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The Mott transition as a topological phase transition
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We show that the Mott metal-insulator transition in the standard one-band Hubbard model can be understood as
a topological phase transition. Our approach is inspired by the observation that the midgap pole in the self-energy
of a Mott insulator resembles the spectral pole of the localized surface state in a topological insulator. We
use numerical renormalization-group–dynamical mean-field theory to solve the infinite-dimensional Hubbard
model, and represent the resulting local self-energy in terms of the boundary Green’s function of an auxiliary
tight-binding chain without interactions. The auxiliary system is of generalized Su-Schrieffer-Heeger model
type; the Mott transition corresponds to a dissociation of domain walls.
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Introduction. The Mott transition is a classic paradigm in
the physics of strongly correlated electron systems, where
electronic interactions drive a metal-insulator phase transition
[1–3]. In a Mott insulator (MI), the strong local Coulomb
repulsion localizes electrons, opening a charge gap to single-
particle excitations and suppressing transport.

Although most MIs are accompanied by magnetic order
at low temperatures, yielding a symmetry-broken superlattice
structure [2], this is not an essential requirement [3–5]. The
one-band Hubbard model on the Bethe lattice is the simplest
model describing the Mott transition to a paramagnetic MI,
and can be solved numerically exactly using dynamical mean-
field theory (DMFT) [6,7]. The insulating properties of the
MI cannot be understood on the single-particle level; all
nontrivial physics is contained in the interaction self-energy
[7–9]. Throughout the insulating phase, the MI self-energy
features a midgap pole. In the metallic Fermi-liquid (FL)
phase, Landau damping sets in at low energies. Close to
the Mott transition, the FL self-energy develops a double-
peak structure responsible for the preformed spectral gap,
separating the central quasiparticle resonance in the density of
states from the high-energy Hubbard bands. Importantly, the
Mott transition from FL to MI arises without the gap between
the Hubbard bands closing. At particle-hole symmetry (half
filling), the self-energy peaks sharpen and coalesce to form a
single Mott pole pinned at zero energy [7–9].

MIs contrast to standard band insulators, where the nonin-
teracting band structure is already gapped due to the specific
periodic structure of the real-space lattice. Indeed, the topol-
ogy of the band structure of noninteracting systems plays an
important role [10–12]. In particular, topological insulators
constitute distinct phases of matter, characterized by robust
metallic states localized at boundaries, or at interfaces with
trivial insulators [13–15]. Topological phase transitions typ-
ically involve bulk gap closing without symmetry breaking,
and are characterized by the discrete change in a topological
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invariant [16]. However, for interacting systems the standard
topological classification breaks down [17–19]. The effect of
including electronic interactions in systems with topologically
nontrivial single-particle band structures is the focus of active
research [20–32].

Recently, the violation of Luttinger’s theorem in correlated
materials has been connected to the emergence of topologi-
cal order [33–41]. Although Luttinger’s theorem is satisfied
throughout the FL phase of the Hubbard model due to the
vanishing of the Luttinger integral [9,41–44], it is violated
in a MI [9,42,45]. Importantly, the Luttinger integral takes a
universal finite value throughout the MI phase [9], suggesting
that it may play the role of a topological invariant, and that
topological information is contained in the interaction self-
energy.

In this Rapid Communication, we uncover a hidden topol-
ogy in the self-energy of the standard one-band paramagnetic
Hubbard model in infinite dimensions. Specifically, we show
that the rich many-body features of the Mott transition can
be interpreted in terms of topological properties of an aux-
iliary noninteracting system coupled to the physical lattice
degrees of freedom. The original interacting lattice system is
mapped onto a completely noninteracting one; the self-energy
dynamics are provided by coupling to fictitious degrees of
freedom of an auxiliary system (see Fig. 1). We use numerical
renormalization-group (NRG) –DMFT [6,7,46] to calculate

Σ(ω) → {tn}

V
t1
t2
t3

FIG. 1. Mapping from the Hubbard model (left) to a fully non-
interacting system (right) in which physical degrees of freedom (◦)
couple to auxiliary tight-binding chains (�).
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the zero-temperature local lattice self-energy numerically ex-
actly, perform the exact mapping to an auxiliary tight-binding
chain coupled to each physical lattice site, and analyze their
topological properties across the Mott transition. The aux-
iliary chains are found to be of generalized Su-Schrieffer-
Heeger [47] (SSH) model type, with the MI being the topo-
logically nontrivial phase. The double-peak structure of the
self-energy in the topologically trivial FL phase corresponds
to an SSH chain with additional domain walls. In each regime,
we construct simple effective models to describe the emergent
physics.

Models and mappings. To uncover the topological features
of the Mott transition in their simplest form, we focus on the
one-band Hubbard model (Fig. 1, left),

Hlatt = Hband + Hint = t̃
∑

〈i, j〉,σ
c†

iσ c jσ + U
∑

i

c†
i↑ci↑c†

i↓ci↓,

(1)
where 〈i, j〉 denotes nearest neighbors on the Bethe lattice.
In the limit of infinite lattice coordination N → ∞ (consid-
ered hereafter), the self-energy �(ω) becomes purely local
[6] such that G(ω) = 1/[ω+ − �(ω) − t2G(ω)], where ω+ =
ω + i0+, t = t̃

√
N , and G(ω) is the retarded lattice Green’s

function. We use NRG-DMFT [7,46] to determine �(ω) at
T = 0 across the Mott transition.

Since the self-energy is analytic and causal, it may
be replaced by a hybridization �(ω) ≡ �0(ω) to auxiliary
(“ghost”) degrees of freedom described by some noninter-
acting Haux. The full single-particle dynamics of Eq. (1) can
therefore be reproduced by replacing Hint → Haux + Hhyb.
Specifically, we take Haux to be noninteracting semi-infinite
tight-binding chains,

Haux =
∑
i,σ

∞∑
n=1

en f †
iσ,n fiσ,n + tn( f †

iσ,n fiσ,n+1 + H.c.), (2)

coupled at one end to the physical lattice degrees of freedom,
Hhyb = V

∑
i,σ (c†

iσ fiσ,1 + f †
iσ,1ciσ ) [Fig. 1 (right)].

Continued fraction expansion. With Haux in the form of
a linear chain, �0(ω) can be expressed as a continued frac-
tion using �n(ω) = t2

n /[ω+ − en+1 − �n+1(ω)], where t0 =
V . The set of chain parameters {tn} and {en} in Eq. (2)
for a given input self-energy �(ω) is uniquely determined
using this recursion for �n (initialized by �0 = �), to-
gether with the identities t2

n = − 1
π

Im
∫

dω �n(ω) and en+1 =
− 1

πt2
n
Im

∫
dω ω�n(ω). We impose a high-energy cutoff D

such that Im�(ω) ∝ θ (D − |ω|) [48]. The mapping is effi-
cient, numerically stable, and accurate, although care must be
taken with poles in �n [49].

We now focus on the particle-hole symmetric (half-filled)
case μ = U/2, where Im�(ω) = Im�(−ω) and so en = 0 for
all sites of the auxiliary chain.

Mott insulator. For interaction strength U > Uc, the Hub-
bard model Eq. (1) describes a MI, with two Hubbard bands
separated by a hard spectral gap of width 2δ. The correspond-
ing self-energy at zero temperature is shown in Fig. 2(a),
obtained by NRG-DMFT for U/t = 9. The imaginary part
of the self-energy features a midgap “Mott pole” throughout
the MI phase, pinned at ω = 0 (and with finite weight at the
transition).
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FIG. 2. Lattice self-energy at T = 0 obtained from NRG-DMFT
[panels (a) and (d)] and corresponding tn of the auxiliary chain
[panels (b) and (e)]. Left panels show results for the MI (U/t = 9,
D = 4): the hard gap in Im�(ω) and the Mott pole at ω = 0 produce
an SSH-type chain in the topological phase, hosting an exponentially
localized boundary zero mode, panel (c). Right panels show the
metallic FL (U/t = 3, D = 3): the low-energy ω2 psuedogap in
Im�(ω) produces a generalized SSH chain with 1/n decay, in the
trivial phase.

Mapping to the auxiliary noninteracting chain, Eq. (2),
leads to a model of modified SSH type [see Fig. 2(b). In
particular, the hard gap in Im�(ω) generates an alternating
sequence of tn in Haux at large distances from the physical
degrees of freedom,

tn
nδ/D�1∼ 1

2 [D + (−1)nδ] : MI (3)

In the MI phase, the auxiliary chain parameters are alternating
for all n, starting from a weak bond (t1 < t2). It is this feature
that produces the Mott midgap pole at ω = 0. Additional
structure in the Hubbard bands merely gives rise to transient
structure in the tn for small n, but importantly the parity
of the alternation, t2n−1/t2n < 1, is preserved for all n [see
Fig. 2(b)].

The SSH model in its topological phase [Eq. (2) with tn
given by Eq. (3) for all n � 1] hosts an exponentially localized
boundary zero mode that is robust to parity-preserving pertur-
bations [47]. Similarly, the zero-energy Mott pole corresponds
to a robust and exponentially localized state living at the
end of the auxiliary chain (on its boundary with the physi-
cal degrees of freedom of the original lattice). This can be
readily seen from the transfer matrix method, which gives the
wave-function amplitude of the zero-energy state at odd sites
(2n − 1) of Haux as |ψ0(2n − 1)|2 ∼ ∏n

x=1 t2x−1/t2x, which at
large n decays exponentially as exp(−n/ξ ) with ξ ≈ D/2δ for
small δ (while |ψ0(2n)|2 = 0 for all n) [47]. The boundary-
localized nature of this zero-mode state is confirmed by exact
diagonalization of Haux [see Fig. 2(c)].

Metallic FL phase. For U < Uc, Eq. (1) describes a corre-
lated metal, with low-energy FL properties characterized by a
quadratic dependence of the self-energy, −t Im�(ω → 0) ∼
(ω/Z )2, in terms of the quasiparticle weight Z . In Fig. 2(d) we
plot the T = 0 self-energy deep in the FL phase, obtained by
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NRG-DMFT for U/t = 3. We obtain a distinctive form for
the auxiliary chain hopping parameters from the continued
fraction expansion, arising due to the low-energy pseudogap
in Im�(ω),

t2
n

nZ�1∼ D2

4

[
1 − r

n + d
(−1)n

]
: FL, (4)

where r = 2 is the exponent of the low-energy spectral power
law, and d ∼ 1/Z . Equation (2) with hopping parameters tn
given by Eq. (4) generalizes the standard hard-gapped SSH
model to the pseudogapped case: the alternating sequence of
tn again has a definite parity, but with a decaying 1/n envelope.
Since t2n−1/t2n > 1 for all n (the chain starting this time from a
strong bond), the analogous SSH model would be in its trivial
phase; likewise here, the FL phase of the Hubbard model may
be regarded as trivial. There is no localized boundary state of
the auxiliary chain in the FL phase.

Vicinity of transition. Deep in either MI or FL phases of
the Hubbard model, the auxiliary chains are of generalized
SSH model type, with the MI being topologically nontriv-
ial. A robust and exponentially localized zero-energy state
lives on the boundary between the auxiliary and physical
systems throughout the MI phase, corresponding to the Mott
pole. However, richer physics is observed on approaching the
Mott transition from the FL phase. In particular, the Mott
transition occurs without bulk gap closing of the Hubbard
bands (unusual for a topological phase transition). What is the
mechanism for the transition between the trivial FL and the
topological MI in terms of the auxiliary chains?

In the vicinity of the transition on the FL side, the self-
energy develops a preformed gap, inside which are peaks
located at ±ωp with ωp ∝ t

√
Z , while quadratic “pseudogap”

behavior sets in on the lowest-energy scales |ω| � ωp [7–9].
The transition corresponds to Z → 0. Before performing the
exact mapping �(ω) → {tn} numerically, we consider the
evolution of chain parameters for a simpler toy system mim-
icking the Mott transition: two midgap spectral poles merging
to one.

To do this, we consider the general problem of determining
the chain parameters tn for a composite spectrum A(ω) =
1
N

∑
i wiAi(ω), with N = ∑

i wi. Although spectral elements
are simply additive, the composition rule for the tn is highly
nonlinear. To make progress we note that spectral moments
are additive, μk = 1

N
∑

i wiμi,k with μi,k = ∫
dω ωkAi(ω),

and use the moment expansion [50] of the chain parameters
t2
n = Xn(n), where

Xk (n) = Xk (n − 1)

t2
n−1

− Xk−1(n − 2)

t2
n−2

, (5)

with Xk (0) = μ2k , Xk (−1) = 0, and t2
−1 = t2

0 = 1.
Analysis of the equations shows that adding a zero-energy

pole to the boundary spectral function of the SSH model in the
trivial phase flips the parity of the corresponding tn (the first
coupling of the chain swaps from a strong to a weak bond),
yielding the topological SSH model, Eq. (3), as expected.
What change in tn results from adding two poles at ±ωp to
the trivial SSH spectrum, as depicted in Fig. 3(a)?

Figures 3(c) and 3(d) show the chain parameters tn for
ωp/D = 10−2 and 10−4. At large n, the chain remains in

FIG. 3. Modified SSH model with two poles at ±ωp inside a
gap of width 2δ [spectral function illustrated in panel (a)]. Chain
parameters tn presented in panels (c) and (d) for ωp/D = 10−2

and 10−4 with common δ/D = 0.2, showing a domain wall at ndw.
States localized at the boundary and the domain wall hybridize
and gap out to give exact eigenstates with energies ±ωp [panels
(e) and (f)]. The domain wall position [panel (b), points] follows
ωp ∼ D exp(−ndwδ/D) (lines).

the trivial SSH phase. However, a domain wall appears at
ndw where the parity of the alternation flips; the chain for
1 < n < ndw is therefore in the topological phase of the
SSH model (starting at n = 1 from a weak bond). This pro-
duces two localized states: one at the boundary (n = 1), and
the other pinned at the domain wall (n = ndw), which hy-
bridize and gap out to produce two states at energies ±ωp.
Since these are topological states and exponentially localized,
the hybridization is exponentially small in the real-space
separation between them along the chain, and we find ωp ∼
D exp(−ndwδ/D) [see panel (b)]. This physical picture is
confirmed by examining the exact eigenstates ψp with energy
ωp satisfying Hauxψp = ωpψp, plotted in panels (e) and (f).

The Mott transition as U → U −
c is characterized by ωp →

0. In terms of the auxiliary chain, a pair of topological defects
forms at the boundary when deep in the FL phase. One of
these separates and moves down the chain as the transition
is approached. As U → U −

c , then ωp → 0, and ndw → ∞. At
the transition itself, the two poles coalesce into the single Mott
pole, and the chain is left with a single topological defect state
at the boundary. This mechanism is reminiscent of the vortex-
pair dissociation in the Kosterlitz-Thouless transition [51].
The topological transition occurs without bulk gap closing.

The behavior of the auxiliary chains for the actual Hubbard
model is of course more complex than that of the above toy
model. In particular, the true self-energy �(ω) is not com-
pletely hard-gapped in the FL phase, but features a low-energy
quadratic pseudogap. Including this leads to alternating tn with
a 1/n envelope as per Eq. (4). Another key difference is that
the peaks in the self-energy close to the transition are not delta
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FIG. 4. Self-energy −Im�(ω) from NRG-DMFT (a),(c) and cor-
responding auxiliary chain parameters tn (b),(d) close to the Mott
transition in the FL phase at T = 0. Top panels for U/t = 5.82;
lower panels for U/t = 5.86 (both with D = 3). Self-energy peaks
of finite width centered on ±ωp produce a generalized SSH chain
with periodic domain wall structure. Low-energy ω2 behavior of
the self-energy manifests as long-distance (−1)n/n behavior in the
chains. As the transition is approached, the self-energy peaks sharpen
into poles and ωp → 0; correspondingly, the location of the first
domain wall moves out, and the beating period increases, leaving
a single boundary-localized topological state in the MI.

functions but have finite width. For the auxiliary chains, these
peaks can be viewed as narrow bands of hybridizing topolog-
ical states produced by a periodic structure of domain walls,
as shown in the Supplemental Material [49]. One therefore
expects a beating pattern in the chain parameters.

All these expected features are seen in the exact results for
the self-energy and corresponding chain parameters close to
the transition, shown in Fig. 4. In particular, the chains start
from a weak bond (giving a localized boundary state); the
position of the first domain wall moves to larger distances
as ωp becomes smaller nearer the transition; the period of
the beating becomes longer as the self-energy peaks become
sharper; and the alternation in tn attenuates as 1/n at long
distances.

Combining these insights, we propose a simple toy model
that approximates all of the qualitative features of the true
lattice self-energy throughout the FL phase:

t2
n = D2

4

[
1 − 2

n + d
(−1)n

]
[1 − β cos(2πn/λ + φ)] . (6)

A representative example is shown in Fig. 5(a), where we
have fit the parameters of Eq. (6) to best match �(ω) from
NRG-DMFT [panel (c)] with �0(ω) of the toy model [panel
(b)]. The transition is approached as λ, d → ∞.

Particle-hole asymmetry. We briefly comment on the
physics away from particle-hole (ph) symmetry, η = 1 −
2μ/U �= 0. Throughout the MI phase, the Mott pole resides
inside the hard gap between Hubbard bands, but is no longer
at zero energy. The resulting auxiliary chain potentials en

then become finite. We have confirmed in this case that the
auxiliary chain state to which the Mott pole corresponds is
still exponentially localized on the boundary, and is robust
to physical perturbations (provided one remains in the MI

FIG. 5. Auxiliary chain parameters tn of the toy model Eq. (6),
with parameters β = 3, d = 15, φ = 0.1, and λ = 30 [panel (a)].
The resulting �0(ω) [panel (b)] is in good agreement with the
true lattice self-energy of the Hubbard model for U/t = 5.6, D = 3
[panel (c)].

phase). Furthermore, the analysis of Ref. [52] can be applied
to the auxiliary chain. We again find that the MI is topolog-
ically nontrivial for η �= 0 (while FL is trivial). Everything
is continuously connected to the ph-symmetric limit η →
0. Further details and explicit calculations for η = 1/4 are
presented in the Supplemental Material [49]. A full discussion
will appear elsewhere.

Topological invariant. A recent paper by Logan and Galpin
[9] shows for the Hubbard model Eq. (1) at T = 0 that the
Luttinger integral takes distinct constant values in the FL and
MI phases for any η �= 0 [53,54],

IL = 2

π
Im

∫ 0

−∞
dω G(ω)

d�(ω)

dω
=

{
0 : FL
1 : MI. (7)

The finite value of IL for the generic MI can be traced to the
Mott pole, which we identified in this work as the topological
feature of the MI. Since the evolution of the self-energy with
interaction strength drives the Mott transition, the Luttinger
integral is a natural quantity to characterize the distinct topol-
ogy of the FL and MI phases, and may be regarded as a
topological invariant.

Conclusions. We present an interpretation of the classic
Mott transition in the infinite-dimensional one-band Hubbard
model as a topological phase transition. The lattice self-
energy, determined here by NRG-DMFT, is mapped to an
auxiliary tight-binding chain, which is found to be of gen-
eralized SSH model type. The MI is the topological phase,
with a boundary-localized state corresponding to the Mott
pole. The transition from FL to MI involves domain wall
dissociation.

We argue that any system with such a pole in its lo-
cal self-energy may be regarded as topological. The anal-
ysis could also be extended to multiband models, where
the auxiliary chains become multilegged ladders. We spec-
ulate that a superconducting Hubbard model may map to
auxiliary Kitaev chains involving Majoranas. For a fully
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momentum-dependent self-energy of a D-dimensional lattice,
the mapping generalizes to an auxiliary lattice in D + 1 di-
mensions; for a MI, the auxiliary lattice may be a topological
insulator with a localized boundary state.
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This Supplementary Material consists of the following.
In section S-1 we provide technical details of the con-
tinued fraction expansion (CFE) of the Hubbard model
self-energy and discuss the analytic structure of auxiliary
chain correlation functions. In section S-2 we demon-
strate the veracity of the obtained auxiliary chain hop-
ping parameters {tn}, by reproducing the input. In sec-
tion S-3 we discuss the ‘moment expansion’ technique,
and its advantages and drawbacks in the context of the
current work. In section S-4 we provide additional analy-
sis of the role of the mid-gap peaks on the chain structure.
In section S-5 we discuss an alternative topological signa-
ture of the auxiliary chains based on boundary conduc-
tance arguments. Section S-6 contains technical details
of the NRG and DMFT calculations.

S-1. AUXILIARY CHAIN CORRELATION
FUNCTIONS

In this section we discuss technical details of the CFE
for the mapping of the self-energy Σ(ω) to the auxiliary
chain parameters {tn}, which constitute a kind of ‘genetic
code’ describing the role of electronic correlations in these
systems. We also examine the mathematical structure of
the auxiliary hybridization functions ∆n(ω).

The local lattice self-energy Σ(ω) as a function of real
frequency ω, is the input for the calculations, and is as-
sumed to be known. In the present work we use NRG-
DMFT to obtain it at T = 0 (see Sec. S-6), but in princi-
ple any suitable method can be used. The self-energy is
identified with a hybridization ∆0(ω) between the physi-
cal lattice degrees of freedom and fictitious auxiliary de-
grees of freedom which provide the same (single-particle)
dynamics, ∆0(ω) = Σ(ω). Furthermore, this hybridiza-
tion can be written in terms of the boundary Green’s
function of the free auxiliary system – here a semi-infinite
tight-binding chain given by Eq. 2 of the main paper. We
write ∆0(ω) = V 2G1(ω), with V the tunneling matrix el-
ement between the physical lattice sites and the auxiliary
chains appearing in Hhyb, and G1(ω) = 〈〈fiσ,1; f†iσ,1〉〉′ is
the retarded Green’s function (the prime denotes the iso-
lated Haux). We define An(ω) = − 1

π Im ∆n(ω), such that∫
dωA0(ω) = V 2.

S-1.1. Continued fraction expansion of self-energy

The boundary Green’s function of the auxiliary chain
can be expressed as G1(ω) = 1/[ω+−∆1(ω)] where ω+ =

ω+ i0+ and ∆1(ω) is the hybridization to the rest of the
chain. ∆1(ω) = t21G̃2(ω) can also be expressed in terms
of a Green’s function. In this case, it is the boundary
Green’s function of a chain starting at site n = 2 (i.e., the
Green’s function at the end of the auxiliary chain with
site 1 removed). Following the same logic recursively,
we obtain G̃n(ω) = 1/[ω+ − ∆n(ω)] for n ≥ 1, where
∆n(ω) = t2nG̃n+1(ω). Here, G̃m(ω) = 〈〈fiσ,m; f†iσ,m〉〉′ is
the Green’s function of the auxiliary chain at site m with
all sites < m removed. We therefore obtain the continued
fraction expansion,

∆0(ω) =
V 2

ω+ −
t21

ω+ −
t22
. . .

. (1)

Starting from ∆0(ω) = Σ(ω), and using
∫
dωAn(ω) ≡

− 1
π

∫
dω Im∆n(ω) = t2n, one can recursively determine

all tn. Although in practice the recursive procedure is
stopped after a finite number of iterations, N , note that
the tn determined en route are (numerically) exact and
are not affected by truncating the sequence at finite N
(this is in contrast to methods involving discretization
of the spectrum, or the moment expansion discussed be-
low which is strongly nonlinear). For large enough N ,
the asymptotic properties of the chain parameters can
be identified, and can be analytically continued, using a
chain ‘terminator’. We observe that thousands of sites
of the auxiliary chain must typically be determined to
capture low-energy features in the FL phase. In the MI
phase, shorter chains of a few hundred sites are usually
sufficient to identify the asymptotic chain properties. We
emphasize that in all cases an accurate representation of
the self-energy requires long (preferably analytically con-
tinued) auxiliary chains. Representations involving only
a few ‘ghost’ sites are not adequate.
Finally, we point out that accurate self-energies with

high resolution in frequency must be used to recover the
auxiliary chain properties discussed in this work.

S-1.2. Auxiliary chain representation of a
Fermi liquid (FL)

In the FL phase, the technical complexity in determin-
ing {tn} numerically is due to the low energy form of the
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(input) self-energy. In this case,

∆0(ω) ω→0∼ a0ω + ib0ω
2 (a0, b0 < 0) .

Step 1: Calculation of ∆1(ω) :

∆1(ω) = t21G̃2(ω) = ω+ − 1/G1(ω).

Since both the real and imaginary parts of G1(ω) is van-
ishingly small as ω → 0 and is equal to zero at ω = 0, this
leads to a non-analyticity in ∆1(ω = 0) and hence a sin-
gular part in the corresponding Green’s function G̃2(ω).
We write G̃2(ω) = G̃reg2 (ω) + G̃sing2 (ω), where G̃reg2 (ω)
represents the regular (continuum) part, and G̃sing2 (ω)
represents the singular part. More precisely,

∆1(ω → 0) =ω+ − t20
a0ω + ib0ω2

= ω+ − t20
a0

[
1
ω+ + ib0

a0 + ib0ω

]
.

Therefore we identify

∆reg
1 (ω → 0) = ω + t20b

2
0ω

a0(a2
0 + b20ω

2) + i
t20b0

a2
0 + b20ω

2 ,

such that,

∆1(ω → 0) = ∆reg
1 (0)− t20

a0ω+ . (2)

The second term in Eq. (2) corresponds to a pole in the
imaginary part concomitant with a diverging real part of
∆1(ω) at ω = 0. Furthermore, this pole resides on top of
a background function, ∆reg

1 (ω), such that ∆reg
1 (0) = β1.

The residue of this pole is α1 = t20
|a0| . To fix t21 we use the

spectral normalization,

t21 =
∫
Areg1 (ω)dω + α1 . (3)

Step 2: The low energy spectral behavior of ∆2(ω) is,

∆2(ω) = ω − ωt21
ω∆reg

1 (ω) + α1
. (4)

Evaluating the imaginary part,

Im ∆2(ω) = −ωt21Im 1
ω∆reg

1 (ω) + α1

= ω2t21Im ∆reg
1

(ωRe (∆reg
1 ) + α1)2 + (ωIm (∆reg

1 ))2 . (5)

Substituting the respective low energy dependencies of
∆reg

1 (ω) we find that Im∆2(ω) ω→0∼ b2ω
2. Similarly, if we

evaluate Re ∆2(ω → 0) it follows from the presence of
a non-zero α1 that Re ∆2(ω) ω→0∼ a2ω, just like a Fermi
liquid. The advantage of separating the regular and sin-

gular part of the odd-site chain hybridizations is thus
clear from the structure of Eq. (5), where the information
about the underlying pole from the previous iteration is
embedded via its weight, and allows us to deal with a
regular function numerically.

Based on the above, it is clear that at every odd recur-
sion step, ∆2n+1(ω) will have a pole structure similar to
∆1(ω) with a pole weight α2n+1 = t22n

|a2n| and subsequently
the FL character will follow for every even numbered site
in the chain, namely, ∆2n(ω). In summary, the follow-
ing recursion relations describe the flow of the low-energy
expansion coefficients,

∆2n(ω → 0) = a2nω + ib2nω
2 (a2n, b2n < 0) , (6)

∆2n+1(ω → 0) = α2n+1

ω+ + iβ2n+1 , (7)

a2n = 1−
t22n−1
α2n−1

; b2n =
t22n−1β2n−1

α2
2n−1

, (8)

α2n+1 = t22n
|a2n|

; β2n+1 = t22nb2n
a2

2n
. (9)

The asymptotic properties of the ∆n(ω) are therefore
completely determined by the initialized values a0, b0 and
the {tn} determined by the above CFE.

Note that the above analytic structure is a fingerprint
of the FL phase: all Im∆n(ω) for even n have low-energy
quadratic behaviour, while all odd n functions have zero-
energy poles.

On the practical level of the numerical calculations,
for every odd iteration we cut the singular pole feature
from A2n+1(ω), perform a Kramers-Krönig transforma-
tion to obtain the regular real part, and hence ∆reg

2n+1(ω).
The even or odd tn are subsequently evaluated at each
iteration from the normalisation of An(ω) as above.

S-1.3. Auxiliary chain representation of the
Mott insulator (MI)

For a MI, ∆0(ω) is hard-gapped for ω ∈ [−δ : δ], where
2δ is the size of the Mott gap. Inside the gap resides a
zero-energy pole (the ‘Mott pole’), such that ∆0(ω →
0) = α0

ω+ . Based on the analysis for the FL self-energy
in the previous subsection, we readily observe that in
the MI case, the role of odd and even chain sites is now
interchanged. In addition, we note that β = 0 for all
(even) n for the MI because the pole is sitting inside the
Mott gap and the b coefficients are also zero for all odd
n. The low-energy asymptotic behaviour and coefficient
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recursion (for n ≥ 1) follows,

∆2n−1(ω → 0) = a2n−1ω , (10)

∆2n(ω → 0) = α2n

ω+ , (11)

a2n−1 = 1−
t22n−2
|α2n−2|

; b2n−1 = 0 , (12)

α2n =
t22n−1
|a2n−1|

; β2n = 0 . (13)

Thus the pole structure of the MI ∆n(ω) is reversed with
respect to the FL. Importantly, the imaginary part of
the hybridizations ∆n(ω) is hard gapped for all n, but
contains a mid-gap zero energy pole for all even n (only).

S-2. SELF-ENERGIES REPRODUCED FROM
NUMERICALLY EVALUATED tn SEQUENCES

Using the the semi-analytic procedure described in sec-
tion S-1 we obtain a sequence of the auxiliary chain hop-
ping parameters, {tn}. We terminate the recursion after
a finite number of steps, N (typically a few thousand).
As a check that the derived auxiliary chain does faith-
fully describe the input self-energy, we numerically eval-
uate the continued fraction Eq. 1. In practice, we use
ω+ = ω + iδ with some small but finite δ > 0. We also
analytically continue the chain beyond step N for a fur-
ther 106 sites using the identified asymptotic behaviour.
The form of this ‘terminator’ is given by Eq. 4 or Eq. 5
of the main text.

In Figure 1 we compare −Im ∆0(ω) from the CFE with
the input −Im Σ(ω) for different interaction strengths U .
As can be seen the tn sequence obtained, excellently re-
produces the original Hubbard model self energy, Σ(ω).
Any deviations at very small ω are due to the finite δ
used, and can be systematically pushed to lower ω by
using a smaller δ together with a longer chain.

S-3. MOMENT EXPANSION TECHNIQUE

Given a spectral function, the spectral moments are de-
termined from µn =

∫D
−D ω

nA(ω)dω where D is the half
bandwidth. µ0 = 1 for a normalised spectral function.
Furthermore, for a symmetric spectrum A(ω) = A(−ω),
only the even moments survive, µ2n = 0.
For more details the reader is referred to Ref. 1 and

references therein, where this scheme is discussed on more
general grounds. Here we outline only the main equations
that were utilised to generate the hopping parameters
evaluated in Figure 3 of the main text. Also, here we
discuss only the case of particle-hole symmetric spectral
function.

As described in Eq. 5 of the main text, given a set of
spectral moments, {µ0, µ2, µ4, . . . , µ2N} it is possible to
generate the first N coefficients in the set {tn}.
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FIG. 1. The imaginary part of the T = 0 Hubbard model
self-energy, −Im Σ(ω) is plotted (black solid lines), calcu-
lated using NRG-DMFT on the Bethe lattice with free half-
bandwidth 2t. We compare this with the boundary hybridiza-
tion function, ∆0(ω) (red dashed line) of the auxiliary chain
determined by CFE. The interaction parameters used to ob-
tain −Im Σ(ω) are: (a) U/t = 3, (b) U/t = 9, (c) U/t = 5.82,
(d) U/t = 5.86. Panel (a) represents a Fermi liquid phase
and panel (b) depicts a Mott insulating phase, both being in
parameter regimes that are far from the Mott metal-insulator
transition. Panels (c, d) represent parameter regimes where
the system is close to the Mott transition (approaching from
the Fermi liquid side) with sharp pole like features apparent
in the self-energy function. ∆0(ω) is calculated using the re-
spective auxiliary chain hopping parameters, tn (shown in the
main text in Figures 2(b,e) and 4(b, d)). For practical pur-
poses we also extrapolate the finite tn sequence asymptotically
using a finite chain terminator to simulate an effectively semi-
infinite chain. The excellent agreement between ∆0(ω) and
Σ(ω) guarantees a faithful representation of the original self-
energy function in terms of the semi-infinite one dimensional
auxiliary chain represented by Eq. (1). The slight discrep-
ancy at extremely low energies is due to the finite broadening
factor (δ = 10−6 for (a,b,c) and δ = 10−7 (d)).

However, it should be noted that while this recursive
scheme appears straightforward, it is well known in the
literature2,3 that determination of the CFE coefficients
via moment expansion is numerically very unstable. The
spectral moments essentially must be known exactly (ob-
taining them from numerical integration of the raw spec-
trum is not sufficient). Furthermore, the recursive calcu-
lation must be performed on the computer with arbitrary
precision numerics (the scheme breaks down after about
15 steps even with analytically known moments when
using standard double-precision numerics).2 For our toy
models discussed in the main text, where the spectral
moments are known exactly, and using arbitrary preci-
sion numerics, we could extract reliably the first 200
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chain coefficients before the calculation breaks down and
become non-physical.

Therefore, while seemingly appealing, the moment ex-
pansion method is not in general of use for determining
the auxiliary chain coefficients for the self-energy. We
use it for Fig. 3 because we can treat poles and hard
gaps cleanly.

S-4. MID-GAP PEAKS AS BANDS OF
HYBRIDIZING TOPOLOGICAL STATES

In the main text of the paper, we discuss how the trivial
SSH model with two additional mid-gap delta-functions
at energies ±ωp can be interpreted in terms of domain-
wall physics on the chain. Using the moment expan-
sion technique discussed above, we found that localized
states on the boundary and pinned to the domain wall
hybridize through the intervening gapped SSH medium,
lifting the degeneracy. Since the topological states are ex-
ponentially well-localized, we argued on physical grounds
(and also showed by explicit calculation in Fig. 3b) that
ωp ∼ D exp(−ndwδ/D), where 2D is the full bandwidth,
2δ is the SSH full gap width, and ndw is the position
of the domain wall (real-space separation on the chain
between the localized states).

In this section, we generalize the above picture to the
situation where the mid-gap peaks have finite width ∆p,
rather than treating simply delta-function spectral poles.
This is of relevance to the FL phase of the Hubbard
model, since the self-energy peaks sitting inside the pre-
formed gap near the Mott transition are sharp, but not
poles.

We follow a similar strategy here to that in the main
text. Specifically, we consider a trivial SSH model with
bandwidth 2D and gap 2δ as before, but now insert an-
other trivial SSH model inside the gap, with bandwidth
2Dp and gap 2δp, where Dp < δ and the mid-gap peaks
are then of half-width ∆p = 1

2 (Dp − δp). The centre of
the peak positions are at ωp = 1

2 (Dp + δp). The setup
is illustrated in Fig. 2(a) for D = 1 and δ = 0.2. Note
that the peaks become delta-functions as ∆p → 0, and
we recover the results of the main text.

We again use the moment expansion technique to de-
rive the chain coefficients {tn} for such a setup. The
results are shown in Figs. 2(b,c) for common Dp = 10−2,
varying ∆p = 10−3 [panel (b)] and 10−5 [panel (c)]. The
general structure is that of the usual SSH chain, start-
ing at n = 1 from a weak bond (indicating the exis-
tence of a localized boundary state), but also featuring
domain walls. Unlike the case of mid-gap spectral delta-
functions, now we have several domain walls. We denote
the chain position of domain wall l as xl, with l = 1 being
at the boundary, x1 = 1.
In fact, the domain walls arise with definite periodic-

ity on the chain. Importantly, the first domain wall away
from the boundary, at x2, is fixed by ωp, and therefore
does note change as we vary only ∆p in Fig. 2(b,c). As

FIG. 2. Beating in auxiliary chain hopping parameters, {tn}
and its relation to the width of mid-gap sharp peaks. In
panel (a), we design a toy model spectrum of full bandwidth
2D consisting of two outer SSH bands separated by a gap 2δ.
The spectrum also contains of two inner SSH bands of full
bandwidth 2Dp and gap 2δp. The width of these mid-gap
peaks is defined as ∆p, such that ∆p = Dp−δp. In panels (b)
and (c) we plot the respective set of {tn} for ∆p = 10−3 (panel
(b)) and ∆p = 10−5 (panel (c)), at a fixed δ = 0.2 and D = 1.
Clearly, the respective set of set of {tn} represents a periodic
modulation of two SSH chains of domain lengths n1 and n2,
with domain walls indicated as red squares. The width (∆p)
of the inner SSH bands mimicking the effect of sharp mid-gap
peaks is also a measure of the hybridisation energy between
these domain walls as shown in panel (d), where we plot ∆p

as a function of n2. The domain length, n2 (squares) follows
∆p ∼ D exp(−n2δ/D) (fit to data points shown as lines).

before, ωp ∼ D exp(−n1δ/D), where n1 = x2 − x1. The
separation between the next two domain walls is n2 =
x3 − x2, and controls the width of the mid-gap peaks,
∆p ∼ D exp(−n2δ/D), as shown in Fig. 2(d). This struc-
ture then repeats periodically: x2k − x2k−1 = n1 and
x2k+1 − x2k = n2 for all k ≥ 1.

Such a chain gives rise to a narrow band of hybridizing
topological states, which are precisely the mid-gap peaks.
Denoting a given topological localized zero-energy state
l in an SSH chain with a single domain wall at xl as
|ψl〉, we can formulate an effective model for the mid-gap
states including through-chain hybridization, viz:

Heff =
∞∑
l=1

ωp|ψ2l−1〉〈ψ2l|+ ∆p|ψ2l〉〈ψ2l+1|+ H.c. , (14)
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which is again of SSH form. Since n1 < n2, we have
ωp > ∆p, and so the mid-gap peaks can be viewed as a
trivial band of hybridizing topological states.

Our conclusion is that finite self-energy peak width
must give rise to a beating pattern of the SSH chain co-
efficients. This is confirmed in the full numerical calcu-
lations of {tn} for the true lattice self-energy of the Hub-
bard model in the FL phase near the transition, Fig. 4 of
the main text.

In particular, note that as the peaks sharpen into poles
∆p → 0, the period n2 grows and diverges, leaving local-
ized states at n = 1 and n = n1 only, as per Fig. 3 of
the main text. But, as the Mott transition is approached
U → U−c , the peaks not only sharpen but also move to
lower energy and coalesce, ωp → 0. This corresponds
to diverging n1. At the transition, and throughout the
MI phase, we are then left with a single localized bound-
ary state at n = 1, and the chain becomes the regular
SSH chain in the topological phase. This is all achieved
without bulk gap closing.

S-5. BOUNDARY CONDUCTANCE OF THE
AUXILIARY CHAIN

A further signature of the topological nature of the
Mott insulator self-energy, is a quantized fictitious T = 0
‘conductance’ through the end of the auxiliary chain
Gc/[2e2/h] = πΓAaux

11 (ω = 0) = 1 (where Γ is the hy-
bridization to fictitious electrodes, and Aaux

11 is the spec-
tral function at the end of the electrode-coupled auxil-

iary chain). By contrast with the Mott insulator, the
fictitious T = 0 conductance through the end of the aux-
iliary chain precisely vanishes in the Fermi liquid phase,
Gc/[2e2/h] = πΓAaux

11 (ω = 0) = 0.

S-6. DETAILS OF NRG-DMFT CALCULATIONS

In this work, we solve the infinite-dimensional one-
band Hubbard model on the Bethe lattice (Eq. 1 of the
main text) numerically exactly at temperature T = 0,
using dynamical mean field theory4 (DMFT), with Wil-
son’s numerical renormalization group5,6 (NRG) method
as the underlying quantum impurity solver. NRG has the
clear advantage over other impurity solvers (for this class
of few-channel problems) in that real-frequency correla-
tion functions can be obtained down to arbitrarily low en-
ergies, at any temperature including T = 0, for any type
of impurity interaction and strength.7 This is made pos-
sible by several important recent technical advances7–11
over Wilson’s original formulation of the method.
For the purposes of the CFE of the self-energy, high-

quality data for the self-energy are required. For the cal-
culations presented in this paper, we use NRG discretiza-
tion parameter Λ = 2, retain Ns = 6000 states at each
iteration, and average the results of Nz = 20 different
bath discretizations. Total charge and spin projection
quantum numbers are implemented. Correlation func-
tions were obtained using the full density matrix method8
utilizing the complete Anders-Schiller basis.12 For con-
verged solutions on the lattice, typically 10–20 DMFT
iterations are required.
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