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We investigate a system of three tunnel-coupled semiconductor quantum dots in a triangular geometry, one
of which is connected to a metallic lead, in the regime where each dot is essentially singly occupied. Both
ferromagnetic and antiferromagnetic spin-1

2 Kondo regimes, separated by a quantum phase transition, are
shown to arise on tuning the interdot tunnel couplings and should be accessible experimentally. Even in the
ferromagnetically-coupled local moment phase, the Kondo effect emerges in the vicinity of the transition at
finite temperatures. Physical arguments and numerical renormalization group techniques are used to obtain a
detailed understanding of the problem.
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I. INTRODUCTION

Nanofabrication techniques developed over the last
decade,1–8 together with atomic-scale manipulation using
scanning tunneling microscopy,9,10 have sparked intense in-
terest in novel mesoscopic devices where strong electron cor-
relation and many-body effects play a central role.11 The
classic spin-1

2 Kondo effect12—in which a single spin is
screened by antiferromagnetic coupling to conduction elec-
trons in an attached metallic lead—has been observed in
odd-electron semiconductor quantum dots, single molecule
dots, and adatoms on metallic surfaces,11 although its ferro-
magnetic counterpart, where the spin remains asymptotically
free, has yet to be reported experimentally. In coupled dot
devices—the “molecular” analogue of single quantum dots
viewed as artificial atoms2—exquisite experimental control
is now available over geometry, capacitance, and tunnel-
couplings of the dots.5,6 Both spin and internal, orbital de-
grees of freedom—and hence the interplay between the
two—are important in such systems. This leads to greater
diversity in potentially observable correlated electron behav-
ior on coupling to metallic leads, as evident from a wide
range of theoretical studies of double �e.g., Refs. 13–21� and
triple �e.g., Refs. 22–29� quantum dot systems.

Motivated in part by recent experiments involving triple
dot devices,4–7 we consider here a system of three mutually
tunnel-coupled single-level quantum dots, one of which is
connected to a metallic lead: a triple quantum dot �TQD�
ring structure, the simplest to exhibit frustration. We focus on
the TQD in the three-electron Coulomb blockade valley and
study its evolution as a function of the interdot tunnel cou-
plings, using both perturbative arguments and the full density
matrix30,31 formulation of Wilson’s numerical renormaliza-
tion group �NRG� technique32,33 �for a recent review, see
Ref. 34�. A rich range of behavior is found to occur. Both
antiferromagnetic and ferromagnetic Kondo physics are
shown to arise in the system—with the two distinct ground
states separated by a quantum phase transition—and should
be experimentally accessible via side-gate control of the tun-
nel couplings. The zero-bias differential conductance �G�
through the dots is shown to drop discontinuously across the
transition at zero temperature, from the unitarity limit of

G /G0=1 in the strong coupling �SC� antiferromagnetic
phase �with G0=2e2 /h as the conductance quantum� to
G /G0�0 in the weak coupling local moment �LM� phase.
However in a certain temperature window in the vicinity of
the transition, the conductance is found to be controlled by
the transition fixed point �TFP� separating the two ground
state phases comprising both a Kondo singlet state and a
residual local moment; in particular such that increasing
temperature in the local moment phase actually revives the
antiferromagnetic Kondo effect.

II. MODELS: BARE AND EFFECTIVE

We consider three semiconducting �single-level� quantum
dots, arranged in a triangular geometry as illustrated in Fig.
1. Each dot is tunnel-coupled to the others, and one of them
�dot “2”� is also coupled to a metallic lead. We focus explic-
itly on a system tuned to mirror symmetry �see Fig. 1�, and
study the Anderson-type model H=H0+Htri+Hhyb. Here H0
=�k,��kak�

† ak� refers to the noninteracting lead, which is
coupled to dot 2 via Hhyb=�k,�V�ak�

† c2�+H.c.�, while Htri
describes the isolated TQD with tunnel couplings t and t�,

Htri = �
i

��n̂i + Un̂i↑n̂i↓�

+ �
�

�tc2�
† �c1� + c3�� + t�c1�

† c3� + H.c.� , �1�

where n̂i=��n̂i�=��ci�
† ci� is the number operator for dot i.

U is the intradot Coulomb repulsion and �i is the level energy
of dot i, such that �1=�3�� for a mirror symmetric system

t
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FIG. 1. Schematic illustration of the quantum dot trimer.
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�in which H is invariant under a 1↔3 permutation�. For
convenience we take �i=� for all dots �although this is not
required, as mentioned further below�.

We are interested in the TQD deep in the N=3 electron
Coulomb blockade valley. To this end, noting that coupled
quantum dot experiments typically correspond to t /U
�10−2,6 we consider the representative case �=−U /2 with
U� �t , t��. Each dot is then in essence singly occupied, with
N=2 or 4 states much higher �� 1

2U� in energy. The N=3
states of the isolated TQD comprise two lowest doublets and
a spin quartet �which always lies highest in energy�. As the
tunnel coupling t� is increased, there is a level crossing of the
doublets, which are degenerate by symmetry at the point t�
= t. Projected into the singly-occupied manifold, the doublet
states are

	+ ;Sz
 = c2�
† 1

�2
�c1↑

† c3↓
† + c3↑

† c1↓
† �	vac
 ,

	− ;Sz
 =
�

�6
�c2�

† �c1↑
† c3↓

† − c3↑
† c1↓

† � − 2c2−�
† c1�

† c3�
† �	vac
 ,

�2�

with Sz= �
2 and �=� for spins ↑ /↓. Their energy separation

is E�=E+−E−=J−J� with antiferromagnetic exchange cou-
plings J=4t2 /U and J�=4t�2 /U, such that the levels cross at
t�= t �reflecting the magnetic frustration inherent at this
point�. The 	−;Sz
 doublet, containing triplet configurations
of spins “1” and “3,” has odd parity �−� under a 1↔3 inter-
change while 	+;Sz
, which has singlet-locked spins “1” and
“3,” and behaves in effect as a spin-1

2 carried by dot 2 alone,
has even parity �+�.

On coupling to the lead the effective model describing the
system on low-energy/temperature scales is obtained by a
standard Schrieffer-Wolff transformation.12,35 Provided the
doublets are not close to degeneracy, only the lower such
state need be retained in the ground-state manifold: 	−;Sz

for J��J and 	+;Sz
 for J��J. In either case a low-energy
model of Kondo form arises

Heff = JK�Ŝ · Ŝ�0� , �3�

�potential scattering is omitted for clarity�, with Ŝ�0� as the

conduction-band spin density at dot 2, and Ŝ as a spin-1
2

operator representing the appropriate doublet ��=+ or −�.
The effective Kondo coupling is JK�=2�� ; + 1

2 	ŝ2
z 	� ; + 1

2 
JK
with ŝ2 as the spin of dot 2, where JK=8	 / �
�U� with hy-
bridization 	=
V2� and � is the lead density of states. Equa-
tion �2� thus gives JK−=− 1

3JK, and JK+= +JK. Hence, for tun-
nel coupling t�� t �J��J�, a ferromagnetic spin-1

2 Kondo
effect arises �JK−�0�.25 Kondo quenching of the lowest dou-
blet is in consequence ineffective and, as temperature T→0,
the spin becomes asymptotically free—the stable fixed point
�FP� is the LM FP with a residual entropy Simp�T=0�
=ln 2 �kB=1�.33 The system here is the simplest example of a
“singular Fermi liquid36” reflected in the nonanalyticity of
leading irrelevant corrections to the fixed point.36,37 For t�
� t by contrast, the Kondo coupling is antiferromagnetic

�JK+= +JK0�, destabilizing the LM fixed point. The SC FP
then controls the T→0 behavior, describing the familiar
Fermi-liquid Kondo singlet ground state in which the spin is
screened by the lead/conduction electrons below the charac-
teristic Kondo scale TK, with TK /�U	�exp�−1 /�JK+�
=exp�−
U /8	�.38

Since the fixed points for the two stable phases are dis-
tinct, a quantum phase transition must thus occur on tuning
the tunnel coupling t� through a critical value tc�� t. We study
it below but first outline the effective low-energy model in
the vicinity of the transition. Here, as the 	� ;Sz
 states are of
course near degenerate, both doublets must thus be retained
in the low-energy trimer manifold, and the unity operator for
the local �dot� Hilbert space is hence:

1̂ = �
Sz

�	+ ;Sz
�+ ;Sz	 + 	− ;Sz
�− ;Sz	� � 1̂+ + 1̂−. �4�

The effective low-energy model then obtained by Schrieffer-
Wolff is readily shown to be

Heff
trans = JK1̂ŝ21̂ · Ŝ�0� +

1

2
E��1̂+ − 1̂−� , �5�

with JK as above. The final term here refers simply to the
energy difference between the two doublets. It may be writ-

ten equivalently as E�T̂z with a pseudospin operator

T̂z =
1

2
�1̂+ − 1̂−� , �6�

thus defined, such that the doublets are each eigenstates of it,

T̂z	� ;Sz
= �
1
2 	� ;Sz
. Considering now the first term in

Eq. �5�, 1̂ŝ21̂� 1̂+ŝ21̂++ 1̂−ŝ21̂− for the mirror symmetric case
considered �cross terms vanish by symmetry�. Direct evalu-

ation of 1̂�ŝ21̂� gives 1̂+ŝ21̂+= Ŝ1̂+ �=1̂+Ŝ� and 1̂−ŝ21̂−

=− 1
3 1̂−Ŝ, where Ŝ is a spin-1

2 operator for the dot Hilbert

space �specifically Ŝz=��=�,Sz	� ;Sz
Sz�� ;Sz	 and Ŝ�

=��	� ; �
1
2 
�� ; �

1
2 	�.

Hence, using Eqs. �4� and �6� to express 1̂�= 1
2 �1̂�2T̂z� in

terms of the pseudospin, the effective low-energy model is
given from Eq. �5� by

Heff
trans =

1

3
JK�1 + 4T̂z�Ŝ · Ŝ�0� + E�T̂z, �7�

expressed as desired in terms of the spin Ŝ and pseudospin

T̂z. The term E�T̂z is equivalent to a magnetic field acting on
the pseudospin, favoring the 	−;Sz
 doublet for E�0 and
	+;Sz
 for E��0 such that Eq. �7� reduces, as it should, to
one or other of Eq. �3� in the limit where the separation 	E�	
is sufficiently large that only one of the doublets need be
retained in the low-energy TQD manifold. Finally, note that

the absence of pseudospin raising/lowering terms T̂� in Heff
trans

reflects the strict 1↔3 parity in the mirror symmetric setup
�which cannot be broken by virtual hopping processes be-
tween dot 2 and the lead�. This means that the Hilbert space
of Eq. �7� separates exactly into spin and pseudospin sectors,
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such that only the sign of the effective Kondo coupling is
correlated with the pseudospin.

III. RESULTS

The physical picture is thus clear, and indicates the pres-
ence of a quantum phase transition as a function of t�. We
now present NRG results for the TQD Anderson model, us-
ing a symmetric constant lead density of states �=1 / �2D�.
The full density matrix extension30,31 of the NRG is
employed34 together with direct calculation of the electron
self-energy.39 Calculations are typically performed for an
NRG discretization parameter �=3, retaining the lowest Ns
=3000 states per iteration.

As above we choose �=− 1
2U and t /U=10−2, which real-

istic case6 corresponds to single occupancy of the dots �all
calculations give �n̂i
=1 for each dot�. The low-temperature
behavior is determined by three fixed points: those for the
two stable phases at T=0 �SC or LM�, and a “transition fixed
point” precisely at the transition, which at finite T strongly
affects the behavior of the system close to the transition.

The T dependence of the entropy Simp�T� �Ref. 33� pro-
vides a clear picture of the relevant fixed points. We show it

in Fig. 2 for Ũ=U /
	=10 and t̃= t /
	=0.1 �with 	 /D

=10−2� for variable t�̃= t� /
	 approaching the transition
from either side: t�= tc���TK, varying �. Here t̃c�
=0.097 15. . . ��t̃ as expected�, and the antiferromagnetic
Kondo scale TK /	�7�10−6.38 Solid lines refer to systems
in the SC phase �t� tc�� while dashed lines refer to the LM
phase �t�� tc��. In all cases the highest T behavior is gov-
erned by the free orbital fixed point,33 with all 43 states of the
TQD thermally accessible and hence Simp=ln�64�. On the
scale T�U the dots become singly occupied with the en-
tropy thus dropping to ln�8�.

On further lowering T deep in either the LM or SC phases
�case �a� in Fig. 2�, all but the lowest trimer doublet is pro-

jected out and Simp approaches ln�2�, signifying the LM fixed
point. For t�� tc� this remains the stable fixed point down to
T=0 while for t� tc� the antiferromagnetic Kondo effect
drives the system to the SC fixed point below T�TK. Lines
�b�–�e� in Fig. 2 are for systems progressively approaching
the transition. Here, when T exceeds the energy gap between

the doublets �denoted as 	Ẽ�	 and naturally renormalized
slightly from the isolated TQD limit of 	E�	�, the pair of
doublets are effectively degenerate40 and an Simp=ln�4� pla-
teau is thus reached. The fixed point Hamiltonian here is then
simply a free conduction band, plus two free spins �Eq. �7�
with JK and E� set to zero�.

For t� within �TK of tc�, as in �c�–�e� of Fig. 2, a further
decrease in T leads to a clear entropy plateau of Simp=ln�3�.
This is the TFP: for 	Ẽ�	�T�TK, the 	+;Sz
 doublet is
screened by the antiferromagnetic Kondo effect—even when
it is not the ground state—while the ferromagnetically
coupled 	−;Sz
 remains a local moment. The TFP thus com-
prises both a free local moment and a Kondo singlet, hence
the ln�3� entropy. The TFP Hamiltonian corresponds to Eq.
�7� with E�=0, JK→� in the Tz= + 1

2 pseudospin sector, and
JK→0 for Tz=− 1

2 . The energy-level spectrum at the TFP thus
comprises a set of LM levels plus a set of SC levels �as
confirmed directly from the NRG calculations�.

Finally, on a scale T=T��	Ẽ�	, defined in practice by
Simp�T��=0.85 �suitably between ln 2 and ln 3�, Simp crosses
over from the TFP value of ln�3� to the T=0 value appropri-
ate to the stable fixed point �SC or LM�. As the transition is
approached, the scale T�� �t�2− tc�

2� vanishes �inset of Fig.
2�—a natural consequence of the doublet level crossing, re-
calling from above that T�	E�	= 	J�−J	=4	t�2− t2	 /U �with
tc�� t for the isolated TQD�. Also since T�=0 precisely at the
transition, the T=0 entropy at that point is the TFP value
ln�3�, as in case �f� of Fig. 2.

The behavior described for Simp�T� is likewise evident in
the T dependence of T�imp�T� �with �imp�T� as the total
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coupled SC phase ��0�; dashed lines: ferromagnetically coupled
LM phase ���0�. Inset: close to the transition, the scale T� van-
ishes linearly in �t̃�2− tc�

2�.

QUANTUM PHASE TRANSITION IN QUANTUM DOT TRIMERS PHYSICAL REVIEW B 79, 085124 �2009�

085124-3



impurity/dot contribution to the uniform magnetic
susceptibility33�, as shown in Fig. 3. For T�U governed by
the free orbital fixed point, T�imp�T��3�

1
8 as expected33

�we set g�B�1�. On the scale T�U the dots become singly
occupied but the spins are essentially uncorrelated so
T�imp�T��3�

1
4 as expected for three free spins.33 On fur-

ther decreasing T, the ultimate low-temperature behavior is
naturally T�imp�T�= 1

4 for the ground state doublet character-
istic of the LM phase t�� tc�, and T�imp�T�=0 for the
quenched SC fixed point when t� tc�. Close to the transition,

however, for 	Ẽ�	�T�TK, the TFP is again evident in the
persistence of a T�imp�T�= 1

6 plateau, readily understood as
the mean ��Sz�2
 for the three quasidegenerate states arising

for 	Ẽ�	�T�TK as described above, and to which value
T�imp�T� tends as T→0, precisely at the transition �case �f�
of Fig. 3�.

Most importantly, the physics above is clearly manifest in
transport properties. The zero-bias conductance through dot
2 is41

G�T�/G0 = 
	�
−�

�

−
� f���

��
D2��;T�d� , �8�

with f��� as the Fermi function and D2�� ;T� as the local
single-particle spectrum of dot 2, such that G�T=0� /G0
=
	D2�0;0�. Figure 4 shows the T=0 spectrum for dot 2.
Solid �dashed� lines are again for systems in the SC �LM�
phase. At T=0, the �=0 spectral density collapses abruptly
as the transition is crossed—from the unitarity limit of

	D2�0;0�=1 in the SC phase �t� tc�� to 
	D2�0;0�=0 in
the LM phase �t�� tc��. All systems in the SC phase share a
common Kondo scale so all solid lines in practice coincide
and are found to be characterized by the universal scaling
form obtained for the single-impurity Anderson model.42 In
the LM phase, all T=0 spectra again coincide. In this case,

however, the low-� behavior is described by 
	D2�� ;T
=0��a / ln2�	�	 /T0� �as shown in inset �C� of Fig. 4�, as
expected for a singular Fermi liquid,37 in which the slow
approach to the fixed point is characterized by marginally
irrelevant logarithmic corrections.36,37

The zero-bias conductance as a function of T /TK is itself
shown in Fig. 5. At T=0, G�0� /G0=1 or 0 in the SC or LM
phases, respectively, as above. Far from the transition �case
�a��, G�T� decays steadily with increasing T in the SC phase,
reflecting thermal destruction of the coherent Kondo singlet.
In the LM phase by contrast, G�T� /G0 is not appreciable at
any T. Close to the transition, however, and for T��T�TK,
the transition FP controls the zero-bias conductance, and
G�T� /G0= 1

3 is seen in both SC and LM phases—meaning in
particular that warming a system in the ferromagnetically
coupled LM phase produces a revival of the antiferromag-
netic Kondo effect. This behavior is readily understood by
noting that, at T=0 �as in Fig. 4�, D2�� ;0��D2

LM��� for t�
� tc�, as only excitations from the doubly degenerate LM
ground states are relevant while for t� tc�, D2�� ;0�
�D2

SC��� since now only excitations from the Kondo singlet
arise. At finite T, however, with T��T�TK such that the
lowest manifold of states comprises both the LM and the
Kondo singlet, it is easy to show from the Lehmann repre-
sentation of the spectrum that D2�� ;T�= 1

3 �D2
SC���

+2D2
LM���� �such that 
	D2�� ;T�=1 /3 for 	�	�TK�, and

hence from Eq. �8� that G�T� /G0=1 /3—which persists
down to T=0 precisely at the transition, where T�=0 �case
�f� of Fig. 5�.

IV. CONCLUSION

The TQD ring system in the three-electron Coulomb
blockade valley exhibits a rich range of physical behavior.
Both antiferromagnetic and ferromagnetic spin-1

2 Kondo
physics are accessible on tuning the tunnel coupling t� with
the two phases being separated by a level crossing quantum
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phase transition, reflected in a transition fixed point which
controls in particular the conductance in the vicinity of the
transition. We also add that, while explicit results have been
given for a mirror symmetric TQD with �i=� �=−U /2� for
all dots, our conclusions are robust provided that the
dots remain in essence singly occupied. Varying � �or U� on
dot 2, for example, making it inequivalent to dots 1 and 3,
does not break mirror symmetry and leaves unaltered the
behavior uncovered above. Indeed even breaking mirror
symmetry via, e.g., distinct tunnel couplings between all
dots, still results in both ferromagnetically-coupled and
antiferromagnetically-coupled �Kondo quenched� ground

states separated by a quantum phase transition.43 The robust-
ness of the essential physics suggests that both phases should
be experimentally accessible in a TQD device, as too should
the transition between them, provided the tunnel couplings
can be sufficiently finely tuned.
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