωn′−n). (S74)

Since the interaction term does not involve ν = sf modes, the bare propagators corresponding to those modes remain
unchanged. Our �rst objective is thus to �nd the corrections to the bb component of the dot Green function in
presence of a non-zero λ.
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Table I. De�nitions of the di�erent components of the Feynman diagrams. The arrow in the fourth diagram indicates the
propagation direction of ψs,k.

Expression Diagram Vertex

Dfull

bb (iωn)
ωn

Dbb(iωn)
ωn

Daa(iωn)
ωn

1
L

∑
k

Gs,k(iωn)
ωn

We approximate the full bb component of the dot Green function Dfull

bb (iωn) in presence of interactions by employing
standard Feynman techniques. Using that Eq. (S73) provides a four-point vertex involving two ψs,k legs, an a leg and
a b leg, the Feynman rules lead to the following diagrammatic expression for Dfull

bb (iωn):

ωn
=

ωn
+

ωn ωn−l+m

ωl

ωm

ωn
+ . . . . (S75)

Here, each vertex comes with a prefactor iλ/h̄2β and a sum over Matsubara frequencies; the de�nitions of the other
components can be found in Table I. Reading o� the above Feynman diagrams, we �nd that the lowest order of the
self-energy is given by

Σ(iωn) = − λ2

h̄2L2

1

(h̄β)2

∑
n′,n′′

∑
k,k′

Daa

(
− i(ωn′ − ωn′′ − ωn)

)
Gs,k(iωn′)Gs,k′(iωn′′), (S76)

where Gs,k(iωn) is shorthand notation for Gss,kk,11(iωn).
Using that the a and ψs,k modes are completely isolated from the rest of the system if λ = 0, and taking the

continuum limit of the sums over k and k′, we have

Σ(iωn) = − λ2

h̄v2
F

1

β2

∞∫
−∞

dεk
2πh̄

∞∫
−∞

dεk′

2πh̄

∑
n′,n′′

1

ih̄(ωn − ωn′ + ωn′′)

1

ih̄ωn′ − εk
1

ih̄ωn′′ − εk′
. (S77)

Furthermore applying Eq. (S52) twice, together with the substitutions ε ≡ (εk + εk′)/2, ε
′ ≡ εk − εk′ , the self-energy

becomes

Σ(iωn) =
λ2

h̄v2
F

∞∫
−∞

dεk
2πh̄

∞∫
−∞

dεk′

2πh̄

(
nF (0)− nF (εk′)

)(
nF (εk) + nB(εk′)

)
ih̄ωn − (εk − εk′)

=
λ2

4h̄v2
F

∞∫
−∞

dεk
2πh̄

∞∫
−∞

dεk′

2πh̄

cosh (β(εk + εk′)/2)

cosh (βεk/2) cosh (βεk′/2)

1

ih̄ωn − (εk + εk′)

=
λ2

2h̄v2
F

∞∫
−∞

dε

2πh̄

∞∫
−∞

dε′

2πh̄

cosh (βε)

cosh (βε) + cosh (βε′/2)

1

ih̄ωn − 2ε

=
λ2

πh̄2v2
F

∞∫
−∞

dε

2πh̄

ε

tanh (βε) (ih̄ωn − 2ε)
, (S78)

where we wrote εk′ → −εk′ in the second line. In order to deal with the remaining UV divergence, we reintroduce the
energy cut-o� Λ. Noting that the real part of the integrand is odd in ε, we obtain

Σ(iωn) = − iωnλ
2

2π2h̄2v2
F

Λ∫
−Λ

dε
ε

tanh (βε)

1

(h̄ωn)2 + (2ε)2
, (S79)
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which diverges logarithmically as Λ→∞.

We now return to the autocorrelator from Eq. (S74), replacing Dbb(iωn) with Dfull

bb (iωn) and evaluating the mo-
mentum integral. Using the same methods for dealing with momentum integrals as before, we �nd

Kτ
cc(iΩn>0, T ) =

ie2Γ

4h̄2β

∞∑
n′=0

(
Dfull

bb (−iωn′−n)−Dfull

bb (iωn′+n)
)

= Kτ
cc(iΩn>0, T )

∣∣∣
λ=0
− ie2Γ

4h̄2β

∞∑
n′=0

((
Dbb(iωn′−n)

)2
Σ(iωn′−n) +

(
Dbb(iωn′+n)

)2
Σ(iωn′+n)

)
+O(λ4),

(S80)

where we used the fact that both Dbb(iωn) and Σ(iωn) are odd functions of ωn. Plugging in Dbb(iωn) and splitting
the sum into several smaller sums, the lowest order correction to the current autocorrelator can be written as

∆Kτ
cc(iΩn>0, T ) =

ie2Γ

2β

( ∞∑
n′=0

Σ(iωn′)

(h̄ωn′ + Γ)
2 −

n−1∑
n′=0

Σ(iωn′)

(h̄ωn′ + Γ)
2

)

= const.− e2Γλ2

4π2h̄3v2
Fβ

Λ∫
−Λ

dε

n−1∑
n′=0

ε

tanh(βε)

1

(h̄ωn′ + Γ)
2

h̄ωn′

(h̄ωn′)2 + (2ε)2
. (S81)

The sum over the Matsubara frequencies can be evaluated by using the partial fraction decomposition

1

(h̄ωn′ + Γ)
2

h̄ωn′

(h̄ωn′)2 + (2ε)2
= − 1

(h̄ωn′ + Γ)
2

Γ

Γ2 + (2ε)2
− 1

h̄ωn′ + Γ

Γ2 − (2ε)2(
Γ2 + (2ε)2

)2
+

1

h̄ωn′ − 2iε

1

2 (Γ + 2iε)
2 +

1

h̄ωn′ + 2iε

1

2 (Γ− 2iε)
2 (S82)

and applying the usual digamma function identities. Subsequently expanding the result to linear order in Ωn and to
lowest order in 1/βΓ, we �nd

∆Kτ
cc(iΩn>0, T ) = const.− e2βΓλ2

32π4h̄3v2
F

βΛ∫
−βΛ

d(βε)
βε

tanh(βε)

×
[(
ψ(1)

(
1

2
− iβε

π

)
+ ψ(1)

(
1

2
+
iβε

π

))
h̄Ωn

(βΓ)2
+O

(
Ω2
n, (1/βΓ)3

)]
. (S83)

Finally evaluating the remaining integral in the wide-band limit Λ→∞ and performing analytic continuation to real
frequencies, we recover the lowest order correction to the dc linear susceptibility:

∆χcc = − π
3e2λ2

16h3v2
F

1

βΓ
+O

(
(1/βΓ)2

)
. (S84)

Identifying 1/βΓ as T/TK , the charge conductance is therefore equal to

G =
e2

2h

(
1− π3λ2

8h2v2
F

T

TK
+ . . .

)
(S85)

when approaching the local moment �xed point from below, where the dots contain all higher order terms in products
of λ2 and T/TK ; the leading order term e2/2h is the one from Eq. (9), and follows from evaluating Eq. (S74). This
result for the leading order and the leading correction of the conductance G agrees with the results from previous
research.5�7 Note that the full linear term in T/TK is by itself a series in λ2, while λ is not necessarily small. Moreover,
we see that the lowest order correction to the conductance vanishes as T/TK goes to zero, independent of λ. This is
a manifestation of the irrelevance of the anisotropy ∆Jz ≡ Jz − J⊥: no matter the starting point (which is dictated
by the parameter λ), the RG �ow ensures that ∆Jz e�ectively goes to zero with the energy scale (in this case T/TK),
such that the EK point results become exact regardless of λ.
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CORRECTIONS TO THE EMERY-KIVELSON POINT HEAT CONDUCTANCE AND ITS

IMPLICATIONS FOR THE WIEDEMANN-FRANZ LAW

One may treat �nite-temperature corrections to the heat conductance in the vicinity of the EK point due to the
leading RG irrelevant perturbations in a similar fashion. For heat conductance this involves evaluating �ve-loop
diagrams � a formidable task which we did not undertake in this work. However, it is clear from the structure of
the perturbation theory that any correction in λ is inevitably accompanied by powers of T/TK . These are, after all,
irrelevant corrections to the �xed point properties, and do not a�ect the �xed point value itself as T → 0 (this is
the meaning of an irrelevant perturbation!). The form of the heat conductance, taking into account such corrections,
would be of the generic form,

κ =
π2k2

B
T

6h

(
1− bλ2 T

TK
+ . . .

)
, (S86)

which is similar in structure to Eq. (S85) for the charge conductance G.
In particular, note that we have a �nite contribution to κ when precisely at the �xed point (obtained already at

three-loop, as above). Similarly, the charge transport is �nite at the EK �xed point. Therefore, when computing the
WF ratio at the C2CK critical �xed point, we need only consider the values of G and κ at the EK point itself. Of
course, this would be di�erent if either G or κ were zero at the EK point, since then the leading corrections around
the EK point would come into play. Fortuitously, this is not the case for the C2CK model at the critical point.
In the main text of the paper, we discuss how at the Fermi liquid �xed points of the C2CK model, the charge

and heat conductances vanish. In such situations, the WF ratio may still remain �nite, however, due to the leading
corrections to the �xed point values as the limit T → 0 is taken. The WF law is in general violated in these
circumstances. This is reminiscent of the calculation of the Wilson ratio at the EK point, which involves the ratio of
the magnetic spin susceptibility and the heat capacity, which both vanish at the EK point. The proper calculation of
the Wilson ratio therefore necessitates obtaining corrections to the EK point.8

We again emphasize that this is not necessary for the C2CK critical �xed point, because the EK values of G and
κ are both �nite.
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