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We study theoretically a ring of three quantum dots mutually coupled by antiferromagnetic exchange inter-
actions and tunnel-coupled to two metallic leads: the simplest model in which the consequences of local
frustration arising from internal degrees of freedom may be studied within a two-channel environment. Two-
channel Kondo �2CK� physics is found to predominate at low energies in the mirror-symmetric models con-
sidered, with a residual spin-1

2 overscreened by coupling to both leads. It is however shown that two distinct
2CK phases, with different ground-state parities, arise on tuning the interdot exchange couplings. In conse-
quence a frustration-induced quantum phase transition occurs, the 2CK phases being separated by a quantum
critical point for which an effective low-energy model is derived. Precisely at the transition, parity mixing of
the quasidegenerate local trimer states acts to destabilize the 2CK fixed points; and the critical fixed point is
shown to consist of a free pseudospin together with effective one-channel spin quenching, itself reflecting
underlying channel anisotropy in the inherently two-channel system. Numerical renormalization group tech-
niques and physical arguments are used to obtain a detailed understanding of the problem, including study of
both thermodynamic and dynamical properties of the system.
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I. INTRODUCTION

Quantum dot devices have recently been the focus of in-
tense investigation, due to the impressive experimental con-
trol available in manipulating the microscopic interactions
responsible for Kondo physics.1–5 In particular the classic
spin-1

2 Kondo effect1—in which a localized spin is fully
screened by coupling to itinerant conduction electrons in a
single attached metallic lead—has now been widely studied
experimentally �see, e.g., Refs. 4–8�.

But arguably the most diverse and subtle Kondo physics
results from the interplay between internal spin and orbital
degrees of freedom in coupled quantum dots. A wide range
of strongly correlated electron behavior is accessible in such
systems, with variants of the standard Kondo effect,9–15

quantum phase transitions,12,13,16–18 and non-Fermi liquid
phases19–22 having been studied theoretically. In particular,
both double10,12,16,23–27 and triple11,14,15,28–35 quantum dots
have been shown to demonstrate low-temperature behavior
quite different from their single-dot counterparts.9 Advances
in nanofabrication techniques4–8,36–43 and atomic-scale ma-
nipulation using scanning tunneling microscopy,44,45 now al-
low for the construction of coupled quantum dot structures,
in which the geometry and capacitance of the dots can be
controlled, and their couplings fine tuned.2,38 Experimental
access to a rich range of Kondo and related physics is thus
within reach.

One of the most delicate effects, however, arises in the
two-channel Kondo �2CK� model proposed by Nozières and
Blandin,46 which describes a spin-1

2 symmetrically coupled
to two independent metallic leads. The standard, strong cou-
pling Fermi liquid fixed point common in single-channel
models is destabilized here. Much studied theoretically �for a
review see Ref. 47�, the dot spin in the 2CK model is over-
screened at low temperatures, with each channel competing
to compensate the local moment. The nontrivial
intermediate-coupling fixed point which controls the low-

temperature behavior of the system has a number of unusual
non-Fermi-liquid �NFL� properties,47–50 including a residual
entropy of 1

2 ln�2� and a magnetic susceptibility which di-
verges logarithmically at low temperature.

The key ingredient of this 2CK physics is the suppression
of charge transfer between the two symmetrically coupled
leads46,47,51—the necessity in essence of a central spin. Ex-
perimental realizations of 2CK physics have been variously
sought in, e.g. heavy fermion systems containing
Uranium,52–54 scattering from two-level systems using ballis-
tic metal point contacts,55,56 systems with tunneling between
nonmagnetic impurities in metals,57,58 and from impurities in
graphene;59 albeit that the interpretation of observed behav-
ior in terms of 2CK physics is not always unambiguous.

Recently however, Potok et al. have demonstrated43 clear
two-channel behavior in a coupled quantum dot device in
which one small and one large dot are tunnel coupled, with
the small dot also coupled to a metallic lead. The large dot
acts as an interacting second lead, but is fine tuned to the
Coulomb blockade regime so that charge transfer is energeti-
cally disfavored. A small degree of interlead charge transfer
must nonetheless occur, so ultimately the system is a Fermi
liquid, with the 2CK fixed point destabilized below some
low-temperature scale �which crossover has been widely
studied theoretically,18,21,51 as has the instability of the 2CK
fixed point to channel asymmetry�.46,50,60,61 But at finite tem-
peratures, 2CK physics is clearly observed.43

Studying coupled quantum dot systems in a two-channel
environment has attracted considerable theoretical interest
recently,17,18,21,34,62–64 in part because NFL states are acces-
sible. The two-impurity two-channel Kondo model62,65,66

�where two antiferromagnetically coupled dots are each
coupled to their own lead� is a prime example, in which the
tendency to form a local singlet state on the two dots com-
petes with the formation of two separated single-channel
Kondo states.62,65,66 The quantum critical point separating
these phases is again the 2CK fixed point.67,68 Triple quan-
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tum dot �TQD� models with three dots coupled to two leads
in a mirror-symmetric fashion have also been
studied,14,15,18,34,64,69 recent work34 by Žitko and Bonča
showing in particular that a range of fixed points familiar
from simpler quantum impurity models are accessible in a
ring model. Indeed both two-channel and two-impurity
Kondo effects are realized, on tuning the interdot couplings
as a third dot is coupled to the two-impurity two-channel
system.34

TQDs arranged in a ring geometry also provide13,34,40 the
simplest and most direct means of studying the effect of local
frustration on Kondo physics. In mirror-symmetric systems,
all dot states can be classified by their parity under
left↔ right interchange.11,13 This symmetry permits a level
crossing of states in the isolated trimer on varying the inter-
dot couplings, with a pair of degenerate doublets comprising
the ground state when all dots are equivalent. It was recently
shown13 that this level-crossing is preserved in the full
many-body system when a single lead is attached. The situ-
ation is however more subtle on coupling the trimer to two
leads, which is the focus of the present paper. We study a
two-channel TQD ring model, shown schematically in Fig. 1
�and discussed below�, as a function of the interdot exchange
couplings; using the density matrix extension70,71 of Wilson’s
numerical renormalization group �NRG� technique.72–74

We show that 2CK physics predominates in this model,
but that two distinct 2CK phases must in fact arise since
local trimer states of different parity can couple to the leads.
In consequence, one expects a quantum phase transition to
occur between the two 2CK phases. This is indeed shown to
arise, with the 2CK phases separated by a nontrivial quantum
critical point, the nature of which is uncovered explicitly and
analyzed in detail.

The paper is organized as follows. In Sec. II we discuss
the two-channel TQD Hamiltonian and develop low-energy
effective models to describe the behavior of the system when
deep in each 2CK phase. Symmetry arguments indicate the
presence of a quantum phase transition near to the point of
inherent magnetic frustration in the TQD and an effective
low-energy model valid in the vicinity of the transition is
derived. Sec. III presents NRG results for the full system,
considering both thermodynamics and dynamical properties
of the 2CK phases. The transition itself is investigated in
Sec. IV and the nature of the critical point elucidated, em-
ploying heuristic physical arguments in addition to direct cal-
culation. In Sec. V the effective low-energy model describ-
ing the transition is itself studied directly using NRG. The
paper concludes with a brief summary.

Before proceeding, we point out that the stability of 2CK
physics in the model studied here is of course delicate, just
as it is for the standard two-channel Kondo model.46,47,51 A

small degree of charge transfer, which would arise in a real
TQD device from interdot tunnel couplings �as opposed to
exchange couplings�, will ultimately lead to a
crossover18,21,51 from a 2CK to a stable Fermi-liquid fixed
point, below some characteristic low-temperature scale. The
same situation is of course well known to occur for channel
anisotropy,46,50,60,61 as would arise in the TQD model upon
destruction of overall left↔ right symmetry via, e.g., differ-
ent exchange couplings J23�J21 �see Fig. 1�.

II. 2CK TRIMER MODEL

We consider a system of three �single-level� quantum
dots, arranged in a triangular geometry, as illustrated in Fig.
1. Dot “2” is coupled to dots “1” and “3,” which are coupled
to each other and to their own metallic lead. We model the
central dot 2 strictly as a spin-1

2 to prevent interlead charge
transfer, but dots 1 and 3 are Anderson-like sites, permitting
variable occupation. Tunneling is allowed between these ter-
minal dots and their connected leads, but the dots are
coupled to each other by an antiferromagnetic �AF� ex-
change interaction to form a Heisenberg ring. We focus ex-
plicitly on a system tuned to left/right mirror symmetry �see
Fig. 1�, with Hamiltonian H=H0+Hhyb+Htri. Here H0
=��,k,��ka�k�

† a�k� refers to the two equivalent noninteract-
ing leads ��=L ,R�, which are tunnel coupled to dots 1 and 3
via Hhyb=�k,�V�aLk�

† c1�+aRk�
† c3�+H.c.�. Htri describes the

trimer itself, with exchange couplings J and J�,

Htri = JŜ2 · �Ŝ1 + Ŝ3� + J�Ŝ1 · Ŝ3

+ ��n̂1 + n̂3� + U�n̂1↑n̂1↓ + n̂3↑n̂3↓� , �1�

where Ŝi is a spin-1
2 operator for dot i. For dots i=1,3, n̂i

=��n̂i�=��ci�
† ci� is the number operator, � is the level en-

ergy and U is the intradot Coulomb repulsion. The full
Hamiltonian H is thus invariant under simultaneous 1↔3
and L↔R permutation.

A. Isolated trimer

We are interested in the TQD deep in the N=3 Coulomb
blockade valley, where each dot is in practice singly occu-
pied. To this end we consider explicitly �=− 1

2U, the N=2 or
4 states being much higher �� 1

2U� in energy. Htri �and the
full H� is then particle-hole symmetric, although this is inci-
dental: we require only that the singly-occupied manifold of
TQD states lies lowest. This manifold comprises two dou-
blets and a spin quartet, which is always max�J ,J�� higher
than the doublets for AF exchange couplings.

For any J and J�, the lowest doublets of the isolated TQD
are

L R
V V3J'

J

1

2
J

FIG. 1. Schematic of the two-channel quantum dot trimer.
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�+ ;Sz� = Ŝ2
� 1
�2

�c1↑
† c3↓

† + c3↑
† c1↓

† ��vac� , �2�

�− ;Sz� =
�

�6
�Ŝ2

��c1↑
† c3↓

† − c3↑
† c1↓

† � − 2Ŝ2
−�c1�

† c3�
† 	�vac� ,

with Sz= �
2 and �=� for spins ↑ /↓, and Ŝ2

�
 Ŝ2
� the raising/

lowering operator for the spin on dot 2. �vac�=��2
�−;�2 ;−�

defines the “vacuum” state of the local �dot� Hilbert space, in
which dots 1 and 3 are unoccupied and dot 2 carries a spin-1

2 .
The energy separation of the two doublets is E�=E+

−E−=J−J�, with �+;Sz� the ground state of the isolated TQD
for J��J and �−;Sz� lowest for J��J. When J� is dominant,
dots 1 and 3 naturally lock up into a singlet �see �+;Sz�, Eq.

�2��, leaving a free spin on dot 2; with �Ŝ1 · Ŝ3�=− 3
4 and

�Ŝ1 · Ŝ2�= �Ŝ3 · Ŝ2�=0. For J��J by contrast, dots 1 and 3 are
now in a triplet configuration ��−;Sz� in Eq. �2��, with

�Ŝ1 · Ŝ3�=+ 1
4 and �Ŝ1 · Ŝ2�= �Ŝ3 · Ŝ2�=− 1

2 .
The states are degenerate precisely at J�=J, reflecting the

inherent magnetic frustration at that point. A level crossing
of the doublets at J�=J is permitted because each has differ-
ent symmetry under 1↔3 permutation. We define a parity

operator P̂i,j which exchanges orbital labels i and j �as dis-
cussed further in the Appendix�. From Eq. �1� it is clear that

P̂1,3 commutes with the isolated TQD Hamiltonian,

�P̂1,3 ,Htri	=0. Thus all states of Htri can be classified accord-

ing to 1↔3 parity, the eigenvalues of P̂1,3 being �1 only

�since P̂1,3
2 =1�. In the spin-only �“singly-occupied”� regime,

the parity operator may be expressed concisely as75 P̂1,3

= �1− Ŝ13
2 � with Ŝ13= �Ŝ1+ Ŝ3� the total spin of dots 1 and 3.

Thus P̂1,3�� ;Sz�= � �� ;Sz� describes the parity of the dou-
blet states of Htri. The full lead-coupled Hamiltonian H is not
of course invariant to 1↔3 interchange alone, but rather to
simultaneous exchange of the 1 and 3 dot labels and the

left/right leads �embodied in P̂L,R= P̂1,3�kP̂Lk,Rk, see Appen-
dix�; which we refer to as “overall L↔R” symmetry.

B. Effective low-energy models

On tunnel coupling to the leads, effective models describ-
ing the system on low-energy/temperature scales in the N
=3-electron valley of interest may be obtained by standard
Schrieffer-Wolff transformations,1,76 perturbatively eliminat-
ing virtual excitations into the N=2- and 4-electron sectors
of H to second order in Hhyb �and neglecting retardation
effects1 as usual�. The calculations are lengthy, so rather than
giving full details we sketch below a somewhat simplified,
but physically more transparent, account of the key results
�Eqs. �7� and �13� below	.

First we consider the effective low-energy model appro-
priate to the temperature range �J ,J���T�U, in which all
dots become singly occupied. Here the appropriate unity op-

erator for the TQD Hilbert space is 1̂so
=��1,�2,�3

��1 ;�2 ;�3���1 ;�2 ;�3�, with �i= ↑ /↓ the spin of
dot i. To second order in the dot-lead tunneling V, a spin-

model of form Hs=H0+Heff
s +Htri

s arises; where H0 describes
the leads as above and:

Htri
s = JŜ2 · �Ŝ1 + Ŝ3� + J�Ŝ1 · Ŝ3,

Heff
s = JK�Ŝ1 · ŝL0 + Ŝ3 · ŝR0� . �3�

Here the effective exchange coupling is �JK=8	 / �
U�, with
� the lead density of states per orbital at the Fermi level; and
	=
V2�T is the hybridization, with total lead density of
states �T=N�, and N the number of orbitals /k-states in the
lead �such that NV2, and hence 	, is finite in the continuum
limit N→��. In Eq. �3�, ŝ�0 is the spin density of lead �
=L�R� at dot 1 �3� given by

ŝ�0 = �
�,��

f�0�
† ����f�0��, �4a�

f�0�
† =

1
�N

�
k

a�k�
† , �4b�

with � the Pauli matrices and f�0�
† the creation operator for

the “0”-orbital of the �=L or R Wilson chain.
As above, the lowest states of Htri

s are the doublets �� ;Sz�
given in Eq. �2�. Provided they are not near degenerate, only
the lower doublet need be retained: �+;Sz� for J��J and �
−;Sz� for J�J. To first order in JK, an effective low-energy
model is then obtained simply by projecting into the reduced
Hilbert space of the lowest doublet, using

1̂� = �
Sz

�� ;Sz��� ;Sz� , �5�

for the appropriate �=+ or − doublet ground state. The re-

sultant Hamiltonian Heff,�=1̂�Heff
s 1̂� follows as

Heff,� =
1

2
JK1̂��Ŝ1 + Ŝ3�1̂� · �ŝL0 + ŝR0� , �6�

using the symmetry 1̂�Ŝ11̂�=1̂�Ŝ31̂�.
Eq. �6� is of two-channel Kondo form,

Heff,� = JK�Ŝ� · �ŝL0 + ŝR0� , �7�

where Ŝ� is the spin-1
2 operator representing the appropriate

doublet �=+ or −, with components Ŝ�
z =�Sz�� ;Sz�Sz�� ;Sz�

and Ŝ�
�= �� ; �

1
2 ��� ; �

1
2 �. At this level of calculation the ef-

fective exchange coupling is given by JK�= �� ;+ 1
2 �Ŝ1

z + Ŝ3
z �� ;

+ 1
2 �JK; so from Eq. �2� an AF effective Kondo coupling

JK−=+ 2
3JK then arises for the �−;Sz� ground state appropriate

to J�J, while for the �+;Sz� doublet �lowest for J��J�,
JK+=0 results. In the latter case, there is in fact a weak re-
sidual AF coupling: a full O�V2� Schrieffer-Wolff calculation
gives precisely the two-channel Kondo model Eq. �7� as one
would expect, but with JK� given by

�JK+ =
4	



 1

3�J� − J� + 2U
−

1

3J� + J + 2U
� , �8a�
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�JK− =
4	

3

 9

�J − J�� + 2U
−

1

5J − J� + 2U
�; �8b�

yielding �JK−= 2
3�JK�

	

U to leading order in 1 /U, and a much
smaller but nonvanishing �JK+= 4	J


U2 +O� 1
U3 � for the singlet-

locked doublet �+;Sz�, reflecting the residual AF coupling
between the spin on dot 2 and the leads.

Hence, sufficiently deep in either regime J�J or J��J,
the low-energy behavior of the system is that of a 2CK
model. The lowest spin-1

2 state of the TQD is thus over-
screened by conduction electrons, embodied in the infrared
2CK fixed point describing the non-Fermi liquid ground
state,46,47,51 in which the partially quenched spin is charac-
terized by a residual entropy of Simp= 1

2 ln 2 �kB=1�; over-
screening setting in below the characteristic two-channel
Kondo scale TK,�

2CK, determined from perturbative scaling as46

TK,�
2CK � JK� exp�− 1/�JK�� . �9�

Since P̂1,3 commutes with all components of Ŝ� in Eq. �7�,
�Ĥeff,� , P̂1,3	=0, whence 1↔3 parity is conserved in the ef-
fective low-energy model. Since that parity is determined by
�=+ or −, there are two distinct 2CK phases, which one thus
expects to be separated by a quantum phase transition �QPT�.

In the vicinity of the transition, i.e., close to J��J, neither
of the two 2CK models in Eq. �7� is of course sufficient to
describe the low-energy physics: the states �+;Sz� and
�−;Sz� are now near-degenerate, so both must be retained in

the low-energy trimer manifold. Hence, defining 1̂= 1̂++ 1̂−
and proceeding in direct parallel to the discussion above, an
effective low-energy model in the vicinity of the transition is

obtained from Heff
trans= 1̂�Heff

s +Htri
s �1̂. From Eq. �3� for Heff

s ,

using Ŝ1= P̂1,3Ŝ3P̂1,3 such that �� ;Sz�Ŝ1��� ;Sz��
=����� ;Sz�Ŝ3��� ;Sz�� and hence 1̂�Ŝ11̂��=���1̂�Ŝ31̂��, one
obtains

Heff
trans = �

�=�

1

2
JK�1̂��Ŝ1 + Ŝ3�1̂� · �ŝL0 + ŝR0�

+ 1̂��Ŝ1 − Ŝ3�1̂−� · �ŝL0 − ŝR0�	

+
1

2
E��1̂+ − 1̂−� . �10�

The final term in Eq. �11� �arising from 1̂Htri
s 1̂� is simply the

energy difference between the �=+ /− doublets, and the first
term is �see Eq. �6�	 the 2CK coupling of each doublet to the
leads. It is helpful to recast Eq. �10� in terms of spin-1

2 op-

erators for real spin Ŝ�=��Ŝ�� and pseudospin T̂ for the local
Hilbert space, defined by

Ŝz = �
�=�,Sz

��;Sz�Sz��;Sz� , �11a�

T̂z = �
�=�,Sz

��;Sz�
1

2
���;Sz� , �11b�

and

Ŝ� = �
�

��; �
1

2
���; �

1

2
� , �12a�

T̂� = �
Sz

�� ;Sz��� ;Sz� . �12b�

From Eq. �11�, the TQD doublets �� ;Sz� are each eigenstates

of Ŝz and T̂z; in particular, the eigenvalues of T̂z
 1
2 �1̂+− 1̂−�

correspond simply to �half� the parity of the appropriate dou-

blet. By contrast, the doublets are interconverted by T̂� �Eq.

�12b�	, T̂+�−;Sz�= �+;Sz� and T̂−�+;Sz�= �−;Sz�, acting to
switch parity.

After simple if laborious algebra, Eq. �10� reduces to

Heff
trans = �1

2
JA + JBT̂z�Ŝ · �ŝL0 + ŝR0�

+ Jmix�T̂+ + T̂−�Ŝ · �ŝL0 − ŝR0�

+ E�T̂z, �13�

in terms of spin/pseudospin operators, with

JA = �JK+ + JK−� JB = �JK+ − JK−� , �14�

and Jmix= �+;+ 1
2 �Ŝ1

z − Ŝ3
z �−;+ 1

2 �JK= 1
�3

JK using Eq. �2�. �A full
O�V2� Schrieffer-Wolff calculation again gives precisely the
effective Hamiltonian Eq. �13�, with

�Jmix =
2	

�3

 1

3J� + J + 2U
+

1

5J − J� + 2U

+
3

3�J� − J� + 2U
+

3

�J − J�� + 2U
� , �15�

recovering Jmix= 1
�3

JK to leading order in 1 /U, and JK� given
by Eq. �8�.	

Eq. �13� is the essential low-energy model applicable to
the vicinity of the QPT; we study it directly via NRG in
Sec.V. The pseudospin operators can naturally be classified

according to 1↔3 parity, the components of T̂ having dif-

ferent parity under P̂1,3: using P̂1,3�� ;Sz���� ;Sz�
=����� ;Sz���� ;Sz�P̂1,3, Eqs. �11b� and �12b� give P̂1,3T̂z=

+T̂zP̂1,3, while P̂1,3T̂�=−T̂�P̂1,3 for the raising/lowering

components. By contrast, all components of spin Ŝ �Eqs.

�11a� and �12a�	 commute with P̂1,3. Hence, since the global

�overall L↔R� parity must be conserved ��Heff
trans , P̂L,R	=0�,

interactions involving the T̂z component of pseudospin can
only couple to even combinations ŝL0+ ŝR0 of the lead spin
densities �symmetric under interchange of the L /R lead la-
bels�, as in the first term of Eq. �13� �or Eq. �10�	; while by

the same token interactions involving T̂� must be associated
with the odd �antisymmetric� combination ŝL0− ŝR0, as in the
second term of Eq. �13�. In the vicinity of the QPT the latter
is of course the key interaction in Heff

trans, since in switching
the parity of the TQD states it in essence drives the transition
between the two 2CK phases.
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Finally, note that the last term of Eq. �13�, equivalent to a
magnetic field acting on the pseudospin, energetically favors
the �−;Sz� doublet �Tz=− 1

2 � when their energy separation
E��0, and �+;Sz��Tz=+ 1

2 � for E��0. Hence, when �E�� is
sufficiently large that only one of the doublets need be re-

tained in the low-energy TQD manifold, the T̂� terms are
obviously suppressed; and Eq. �13� then reduces as it must to
one or other of the 2CK models Eq. �7�. In fact, as shown in

Sec. IV ff., for any �E���0, the E�T̂z term in Eq. �13� en-
sures that one or other of the 2CK fixed points ultimately
remains the stable low-temperature fixed point.

By contrast, precisely at the point of frustration where

�E��=0, the T̂� terms in Eq. �13� destabilize the 2CK fixed
points. The resultant Heff

trans then describes the quantum criti-
cal point which separates the two 2CK phases, and which we
consider in detail in Sec. IV.

III. PROPERTIES OF THE 2CK PHASES

The physical picture thus indicates that 2CK physics
dominates the low-energy behavior of the model; with a QPT
occurring as a function of J� between two 2CK phases of
distinct parity.

We now analyze the properties of each 2CK phase of the
full model; using Wilson’s NRG technique,72,73 employing a
complete basis set of the Wilson chain70 to calculate the full
density matrix70,71 �for a recent review see Ref. 74�. Calcu-
lations are typically performed for an NRG discretization
parameter �=3, retaining the lowest Ns=4000 states per it-
eration. As above we choose for convenience �=− 1

2U, and
consider a symmetric constant density of states for each lead,
with density of states per conduction orbital �=1 / �2D� and
bandwidth D /	=100�1 �such that results shown are essen-
tially independent of D�. In all calculations shown explicitly,

we use a fixed �J=0.1 and Ũ
U / �
	�=7, varying the ex-
change J� �see Fig. 1�.77

Fig. 2 shows the evolution of the lowest-energy levels of
the system as a function of NRG iteration number N, exem-
plifying RG flow between different fixed points of the model.
Panel �a� is for a system deep in the J��J regime �specifi-
cally �J�=0�, while panel �b� shows the energy levels for
�J�=0.105���J�. For comparison, panel �c� is for a pure

�single spin-1
2 � 2CK model of form Eq. �7�, i.e., H

=JKŜ · �ŝL0+ ŝR0�, with a Kondo coupling �JK=0.055 chosen
to be the same as the effective coupling �JK− of the ground
state TQD doublet in �a� �as obtained from Eq. �8b�	. In both
cases �a� and �b�, the levels are seen to converge quite rap-
idly to their N→� values, which are clearly those of the
2CK fixed point �FP� in Fig. 2�c�. These levels are of course
characteristic of the 2CK FP, and—after a trivial rescaling by
a factor which depends on the NRG discretization parameter
�—are described by the fractions 0 , 1

8 , 1
2 , 5

8 ,1. . . as deter-
mined from a conformal field theory analysis of the FP.60,78

The iteration number by which the levels converge to the
set of 2CK FP levels is however clearly different in �a� and
�b�, reflecting the different Kondo scales characteristic of the
two cases. Case �b� �J��J� flows close to the local moment
�LM� FP between N=10 to 60 �with levels naturally charac-
teristic of the LM FP in that range� and approaches the stable
2CK FP by N�80. By contrast, convergence to the 2CK FP
in �a� and �c� both occur at N�50 �with a much shorter
range of N close to the LM FP�. Since the iteration number is
related to an effective temperature through72,73 T /	��−N/2,
the 2CK Kondo scales of the three examples in Fig. 2 are
thus exponentially small �as expected from Eq. �9�	; but with
TK

2CK /	 for �b� being some eight orders of magnitude smaller
than that of �a�, reflecting the distinct nature of the coupling
in the two cases, as discussed in Sec. II B.

A. Thermodynamics

NRG results for thermodynamics in each phase are now
considered. We focus on the “impurity” �TQD�
contribution73,74 to the entropy, Simp�T�, and the uniform spin

susceptibility, �imp�T�= ��Ŝz�2�imp /T �here Ŝz refers to the spin

of the entire system and ��̂�imp= ��̂�− ��̂�0 with ��̂�0 denot-
ing a thermal average in the absence of the TQD�; the tem-
perature �T� dependences of which provide clear signatures
of the underlying FPs reached under renormalization on pro-
gressive reduction in the temperature/energy scale.73,74

1. J��J

For the J�J regime the effective 2CK model Eq. �7�
should describe the system for T �J−J��= �E��, where the

FIG. 2. Lowest five NRG energy levels of the left-charge/right-charge/spin subspaces �QL ,QR ,Sz�
�0,0 , 1
2 � �solid lines	 and �0,1,0�/

�1,0,0� �dashed	, versus �even� iteration number, N. Shown for �J=0.1, Ũ=U / �
	�=7, with �J�=0 �panel �a�	 and �J�=0.105 ��b�	. For
comparison, �c� shows corresponding results for a pure �single-spin� 2CK model with �JK=0.055.
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lowest TQD doublet, in this case the odd parity state �−;Sz�,
couples symmetrically to the leads. 2CK physics is thus ex-
pected below T�TK
TK−

2CK.
For the full model, Fig. 3 shows both Simp�T� �panel �a�	

and T�imp�T� �panel �b�	 for fixed Ũ=7 and �J=0.1, with
J� /J=0, 0.375 and 0.75, all deep in the J��J regime. In
each case, at high temperatures T�U the behavior is gov-
erned by the free orbital73 �FO� FP, with all possible states of
the TQD thermally accessible, and hence Simp=ln�32�. For
T�U the dots become in essence singly occupied, and hence
an entropy of ln �8� is expected.79 Below T��E�� all but the

lowest trimer doublet is projected out. Thus Simp approaches
ln �2�, signifying the LM FP where the lowest doublet is
essentially a free spin-1

2 disconnected from the leads �Eq. �7�
with JK−
0	.

The LM FP is however unstable, and the system always
flows to the stable 2CK FP below T�TK, recovering �Fig.
3�a�	 the 1

2 ln 2 residual entropy known to be characteristic of
the 2CK FP.48–50 In practice we may define a Kondo tem-
perature TK
TK

S through the entropy, via Simp�TK
S �=0.55

�suitably between ln 2 and 1
2 ln 2�; or alternatively TK
TK

�

through the spin susceptibility via TK
��imp�TK

��=0.07 �as in
Ref. 73�. Deep in the 2CK phases the two definitions are of
course equivalent �TK

� 
TK
S 
TK�, probing as they do the

common characteristic scale associated with flow to the 2CK
FP. The inset to Fig. 3�a� shows the entropy of the three
systems rescaled in terms of T /TK; showing scaling collapse
to a common functional form, i.e., the universality character-
istic of the crossover from the LM FP to the stable 2CK FP.50

The underlying FPs of the model are likewise evident
from T�imp�T�, Fig. 3�b�. The highest T behavior corresponds
to two uncorrelated sites �dots 1 and 3 of the TQD� and a
free spin �dot 2�. Hence T�imp�T�=2�

1
8 + 1

4 = 1
2 , readily un-

derstood as the mean ��Sz�2� of the quasidegenerate states.
On decreasing T the LM FP is again rapidly reached, the
lowest TQD doublet following the free spin-1

2 Curie law
T�imp�T�= 1

4 . Below TK the spin susceptibility is
quenched48,50,60 in the sense that T�imp�T�→0 as T→0. In
the inset to Fig. 3�b� the data are rescaled in terms of T /TK,
again showing universality in the approach to the 2CK FP.50

FIG. 4. Spin susceptibility �imp�T� vs T /	 in the J��J regime,
for same parameters as Fig. 3. Inset: scaling collapse onto the uni-
versal form TK�imp�T�=� ln�TK /T�.

FIG. 5. Thermodynamics of the J��J phase. Shown for fixed

Ũ=7, �J=0.1, varying �J�=0.105 �solid lines�, 0.115 �dotted�, and
0.125 �dashed�. Panel �a� again shows Simp�T� and �b� shows
T�imp�T�, both vs T /	. Insets show rescaling in terms of the Kondo
temperature, TK, yielding the same universal 2CK scaling curves as
in Fig. 3.

FIG. 3. Thermodynamics of the J��J phase. Shown for fixed

Ũ=7 and �J=0.1, varying �J�=0 �solid lines�, 0.0375 �dotted�, and
0.075 �dashed�. Panel �a� shows Simp�T�, �b� shows T�imp�T�, both
vs T /	. Insets show the universality arising on rescaling in terms of
the 2CK Kondo temperature, TK, all curves collapsing to a common
form.
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The characteristic low-T logarithmic divergence48,50,60 of
�imp�T� itself is evident in Fig. 4 for the same parameters as
Fig. 3. The slopes of the divergence vary widely between the
three cases, but all collapse to the universal form50

TK�imp�T�=� ln�TK /T� �with � a constant�, as seen in the
inset of the figure.

2. J��J

From the arguments of Sec. II B, 2CK physics is again
expected at low energies in the J��J regime, where the
even-parity �+;Sz� doublet is now the lowest TQD state. This
is confirmed in Fig. 5, where �in direct parallel to Fig. 3 for

J�J� thermodynamics are shown for fixed Ũ=7 and �J
=0.1, but now with J� /J=1.05, 1.15 and 1.25: the scaling
forms for Simp�T� and T�imp�T� vs T /TK, shown in the insets
of Fig. 5, are precisely those arising for J�J and shown in
Fig. 3.

While the low-energy physics in the two regimes J�J
and J��J have common 2CK scaling behavior, we add that
the Kondo scales TK themselves evolve very differently with
J�; as will be considered explicitly in Sec. III C �see Fig. 10�,
and evident even from cursory comparison of Figs. 3 and 5.

B. Dynamics

We turn now to dynamics, focussing largely on the local
single-particle spectrum of dot 1 �or, equivalently by symme-
try, dot 3�: D1���=− 1


 Im G1���, with G1��� the local re-
tarded Green function. We obtain it through the Dyson equa-
tion,

�G1���	−1 = �G1
0���	−1 − �1��� , �16�

where G1
0��� is the noninteracting propagator �i.e., for U

=0=J=J��; and �1��� is the proper electron self-energy,
with �1���
�1

R���− i�1
I ��� �such that �1

I ����0�. The non-
interacting G1

0��� is given trivially by1 �G1
0���	−1=�+−�

−	��� �with �+=�+ i0+�, where 	���=�kV2��+−�k	−1 is
the usual one-electron hybridization function for coupling of
dot 1 to the left lead: 	���
	R���− i	I���, with 	I���=	
�=
V2�T� for all ����D inside the band, and 	R��=0�=0.

An expression for the electron self-energy �1��� is also
readily obtained using equation of motion methods.1,80 It is
given by

�1��� = �G1���	−1U��c1↑n̂1↓;c1↑
† ���

+
1

2
J��c1↓Ŝ2

− + c1↑Ŝ2
z ;c1↑

† ���

+
1

2
J���c1↓Ŝ3

− + c1↑Ŝ3
z ;c1↑

† ���� , �17�

where ��Â ; B̂��� is the Fourier transform of the retarded cor-

relator ��Â�t1� ; B̂�t2���=−i��t1− t2���Â�t1� , B̂�t2���, and where
the local Green function itself is given by G1���
= ��c1� ;c1�

† ��� �independent of spin � in the absence of a
magnetic field�. The self-energy can be calculated directly
within the density matrix formulation of the NRG,70,71,74,81

via Eq. �17�; with G1��� then obtained from Eq. �16�. D1���
calculated in this way is highly accurate,74,81 and automati-
cally guarantees correct normalization of the spectrum.70,71

To motivate study of the spectrum D1�
D1�� ;T�	, we
note that it controls the zero-bias conductance through dot 1.
The TQD does not of course mediate current from the L to R
leads, since the internal couplings between constituent dots
are pure exchange �Fig. 1 and Eq. �1�	. However the L and R
leads in Fig. 1 can obviously each be “split” in two �sym-
metrically, to preserve overall L↔R symmetry�, enabling a
current to be driven through dot 1 or dot 3; with the same
zero-bias conductance in either case, by symmetry. Follow-
ing Meir and Wingreen,82 the resultant conductance follows
as

Gc�T�
G0

= �
−�

�

−
� f���

��

	D1��;T�d� , �18�

where f���= �e�/T+1	−1 is the Fermi function �with �=0 the
Fermi level� and G0=2e2 /h the conductance quantum. The
�� ,T� dependence of D1 thus controls the conductance, and
for T=0 in particular Gc�T=0� /G0=
	D1��=0; T=0�.
From Eq. �16�, the local propagator for �=0=T may be ex-
pressed as �G1��=0�	−1=−��+ i	� in terms of the renormal-
ized single-particle level �� and renormalized hybridization
	�, given by

�� = � + �1
R�0� , �19a�

	� = 	 + �1
I �0� , �19b�

in terms of the �=0 value of the self-energy at T=0; and
hence from Eq. �18�:

Gc�T = 0�
G0

= 
	D1�0;0� =
	

	�

1

1 + � ��

	��2 . �20�

NRG results for single-particle dynamics are considered
below, but first a question arises. We have argued above that,
sufficiently deep in either regime J��J or J��J, the low-
energy physics of the full three-site TQD model must reduce
to that of a single spin-1

2 2CK model �of form Eq. �7�	. The
question is: to which dynamical property of a pure 2CK
model should the spectral density 
	D1��� be compared? To
answer this, note first that Eq. �18� may be written equiva-
lently as

Gc�T�
G0

= �
−�

�

−
� f���

��
�− 
�T Im tL���	d� , �21�

in terms of the t-matrix, tL���, for the L lead; with t����
defined in the usual way in terms of scattering of electron
states in the �=L or R lead, via

G�k,�k���� =
�kk�

�+ − �k
+

1

�+ − �k
t����

1

�+ − �k�
, �22�

where G�k,�k����= ��a�k� ;a�k��
† ��� is the propagator for the

lead states. Using equation of motion methods1,80 it is
straightforward to show that tL���=V2G1��� �likewise
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tR���=V2G3���
 tL���	; so −
�T Im tL���=
	D1�� ;T�
�recall 	=
V2�T�, hence the equivalence of Eqs. �18� and
�21�.

To compare 
	D1�� ;T� for the full TQD model to results
for a single-spin 2CK model,17,51,83–86 we thus require
tL���
 tL

2CK��� for the latter. Using the definition of the
0-orbital of a Wilson chain �Eq. �4b�	, the Hamiltonian for a
single-spin 2CK model is

H2CK = �
�k�

�ka�k�
† a�k� + �

�kk�

JK

2N
�Ŝz�a�k↑

† a�k�↑ − a�k↓
† a�k�↓�

+ Ŝ+a�k↓
† a�k�↑ + Ŝ−a�k↑

† a�k�↓	; �23�

and for this case equations of motion again yield Eq. �22� for

G�k,�k����, but now with tL���=
JK

2

4NGs��� where

Gs��� = ��Ŝ−fL0↓ + ŜzfL0↑; Ŝ+fL0↓
† + ŜzfL0↑

† ���. �24�

Comparison of −
�T Im tL��� for the full TQD model with
its pure 2CK counterpart �using �T /N=�=1 / �2D�	 then
gives the desired correspondence


	D1��� ↔ D�K��� , �25�

with spectral density

�K��� = −



2
��JK�2Im Gs��� , �26�

for the single-spin 2CK model.87

Dynamics: results

Fig. 6 shows the T=0 spectrum 
	D1��� vs � /	, in the
J��J regime �for the same bare parameters as Fig. 3 for
thermodynamics�. The main panel shows results on a log
scale for ��0; and particle-hole symmetry for �=− 1

2U
means D1���=D1�−�� �as seen in the inset�. The figure also
shows D�K��� for the single-spin 2CK model �for �JK
=0.07, ensuring an exponentially small Kondo scale but oth-
erwise chosen arbitrarily�.

We first comment on the high-energy spectral features
�“Hubbard satellites”� in D1���. As usual, these reflect
simple one-electron addition to the isolated TQD ground
state. The lowest such excitation from the �−;Sz� TQD
ground state incurs an energy cost �E−= 1

4 �J−J��−�. On tun-
nel coupling to the leads these features are naturally broad-
ened, but the satellites are centered on ���E−, indeed seen
from Fig. 6 to shift slightly to lower � on increasing J�. In
the J��J regime �not shown�, directly analogous behavior
arises. Here the �+;Sz� doublet is the TQD ground state, the
Hubbard satellites in D1��� are now centered around �
��E+= 3

4 �J�−J�−�, and hence shift to higher frequency as
J� is increased. By contrast, see Fig. 6, Hubbard satellites are
simply absent in �K���—addition/removal excitations are
suppressed by construction in modeling a dot strictly as a
spin.

The most important characteristic of the spectra in Fig. 6
is of course the low-energy Kondo resonance, the form of
which reflects RG flow in the vicinity of the stable 2CK fixed
point. At the Fermi level �=0 in particular, 
	D1��=0�
= 1

2 in all cases �likewise D�K�0�= 1
2 	—i.e., reaches half the

unitarity limit, a hallmark of the 2CK FP, likewise known
from study of the two-channel �quadrupolar� single-impurity
Anderson model.84,85

Universal scaling of single-particle dynamics is consid-
ered in Fig. 7, where 
	D1��� vs � /TK is shown �with TK
defined in practice from thermodynamics, as in Sec. III A�.
The figure includes the three examples shown in Fig. 6 for
the J��J �odd parity ground state� regime, as well as spectra
for the J��J �even parity� regime for the same parameters as
Fig. 5; together with D�K��� vs � /TK for the pure 2CK
model. As seen from Fig. 7, all spectra collapse perfectly to
a universal scaling form; confirming that the TQD
model—be it in the J��J or J��J regime—is described by
the 2CK model at low-energies.

As shown in Fig. 7, the leading low-frequency asymptot-
ics of the scaling spectrum are found to be

FIG. 6. T=0 local spectrum 
	D1��� vs � /	 in the J��J

regime. Shown �as in Fig. 3� for fixed Ũ=7 and �J=0.1, varying
J� /J=0 �solid line�, 0.375 �dotted�, and 0.75 �dashed�. The dot-
dashed line is the spectral density D�K��� �Eq. �26�	 for a single-
spin 2CK model �Eq. �23�	, with �JK=0.07. Inset: results shown on
a linear frequency scale.

FIG. 7. T=0 scaling spectrum for the 2CK phases. 
	D1��� vs
� /TK is shown both in the J��J regime �for the bare parameter
sets used in Fig. 3� and for the J��J regime �with the parameters
used in Fig. 5�. D�K��� vs � /TK for the single-spin 2CK model is
also shown. All spectra collapse to the same universal form. The
dotted line shows the low-��� /TK asymptotic behavior 
	D1���
= 1

2 �1−a���� /TK�1/2	, while the dashed line describes the
high-��� /TK scaling behavior, 
	D1���=A / �ln2���� /TK�+B	.
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	D1��� �
���/TK11

2
�1 − a����/TK�1/2	 , �27�

with the constant a�0.47; as consistent with that found for
the quadrupolar Anderson impurity model,85 and in contrast
to the �1−a�� /TK�2	 decay characteristic of the normal
Fermi liquid FP in single-channel models. For ��� /TK�1 by
contrast, as also shown in Fig. 7, the asymptotic behavior is


	D1��� �
���/TK�1

A/�ln2����/TK� + B	 , �28�

�with A and B pure constants O�1�	; which form is also
asymptotically common to the single-channel spin-1

2 Ander-
son model88 and its SU�2N� generalization.89 This is physi-
cally natural, the origin of the “high” energy leading
�1 / ln2���� /TK� logarithms being spin-flip scattering,1 which
occurs for both single- and two-channel models.

We consider now the electron self-energy of dot 1 in the
full TQD model, the real and imaginary parts of which are
shown in Fig. 8 and naturally exhibit scaling in terms of
� /TK. For �1

I ��� we find the low-� /TK asymptotic behavior
to be �1

I ��� /	=1+c�� /TK
2CK�1/2 as shown explicitly in the

inset to panel �a�. At the Fermi level in particular, �1
I ��

=0�=	, in marked contrast to a Fermi liquid phase for which
�I��=0�=0 generically; and leading to a renormalized hy-
bridization �Eq. �19b�	 	�=	+�1

I ��=0�=2	. The real part

of the self-energy is shown in panel �b�, and at the Fermi
level in particular is found to be �1

R��=0�=−� such that the
renormalized level ��=0 �Eq. �19a�	.

Since 	�=2	 and ��=0, it follows from Eq. �20� that the
T=0 zero-bias conductance for the TQD model reduces to
one-half the unitarity limit, i.e. Gc�T=0� /G0= 1

2 , as known to
be the case for a single-spin 2CK model.17,51,83,86 Moreover,
although the explicit case for which we have shown results is
�=−U /2 where the TQD model is particle-hole symmetric,
we note that 	�=2	 and ��=0—and hence 
	D1���= 1

2 and
Gc�0� /G0= 1

2—is also found to hold robustly on moving
away from particle-hole symmetry.

The results above refer to dynamics for T=0 and we now
touch on T�0. Universality implies 
	D1�� ;T� depends on
� /TK and T /TK. Without loss of generality it may be cast as


	D1��;T� = 
	D1�0;T� −
a

2
� ���

TK
�1/2

g� �

TK
;

T

TK
� ,

�29�

where the scaling function g satisfies g�0;0�=1 �such that
Eq. �29� for T=0 reduces asymptotically to Eq. �27� for

	D1�� ;T=0�	. For the Fermi level �=0 in particular, we
find from NRG that the leading low-T /TK dependence of

	D1�0;T� is


	D1�0;T� �
T/TK11

2
�1 − b�T/TK�1/2	 , �30�

with b�a a constant. Employing Eq. �29� in Eq. �18� for
Gc�T�, and rescaling the resultant nontrivial integral �arising
from the second term of Eq. �29�	 by exploiting the fact that
the Fermi function depends solely on � /T, gives the leading
low-T /TK behavior of the zero-bias conductance as

Gc�T�
G0

=
1

2
�1 − ��T/TK�1/2	 , �31�

where � is a constant ��=b+a� with a�=a�
�� 1
2 ��1.07a

and ��z� the Dirichlet � function	. And the behavior Eq. �31�
is precisely that known to arise for the single-spin 2CK
model.17,51,83,86

Finally, we consider briefly the local dynamic spin sus-
ceptibility of dot 1 in the 2CK phases, given by �1���=

− 1

 Im��Ŝ1

z ; Ŝ1
z���. Fig. 9 shows �1��� vs � /	 �for T=0� in the

J��J regime, with the same bare parameter sets as Fig. 6
�the behavior discussed below being applicable in both 2CK
phases�. In the standard single-channel Anderson model,
�1��� exhibits characteristic low-� Fermi liquid behavior,1,90

�1�����. By contrast, it is known85,91 that at the 2CK FP,
�1�0� plateaus at a finite constant; itself proportional to the
slope of the log divergence of �imp�T� as T→0. In Fig. 4
�inset� for the full TQD model we showed the uniform static
spin susceptibility to have a low-T log divergence of form
�imp�T�= �

TK
ln�TK /T�, with slope � /TK. Thus we also expect

TK�1��� to exhibit universality as a function of � /TK; as
indeed confirmed in the inset of Fig. 9.

FIG. 8. Electron self-energy �1��� /	 vs � /	 for the same pa-
rameters as Fig. 6. Panel �a�: imaginary part, �1

I ��� /	; panel �b�:
real part, �1

R��� /	. Insets: universal scaling forms as a function of
� /TK, with the dot-dashed lines showing the low-frequency
asymptotic behavior �1

I ��� /	=1+c�� /TK�1/2, and �1
R��� /	=−� /	

−sgn���c��� /TK�1/2.
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C. Kondo scales

The energy scale on which 2CK physics emerges in the
full TQD model is of course the two-channel Kondo tem-
perature. TK itself varies markedly with the bare model pa-
rameters; with qualitatively different behavior for J� /J�1
and J� /J�1 that reflects the distinct nature �Sec. II B� of the
lowest-energy TQD doublets in the two regimes, �−;Sz� and
�+;Sz�, respectively. This is shown in Fig. 10, considering
explicitly the Kondo scale TK
TK

� obtained �as in Sec. III A	
from the uniform susceptibility and showing TK

� /	 vs J� /J.
In the J��J regime a relatively modest increase in TK occurs
on increasing J� /J; while for J��J by contrast TK dimin-
ishes very rapidly, reflecting physically the weak residual AF
coupling �Sec. II B	 between the spin on dot 2 and the leads,
when the singlet-locked �+;Sz� doublet is the TQD ground
state.

In Sec. II B we showed that the full TQD H maps onto an
effective single-spin 2CK model �Eq. �7�	 in each of the J�
�J and �J regimes, provided the separation between the
TQD doublets �E��= �J−J�� is sufficiently large that one or

other alone dominates the low-energy physics. The resultant
Kondo temperatures for the two regimes are then given from
perturbative scaling by Eqs. �8� and �9�. These are compared
directly to the NRG results for TK

� in Fig. 10, and are seen to
agree quantitatively for �E�� /J�0.1, ie throughout the great
majority of each of the two 2CK regimes.

IV. QUANTUM PHASE TRANSITION

When �E��= �J−J�� is sufficiently small however, neither
TQD doublet alone dominates the low-energy physics, both
must then be included in the low-energy trimer manifold, and
as shown in Sec. II B the low-energy behavior is no longer
described by an effective single-spin 2CK model, but rather
by Eq. �13�; with coupling between doublets of distinct par-
ity embodied in the pseudospin raising/lowering terms. We
show in the following that these additional terms in the ef-
fective Hamiltonian drive a quantum phase transition be-
tween the two 2CK phases, occurring at the point of inherent
magnetic frustration.

In the isolated TQD, frustration occurs at J�=J where the
TQD doublets are degenerate, a trivial level-crossing “tran-
sition” occurring in this case as Jc�=J is crossed. As a result,
ground state properties in general change discontinuously
across Jc�; exemplified, e.g., by the spin correlation functions

�Ŝ1 · Ŝ2� and �Ŝ1 · Ŝ3� which �as in Sec. II A� change abruptly
at Jc� from − 1

2 and + 1
4 , respectively, in the �−�-parity phase

J��Jc� to 0 and − 3
4 , respectively, in the �+�-parity phase for

J��Jc�. That situation changes qualitatively on coupling to
the leads, as illustrated in Fig. 11 where the T=0 spin corr-

elators �Ŝ1 · Ŝ2� and �Ŝ1 · Ŝ3� are shown as a function of J� /J
for the full model.34 While their behavior sufficiently deep in
either of the 2CK regimes naturally accords with expecta-
tions from the isolated TQD, they now vary continuously
with J� /J; as seen clearly from the magnification of the
crossover region in the inset. The value of J� /J for which

��Ŝ3 · Ŝ2�
��Ŝ1 · Ŝ2�= �Ŝ1 · Ŝ3� is the point of complete mag-
netic frustration, and as seen from the inset to Fig. 11 is
naturally slightly renormalized from unity, to Jc� /J
=1.03216. . . in the example shown.

FIG. 9. Local dynamic susceptibility 	�1��� vs � /	 at T=0 for
the same bare parameters as Fig. 6. Inset: showing universal scaling
of TK�1��� vs � /TK.

FIG. 10. Kondo temperature TK
� /	 �points, with solid line as

guide to eye� vs J� /J for fixed Ũ=7 and �J=0.1; as defined �Sec.
III A� via TK

��imp�TK
��=0.07. Kondo scales obtained from perturba-

tive scaling �Eq. �9�	 are also shown, with �JK+ �for J� /J�1� from
Eq. �8a� �dashed line� and �JK− �for J� /J�1� from Eq. �8b� �dot-
ted�; with a trivial constant prefactor adjusted to fit the data.

FIG. 11. T=0 spin-spin correlation functions �Ŝ1 · Ŝ2� �solid line�
and �Ŝ1 · Ŝ3� �dashed� vs J� /J, for fixed Ũ=7 and �J=0.1. Inset:

magnification around the point of frustration, where �Ŝ1 · Ŝ2�
= �Ŝ1 · Ŝ3�, occurring at J� /J=1.032. . .

ANDREW K. MITCHELL AND DAVID E. LOGAN PHYSICAL REVIEW B 81, 075126 �2010�

075126-10



We shall see in the following sections that the QPT occurs

at Ẽ�=Jc�−J�=0, with a quantum critical point separating the
two 2CK phases of distinct parity.

A. Physical picture of the transition

Before showing NRG results, we give heuristic physical
arguments for the behavior of the system in the vicinity of
the QPT, based on the effective low-energy Hamiltonian
Heff

trans �Eq. �13�	 in which both TQD doublet states are re-
tained in the low-energy trimer manifold. Heff

trans is cast in

terms of spin-1
2 operators for both real spin �Ŝ� and pseu-

dospin �T̂� for the local TQD Hilbert space, the distinct par-
ity of the two doublets being reflected in the Tz= �

1
2 com-

ponents of pseudospin.
In Eq. �13� the exchange couplings 1

2 �JA�JB��
JK�� are
both �0 �AF�, in which case it is readily argued �and con-
firmed explicitly by NRG� that the low-energy FP structure
of Heff

trans is independent of JB. For simplicity in the following
we thus consider JB=0 in Eq. �13�, i.e.,

Heff
trans =

1

2
JAŜ · �ŝL0 + ŝR0�

+ Jmix�T̂+ + T̂−�Ŝ · �ŝL0 − ŝR0�

+ Ẽ�T̂z, �32�

with Ẽ�=Jc�−J� �rather than the “bare” E�=J−J�, allowing
simply for the slight renormalization of Jc� away from the
value Jc�=J in the isolated TQD, as above�.

For Ẽ��0, a “magnetic field” acts on the z-component of
pseudospin and as mentioned in Sec. II B the low-energy
physics is ultimately that of a single-spin 2CK FP �we return

to it below�. But now consider Ẽ�=0 in Eq. �32�; i.e., J�
=Jc�, corresponding to the transition itself. In this case no
field acts on the pseudospin, its “z-component” as such being

arbitrary. Recalling that T̂++ T̂−=2T̂x in Eq. �32�, and then
performing a trivial rotation of the pseudospin axes from
�x ,y ,z�→ �z ,x ,y�, Eq. �32� may be written as:

Heff
trans�Ẽ� = 0� = �1

2
JA + 2JmixT̂z�Ŝ · ŝL0

+ �1

2
JA − 2JmixT̂z�Ŝ · ŝR0. �33�

This Hamiltonian commutes with T̂z, so is strictly separable
into disjoint Tz=+ 1

2 and − 1
2 sectors, i.e., the pseudospin is

free. But in either given Tz sector, the spin Ŝ clearly couples
asymmetrically to the L and R channels, i.e., one has channel
anisotropy. In the single spin-1

2 2CK model, channel aniso-
tropy is of course well known46,47,50,60,61 to destabilize the
2CK FP: the spin-1

2 is instead fully quenched by the channel
to which it is most strongly AF exchange coupled �and is
decoupled from the second conduction channel/lead�. The
ultimate stable fixed point is then the single-channel strong
coupling �SC� FP, reached below a temperature scale TK

1CK

�exp�−1 /�J�� with J� the larger of the L /R exchange cou-
plings.

In the present context, Eq. �33�, the situation is then clear:
in the Tz=+ 1

2 sector the spin is wholly quenched by coupling
to the L lead/channel �Jmix�0�, while for Tz=− 1

2 it is
quenched by coupling to the R lead; the temperature scale for
quenching in either case being the one-channel Kondo scale
TK

1CK�exp�−1 /�J�� with J�
 1
2JA+Jmix.

The stable FP is clearly a doubled version of the SC FP,
the “doubling” reflecting the free pseudospin; with an asso-
ciated T=0 residual entropy of Simp=ln 2, and a finite uni-
form spin susceptibility �imp�0��1 /TK

1CK symptomatic of the
one-channel quenched spin-1

2 . Since this FP is distinct from

the stable 2CK FP arising for Ẽ��0 away from the QPT, it
corresponds to a critical FP �CFP�; with Eq. �33� the effec-
tive Hamiltonian for the quantum critical point �QCP� itself.

The “entire” T dependence of thermodynamics at the QCP
is also readily inferred, since the pseudospin is ubiquitously
free and spin quenching is characterized by the single, finite
scale TK

1CK. For T�TK
1CK one expects Simp�T�=ln 4 �reflecting

the free pseudospin and the free spin�, with a free spin-1
2

Curie law T�imp�T�� 1
4 ; the “SU�2��SU�2�” FP Hamil-

tonian here being Eq. �33� with all exchange couplings set to
zero. T�TK

1CK then sets the scale for spin quenching and the
crossover to the CFP discussed above. Hence, at the QCP, the
T dependence of the entropy should be given by Simp�T�
=ln 2+Simp

1CK�T�, with Simp
1CK�T� the entropy for a one-channel

Kondo model with Kondo scale TK
1CK; likewise the uniform

spin susceptibility should be �imp�T�=�imp
1CK�T�.

Having considered the QCP we return briefly to a nonva-

nishing �Ẽ��TK
1CK, small compared to the 1CK scale. In this

case we expect flow to the CFP to be cut off at a character-
istic 2CK scale, T�TK, below which the system flows to the

stable 2CK FP; and with TK
TK�Ẽ�� vanishing as �Ẽ��→0,
indicative of the QPT. We examine this via NRG in the fol-
lowing section, but note here that the considerations above
would lead us to expect a crossover in Simp�T� from ln 4 to ln
2 on the scale T�TK

1CK, followed by a crossover for T�TK

to the 1
2 ln 2 characteristic of the stable 2CK FP. Likewise for

�imp�T� we anticipate the Curie law �imp�T��1 /4T for T
�TK

1CK, increasing to �imp�T��1 /TK
1CK for T�TK

1CK, before
crossing over to the divergent 2CK behavior �imp�T�
� ln�TK /T� for T�TK.

Finally, for a larger nonzero �Ẽ���TK
1CK, no RG flow in

the vicinity of the CFP is expected, and the TK
1CK scale is then

irrelevant: below T��Ẽ���TK
1CK one or other of the pseu-

dospin z-components is simply frozen out, Simp�T� crossing
over from ln 4 to ln 2 �here indicative of a frozen pseudospin
but a free spin-1

2 �, and then to the stable 2CK FP value 1
2 ln 2

on the 2CK scale T�TK. The physics here is simply that of
a single spin-1

2 2CK model, as already considered in the
preceding sections.

B. Critical fixed point: NRG

The physical arguments given above imply that the NRG
energy levels associated with the critical FP itself, should
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consist of both a set of single-channel strong coupling FP
levels, reflecting spin quenching to one lead �as arises for an
AF-coupled single-channel spin-1

2 Kondo model�; and a set
of levels for a free conduction band, reflecting decoupling of
the spin from the other lead �as arises at the trivial weak
coupling FP for a ferromagnetically coupled single-channel
spin-1

2 Kondo model�.1
Before proceeding we simply demonstrate that this is in-

deed the case. The left panel of Fig. 12 shows the lowest
NRG energy levels of the full TQD model at the transition
�J�=Jc��, as a function of iteration number, N. The CFP levels
are well converged by N=40 �flow to the CFP from the
SU�2��SU�2� FP beginning for N�26	. For comparison we
also show the lowest NRG levels for a representative 1CK
model with AF coupling �middle panel� and with ferromag-
netic coupling �right panel�. The CFP level structure can in-
deed be seen to comprise both sets of strong coupling
�middle panel� and weak coupling �right panel� levels. In-
deed for the full TQD model, levels in the subspaces
�QL ,QR ,Sz�
�x ,y ,Sz� and �y ,x ,Sz� are degenerate, so over-
all L /R symmetry is naturally unbroken, and the strong cou-
pling and weak coupling levels form symmetrically in each
channel.

C. Thermodynamics of the transition

We turn now to thermodynamics in the vicinity of the
transition, obtained via NRG for the full TQD model; con-
sidering temperatures T	 �i.e., without comment on non-
universal high temperatures, where the same behavior as in
Sec. III A naturally occurs�.

Fig. 13 shows the T /	 dependence of the entropy Simp�T�.
Results are given for fixed Ũ=7 and �J=0.1, varying J� as
the transition—occurring at J�=Jc� determined as above from
the spin correlators—is approached from either side, accord-

ing to Ẽ�= �Jc�−J��= ��TK
c ; with results shown for �=10n

and n=0,−1,−2,−3,−4 �lines �a�–�e� in Fig. 13	, chosen to
approach progressively the transition, itself occurring at �
=0 �shown as line �f�	. Here, TK

c /	=10−4 is the value, at J�
=Jc�, of the Kondo scale TK

� obtained from T�imp�T� as in Sec.
III A; and we will in fact shortly identify TK

c as correspond-
ing to the effective single-channel Kondo scale TK

1CK dis-

cussed in Sec. IV A and associated with the QCP. Lines �a�
in Fig. 13 are thus for J� being �TK

c away from the transi-
tion; while �b�–�e� show the behavior for �Jc�−J��TK

c as the
QPT is approached.

Simp�T� self-evidently shows a QPT: one sees clearly a
low-energy scale TK
TK

S in the vicinity of the transition,
reflected in the crossover to the stable 2CK FP value Simp

= 1
2 ln 2 �and determined in practice via Simp�TK

S �=0.55 as in
Sec. III A�; with TK vanishing precisely at the transition itself
�line �f�	.

The obvious first question is how TK
TK�Ẽ�� vanishes as

Ẽ�=Jc�−J�→0 on approaching the QPT. The answer is

TK �
J�→Jc��

A�Jc� − J��� :� = 2, �34�

with exponent �=2 and common amplitudes A on approach-
ing Jc� from either side. This is shown in the inset panel �c� to
Fig. 14 �itself discussed further below�. The solid lines
therein show TK /	 vs �Jc�−J�� /TK

c on a log-log scale, as the
transition J�→Jc� is approached from both sides. The dashed
line has a slope �=2, onto which the TK fall clearly for �Jc�
−J���TK

c ; so that TK
c is as such the “boundary” scale below

which Eq. �34� holds and the critical regime is entered. We
add also that an exponent �=2 reflects the nontrivial nature
of the transition: for a first order level-crossing transition, as
arises13 if the TQD is instead coupled to a single lead/
channel at dot 2 �see Fig. 1�, one instead finds13 �=1.

Consider now the QCP itself, J�=Jc� �line �f� in Fig. 13	.
From the arguments given in Sec. IV A we anticipate
Simp

QCP�T�=ln 2+Simp
1CK�T�, where the explicit ln 2 reflects the

free pseudospin and Simp
1CK�T� is the entropy for a single-

channel spin-1
2 Kondo model. This is indeed verified in Fig.

13, where ln 2+Simp
1CK�T� is calculated explicitly for a one-

channel Kondo model with TK
1CK chosen such that TK

1CK=TK
c .

It is seen �dotted line� to coincide perfectly with Simp
QCP�T� for

all T�	; including the ln 4 entropy plateau reflecting the
free pseudopsin and spin �the “SU�2��SU�2�” FP of Sec.
IV A	, and the crossover at T�TK

1CK=TK
c to the CFP charac-

terized by Simp=ln 2, where the pseudospin remains free but
the spin is wholly quenched.

FIG. 12. NRG energy levels for even iteration number, N. The lowest four levels are shown in each charge/spin subspace for: the full
TQD model precisely at the transition �left panel	, a 1CK model with �JK=+0.056 �middle	 and �JK=−0.056 �right	. For the full model,
subspaces shown are �QL ,QR ,Sz�
�0,1 ,0� / �1,0 ,0� �solid lines	, �0,1,1�/�1,0,1� �dashed	, and �0,3,0�/�3,0,0� �dotted	. For the 1CK models,
the subspaces are �Q ,Sz�
�0,0� �solid lines	, �1, 1

2 � �dashed	, and �0,1� �dotted	.
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Moving away from the QCP, consider now the sequence
�b→e� in Fig. 13, as the transition is progressively ap-
proached. In all cases Simp�T� follows the QCP Simp

QCP�T� all
the way from the ln 4 regime, through the crossover at the
common temperature T�TK

c =TK
1CK �which is of course finite

at the transition�, to the ln 2 symptomatic of the CFP; before
ultimately descending to the stable 2CK FP with Simp
= 1

2 ln 2 on the scale T�TK
TK
S . Since TK vanishes as the

transition is approached, Simp�T� should exhibit universality
in terms of T /TK. That it does is shown in the inset to Fig.
13, where all lines �b�–�e� collapse to a common scaling
curve �solid line�. This scaling is of course characteristic of
flow from the vicinity of the critical FP to the stable 2CK FP.
As such it is thus expected to be distinct from the universal
crossover in the single-spin 2CK model �Sec. III A�, from
the ln 2 entropy plateau associated with the free spin-1

2 local
moment FP to the stable 2CK FP; indeed confirmed in the
inset to Fig. 13, where the latter is shown as a dashed line.
Note also in this regard that lines �a� in Fig. 13, for Jc�−J�
= �TK

c , constitute in effect the boundary between effective

single-spin 2CK behavior �arising for �Ẽ��= �Jc�−J���TK
c


TK
1CK� and the critical regime �Jc�−J���TK

c ; as reflected in
the direct flow of Simp�T� from ln 4 to 1

2 ln 2 occurring at that
point.

Fig. 15 shows the T dependence of the uniform spin sus-
ceptibility, TK

c �imp�T� vs T /TK
c �with TK

c /	=10−4 as above�,
on approaching the transition according to Ẽ�=Jc�−J�=�TK

c ;
but now with �=10n/4 and n=1,0 ,−1 ,−2,−3 �solid lines, in
order of decreasing slope�, showing as such the region where
RG flow near the CFP is first observed �roughly between
lines �a� and �b� in Fig. 13�. The figure also shows the be-
havior at the QCP itself ��=0, bottom solid line�, as well as
the spin susceptibility for a single-spin 2CK model �dashed
line�.

For the QCP itself, we expect �imp
QCP�T�=�imp

1CK�T� from the
arguments of Sec. IV A; with �imp

1CK�T� the spin susceptibility
for a single-channel spin-1

2 Kondo model with Kondo scale
TK

1CK
TK
c such that at T=0 in particular �imp

1CK�T=0� is char-
acteristically finite. That is indeed verified in Fig. 15, where
the result for the single-channel Kondo model is shown as a
dotted line.

For n=1 by contrast, i.e., Jc�−J��2TK
c , the susceptibility

follows essentially perfectly the dashed line; thus being de-
scribed by a single-spin 2CK model, precisely as arises deep
in either 2CK phase of the full TQD model �see Fig. 4�, and
characterized by the low-T log divergence TK

c �imp�T�
� ln�TK /T�. On moving closer to the transition �decreasing
n�, the susceptibilities progressively “fold on” to the QCP
result over an increasingly wider T /TK

c range; indeed even
for Jc�−J�=0.1TK

c �n=−4, not included in Fig. 15�, the result-
ant susceptibility is barely distinguishable from the QCP line
over most of the T /TK

c range shown. As seen from the figure
however, in all cases except the QCP itself, the ultimate
low-T behavior is the log divergence expected for the stable
2CK FP, TK

c �imp�T��x ln�TK /T�; with an amplitude x visible
from the gradients in Fig. 15 and seen to diminish steadily as
the transition is approached. While numerical accuracy pre-
vents a definitive determination of x much closer to the tran-
sition, extrapolation of the results in Fig. 15 �as shown in the
inset� suggest x vanishes as x�TK /TK

c ���1−J� /Jc��
2 from

Eq. �34�	.
Finally, as discussed only partially above �see Eq. �34�	,

we return to the evolution of the Kondo scale shown in Fig.
14; the main panel of which shows TK
TK

S vs �J�−Jc�� /TK
c as

determined from the T-dependence of the entropy �Fig. 13�.
Inset �b� to Fig. 14 shows an expanded view of TK in the
vicinity of the transition ��J�−Jc�� /TK

c �2�, together �dotted
line� with the scale TK

� determined in practice from the spin
susceptibility via73 TK

��imp�TK
��=0.07 �as employed in Sec.

III A�. While TK
TK
S in inset �b� naturally shows the vanish-

ing of the Kondo scale as the QPT is approached, TK
� is seen

FIG. 13. Entropy Simp�T� vs T /	 on progressively approaching

the QPT as: Ẽ�= �Jc�−J��= ��TK
c with TK

c /	=10−4 �as discussed in
text� and results shown for �=10n with n=0,−1,−2,−3,−4 �lines
�a�–�e�, respectively	. The QCP itself ��=0� is shown as line �f�,
while the dotted line shows ln 2+Simp

1CK�T� calculated for a single-
channel Kondo model with TK

1CK=TK
c ; the two coinciding for all

T /	�1. Inset: results in �b�–�e� rescaled �solid line� in terms of the
vanishing Kondo scale TK
TK

S , showing universal crossover from
the CFP to the stable 2CK FP; and contrasted to that arising in the
single-spin 2CK model �dashed line�.

FIG. 14. Variation in the Kondo scale TK
TK
S : TK /	 vs

�J�−Jc�� /TK
c �with fixed Ũ=7 and �J=0.1, for which TK

c /	=10−4�.
Inset �b� shows an expanded view in the vicinity of the transition
�solid line�; inset �c� shows the same results �solid� on a log-log
scale, together with the power-law decay TK� �Jc�−J��2 �dashed line�
as the transition is approached. In both insets, TK

� is also shown
�dotted lines� and remains finite at the transition.
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to remain finite at the transition, as seen also in Fig. 10 of
Sec. III C. This is precisely as it should be. The “true” ulti-
mately vanishing Kondo scale TK is of course evident in the
evolution of both Simp�T� �Fig. 13� and �imp�T� itself �Fig.
15�. But T��imp�T�—from which TK

� has been defined—
vanishes as T→0 �the explicit factor of T “killing” the low-T
log divergence in �imp�T� itself	. Indeed, as readily inferred
from Fig. 15 �and verified by explicit calculation�, T�imp�T�
close to the transition ��Jc�−J�� /TK

c �0.1 or so� is indistin-
guishable from the QCP behavior T�imp

1CK�T�; and as such is
naturally characterized by the finite temperature scale TK

1CK


TK
� . The above, important distinction between TK and TK

� is
however applicable only close to the transition. As seen
clearly from inset �b� to Fig. 14, the scales TK
TK

S and TK
�

coincide away from the transition �in practice for �Jc�
−J�� /TK

c �2 or so�; as noted and used in Sec. III A when
considering the model deep in either of the 2CK phases.

D. Dynamics of the transition

Here we focus again on the single-particle spectrum
D1��� of dot 1 �or equivalently, D3��� for dot 3	. The T=0

spectrum 
	D1��� vs � /	 is shown in Fig. 16 for Ũ=7 and

�J=0.1; varying Ẽ�=Jc�−J� on approaching the transition

from the �+� parity phase J��Jc�, according to Ẽ�=−�TK
c

with �=10n/2 and integral n=+4→−4 for lines a→ i, respec-
tively. The spectrum at the transition itself ��=0� is indistin-
guishable from case �i�.

Two particular spectral features should be noted. First, the
spectrum at the Fermi level is pinned at 
	D1��=0�= 1

2 in
all cases, including the transition itself. Second, the width of
the Kondo resonance clearly increases as the transition is
approached, being of order TK

c 
TK
1CK at the transition �with

TK
c /	=10−4 as usual�; in which sense the vanishing TK scale

evident, e.g., in the evolution of the entropy �Fig. 13� does
not show up in single-particle dynamics.

That 
	D1��=0� should be 1
2 away from the transition is

�as in Sec. III B� a natural consequence of the stable 2CK FP
that ultimately arises �Sec. IV C�. To understand why

	D1��=0�= 1

2 at the transition itself, first recall the general
result from Sec. III B that 
	D1���=−
�T Im tL���, with
t���� the t-matrix for scattering of electron states in the
�=L or R lead. As discussed in Sec. IV A, the effective
Hamiltonian for the QCP �Eq. �33�	 is strictly separable into
disjoint Tz= �

1
2 sectors, the two sectors possessing common

eigenvalues. In this case it is straightforward to show that
t����= 1

2 �t��Tz=+ 1
2 ;��+ t��Tz=− 1

2 ;��	, where t��Tz ;�� is
the t�–matrix calculated for a fixed Tz in the QCP Hamil-
tonian Eq. �33� �with tL�Tz= �

1
2 ;��= tR�Tz= �

1
2 ;�� such

that tL���= tR��� overall, as symmetry requires generally�.
Consider then tL���. As explained in Sec. IV A, at the critical

fixed point the spin-1
2 Ŝ is quenched in a one-channel fash-

ion, by AF coupling to the L-lead for Tz=+ 1
2 , but to the R

lead for Tz=− 1
2 . In consequence, tL�Tz=+ 1

2 ; �=0� is equiva-
lently the t-matrix, t1CK��=0�, for a one-channel AF spin-1

2
Kondo model. But tL�Tz=− 1

2 ; �=0�=0 by contrast, since
for Tz=− 1

2 the spin is quenched by coupling to the R lead,
while the L lead is entirely decoupled from it �so no spin-
scattering of electrons in the L lead can occur�. Hence,
tL��=0�
 1

2 t1CK��=0�. For the one-channel spin-1
2 Kondo

model itself, −
�T Im t1CK���

	D1CK���, with D1CK���
the single-particle spectrum of a one-channel, single-level
Anderson impurity model in the singly-occupied Kondo re-
gime of the model �as is physically obvious, but follows
more formally via arguments directly analogous to those
given in Sec. III B�. Overall we thus infer that 
	D1�0�=
−
�T Im tL�0�
 1

2
	D1CK�0�. But 
	D1CK�0�=1 by virtue
of the Friedel sum rule;1 whence 
	D1�0�= 1

2 arises, as in-
deed found, see Fig. 16.

FIG. 15. Uniform spin susceptibility TK
c �imp�T� vs T /TK

c for

fixed Ũ=7 and �J=0.1, varying J� as: Ẽ�= �Jc�−J��=�TK
c with �

=10n/4 and n=1,0 ,−1 ,−2,−3 �solid lines, in order of decreasing
slope�. The QCP itself ��=0� is the bottom solid line. Also shown
�dotted� is a 1CK model chosen such that TK

1CK=TK
c , which de-

scribes the QCP; and a single-spin 2CK model with TK=TK
c

�dashed�. Near the transition �imp�T� diverges as TK
c �imp�T�

�x ln�TK /T�, with amplitude x�TK /TK
c as shown in the inset �see

also text�.

FIG. 16. 
	D1��� vs � /	, varying Ẽ�=Jc�−J� as the transition

is approached from the �+� parity 2CK phase: Ẽ�=−�TK
c with �

=10n/2 and n=+4→−4 �a→ i, respectively�. The QCP spectrum
��=0� is indistinguishable from case �i�. Inset: QCP scaling spec-
trum vs � /TK

c �solid line, in practice coinciding with all spectra for
��10−2�. The QCP spectrum is seen to be the scaling spectrum
1
2
	D1CK��� �dashed line� for a single-channel Anderson impurity
model. The dotted line shows the distinct scaling spectrum of a
single-spin 2CK model �onto which cases �a�–�c� scale	.
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While the arguments above apply to �=0 �and as such the
CFP�, one naturally expects the frequency dependence of the
Kondo resonance in 
	D1��� at the QCP to be that of
1
2
	D1CK���. That this is so is demonstrated in the inset to
Fig. 16. The scaling spectrum 1

2
	D1CK��� for the Anderson
model �as a function of � /TK

1CK� is shown as a dashed line,
and compared to 
	D1��� vs � /TK

c for the full TQD model
at the QCP �solid line�; the two coincide perfectly. In par-
ticular, the low-frequency spectral behavior ���� /TK

c 1� at
the transition is thus of quadratic Fermi liquid form,1


	D1��� �
1

2
�1 − a���/TK

c �2	 , �35�

with a� a constant of order unity. This is of course in marked
contrast to the behavior arising deep in either of the 2CK
phases �Sec. III B�. The scaling spectrum in that case is also
shown in Fig. 16 �inset, dotted line� and instead exhibits the
characteristic square-root frequency dependence of Eq. �27�.

Cases �a�–�c� in Fig. 16 are relatively deep in the

�+�-parity 2CK phase ��Ẽ���10TK
c �. Their dynamics are thus

in essence those of the single-spin 2CK model discussed in
Sec. III B: when scaled in terms of their Kondo scale TK, the
spectra all “collapse” onto the 2CK scaling spectrum shown
in the inset �dotted�, departure from such occurring only by

nonuniversal scales ���Ẽ�� �where a subsidiary peak arises,
see main figure�. Close to the transition by contrast—

exemplified by case �i� in Fig. 16 ��Ẽ��=10−2TK
c �—the single-

particle dynamics are indistinguishable from that of the QCP,
as is physically natural. Equally naturally, spectra �d�–�h� do
not conform to either limiting form �QCP or 2CK�, but in-
stead represent crossover behavior between the two.

Finally, we consider the T=0 local dynamic susceptibility
for dot 1 in the vicinity of the transition. Fig. 17 shows

TK
c �1��� vs � /TK

c , varying Ẽ�=Jc�−J� on approaching the
transition from the �−�-parity 2CK phase J��Jc�, according

to Ẽ�=�TK
c with �=10n/2 and n=+4→−4. The cases n

=2,3 ,4 �with Ẽ��10TK
c � are quite deep in the 2CK phase

�where the TK scale is roughly constant, see Fig. 14�; so they
are essentially equivalent to the 2CK scaling curves of Fig. 9
�inset�.

As the transition is approached however, the height of the
�→0 plateau in Fig. 17 is seen steadily to diminish; the
behavior found being of form TK

c �1��=0��TK /TK
c , with the

Kondo scale TK→0. This is readily understood: as men-
tioned in Sec. III B it is known85,91 that at the 2CK FP, �1�0�
plateaus at a constant, itself proportional to the slope of the
low-temperature log divergence of �imp�T�; and in Fig. 15 we
showed the latter to vanish �TK→0. Hence �1�0�=0 at the
transition itself. As expected from the nature of the QCP, the
leading low-� dependence of �1��� is then the Fermi liquid
behavior characteristic of the single-channel Anderson
model,1,90 �1�����, shown in Fig. 17 �Ref. 92� �dashed
line�; and �1��� is also seen to contain an absorption cen-
tered on �=TK

c �
TK
1CK�, likewise characteristic of the Ander-

son model.1,90

The inset to Fig. 17 shows X1���
=�1��� / �2��Re��S1

z ;S1
z���=0	2� vs � /TK

c at the transition it-

self. For the single-channel Anderson model, the �→0 be-
havior of X1��� is given exactly by the Korringa-Shiba
relation1,90 X1��=0�=1; seen from the figure to be well sat-
isfied in practice �to within a few %�, again confirming the
physical picture of the CFP discussed in Sec. IV A.

V. REDUCED MODEL FOR THE TRANSITION

In the preceding sections, the effective low-energy model
Eq. �13� �or Eq. �32�	 has been important in understanding
the behavior of the full TQD system in the vicinity of the
QPT. We have also performed direct NRG calculations on
the effective low-energy model itself, varying independently

the bare parameters JA, JB, Jmix, and E� �or Ẽ��; and now
comment briefly on the results of such. Specifically, we here
consider explicitly the effective model with JA=0=JB, which
we have confirmed describes the same physics as arises with
generically nonzero JA or JB �reflecting the fact that the key
element in the effective Hamiltonian Eq. �13� is the pseu-
dospin raising/lowering term, Hmix below, which in switch-
ing the parity of the TQD states effectively drives the QPT�.

We thus consider the reduced model Hred=H0+Hmix
+Hmag, with H0 the Hamiltonian for the leads and

Hmix = Jmix�T̂+ + T̂−�Ŝ · �ŝL0 − ŝR0� , �36a�

Hmag = Ẽ�T̂z. �36b�

The underlying FPs of Hred are readily inferred. The SU�2�
�SU�2� FP corresponds to Jmix=0= Ẽ� in Eq. �36�, and as
such to both a free spin and a free pseudospin; this of course
is the high-temperature FP of Hred, generating, e.g., the asso-
ciated ln 4 entropy. Two LM FPs also arise, corresponding
formally to Jmix=0 in Eq. �36� �and hence a free spin�, and

Ẽ�→ ��. For Ẽ�→+�, the Tz=− 1
2 pseudospin component

FIG. 17. Local dynamic susceptibility TK
c �1��� vs � /TK

c , vary-

ing Ẽ�=Jc�−J� on approaching the transition from the �−�-parity

2CK phase: Ẽ�=�TK
c with �=10n/2 and n=+4→−4. TK

c �1�0� van-
ishes as the transition is approached. The dashed line, TK

c �1���
��, shows the low-� Fermi liquid behavior of the single-channel
Anderson model arising at the QCP ��=0�. Inset: X1���
=�1��� / �2��Re��S1

z ;S1
z���=0	2� vs � /TK

c at the transition ��=0�,
showing recovery of the Korringa-Shiba relation X1��=0�=1.

TWO-CHANNEL KONDO PHASES AND FRUSTRATION-… PHYSICAL REVIEW B 81, 075126 �2010�

075126-15



�i.e., the �−�-parity TQD doublet� is frozen out, and we des-

ignate this as the “LM�−�” FP; while for Ẽ�→−� the Tz=
+ 1

2 component is frozen out, corresponding to a LM�+� FP.

The critical FP arises for Ẽ�=0. In this case �see Sec.
IV A�, a trivial rotation of the pseudospin axes gives the

QCP Hamiltonian Hred
QCP=H0+2JmixT̂zŜ · �ŝL0− ŝR0�, with the

quantum number Tz conserved and the Hilbert space thus
separable into disjoint Tz= �

1
2 sectors. As discussed in Sec.

IV A, the CFP itself corresponds to the spin being quenched
in a one-channel fashion by coupling to the L lead in the
Tz=+ 1

2 sector and to the R lead for Tz=− 1
2 . More formally, on

writing Hred
QCP=H0+2T̂zŜ · �Jmix

L ŝL0−Jmix
R ŝR0�—with Jmix

L =Jmix
R

=Jmix�0 in the ‘bare’ Hred
QCP—the CFP corresponds to Jmix

L

→� and Jmix
R =0 in the Tz=+ 1

2 sector, with Jmix
L =0 and Jmix

R

→� for Tz=− 1
2 .

Finally, for Ẽ��0�Jmix, the higher lying component of
the pseudospin is naturally frozen out on sufficiently low-

energy scales T �Ẽ��. Virtual excitations to the upper pseu-
dospin sector still arise, however; and treating the mixing

term Eq. �36a� perturbatively �strictly valid for large �Ẽ���
gives Hred

eff =H0+Hhyb
eff , with

Hhyb
eff = � Jmix

2

2E�
�Ŝ · �ŝL0 + ŝR0� . �37�

This is a model of 2CK form in the reduced Hilbert space of

the lowest pseudospin component ��+� parity for Ẽ��0 and

�−�-parity for Ẽ��0	, for which the ultimate stable FP is of
course the infrared 2CK FP.

The overall low-energy FP structure of the reduced model
is thus indeed that of the full TQD model �we discuss its RG
flow diagram below�. On studying Eq. �36� directly with

NRG the transition occurs as expected at Ẽ�=0, and the
above FPs are indeed observed, e.g., in the T dependence of
thermodynamics.

Fig. 18 shows the resultant 2CK scale TK /D vs Ẽ� /D for
systems with common �Jmix=0.075. TK is determined in the
usual way from the entropy, and found to be nonzero for any
Ẽ��0 �Fig. 18�; and we identify TK

c ��exp�−1 /�Jmix�	 as the
crossover scale from the SU�2��SU�2� FP to the CFP. The
inset to Fig. 18 shows TK /D vs �Ẽ�� /TK

c on logarithmic axes.
Just like Fig. 14 for the full TQD model, the point Ẽ�=TK

c

can be seen to separate two distinct regimes. For �Ẽ���TK
c ,

systems may be considered “deep” in the 2CK phase �which
situation constitutes the majority of the main panel of Fig.
18, and indeed the majority of the parameter space of Eq.
�36�	. For Ẽ�TK

c by contrast, systems flow close to the
CFP, and are “near” the transition. The vanishing TK scale
associated with the transition is found to be characterized by
a power-law decay TK��Ẽ��� with �=2, as found in the full
TQD model �Sec. IV C�. We also add that since the reduced
model Eq. �36� lacks a direct coupling of form Ŝ · �ŝL0+ ŝR0�
correlated to the pseudospin �cf. Eq. �13��, the variation in TK

is symmetric in Ẽ�; as evident in Fig. 18.
A schematic illustration of the RG flow is given in Fig.

19, in the �Ẽ� ,Jmix� plane. The FPs are indicated by circles,
the arrows representing RG flow between them. At the high-
est temperatures, the system is always described by a free
spin and a free pseudospin �the SU�2��SU�2� FP, Jmix

= Ẽ�=0 in Eq. �36�	.
Considering now the case of Jmix=0, the spin always re-

mains free; but the upper pseudospin component is frozen

out for any Ẽ��0, whence as T→0 the system is described

by either a �+� or �−� parity LM FP. By contrast, for Ẽ�=0,
any Jmix�0 drives the system to the CFP as T→0. In the

general case where �Ẽ���0 and Jmix�0, the system always
flows ultimately to a 2CK FP �the parity of which depends on
which component of the pseudospin lies lowest, i.e., whether

Ẽ��0 or �0�. In this case RG flow first approaches the LM

FPs if �Ẽ���TK
c , or the CFP for �Ẽ��TK

c , before finally
flowing to the appropriate stable 2CK FP.

And as evident from the results of Sec. IV �e.g., Fig. 13�,
the RG flows depicted schematically in Fig. 19 are just those
arising at low-energies in the full TQD model, in the vicinity
of, and at, the quantum phase transition.

FIG. 18. Evolution of the 2CK scale for the reduced model Eq.

�36�: TK /D vs Ẽ� /D �with D the conduction bandwidth�, for fixed

�Jmix=0.075. Inset: TK /D vs �Ẽ�� /TK
c on logarithmic axes, with

TK��Ẽ��2 on approaching the transition.

2CK (+) 2CK (−)

LM (−)LM (+)
E

mix

∆

J

SU(2) x SU(2)

CFP

~

FIG. 19. Schematic illustration of RG flow between the FPs
�circles� of the reduced model. See text for discussion.
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VI. CONCLUSIONS

We have studied in this paper what is arguably the sim-
plest two-channel model in which to understand the conse-
quences of local frustration arising from internal degrees of
freedom: a triple quantum dot ring, with dots mutually
coupled by antiferromagnetic exchange interactions, and
tunnel-coupled symmetrically to two metallic leads. While
important aspects of the general model have been considered
before,18,34 the underlying physics is found to be even richer
than hitherto uncovered.

Two distinct 2CK phases arise due to the mirror symmetry
in the problem, each displaying classic non-Fermi-liquid
properties of the 2CK fixed point below a characteristic two-
channel Kondo scale. But although two-channel Kondo
physics predominates in the underlying parameter space, the
parity-distinct nature of the 2CK phases means that a quan-
tum phase transition between them occurs. Driven by vary-
ing the interdot exchange couplings, occurring at the point of
inherent magnetic frustration, and characterized by a non-
trivial quantum critical point which we have explicitly iden-
tified and analyzed, the transition provides a striking ex-
ample of the subtle interplay between internal spin and
orbital degrees of freedom.
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APPENDIX

Here we specify the parity operator P̂i,j which exchanges
the labels i and j for an arbitrary pair of orbitals i and j. First
we transform canonically to even �e� and odd �o� orbitals,

ce�
† =

1
�2

�ci�
† + cj�

† � , �A.1a�

co�
† =

1
�2

�ci�
† − cj�

† � . �A.1b�

Exchanging i↔ j clearly has no effect on ce�
† , but co�

† ↔
−co�

† . With n̂o= n̂o↑+ n̂o↓ the odd-orbital number operator we
thus define

P̂i,j = 2�n̂o − 1�2 − 1. �A.2�

P̂i,j is self-adjoint and involutory �P̂i,j
2 =1� and hence has ei-

genvalues �1 only �specifically Pi,j =+1 for no=0,2 and
Pi,j =−1 for no=1�. From Eqs. �A.1� and �A.2�, it follows that

�P̂i,j,ce�
† 	 = 0, �A.3a�

�P̂i,j,co�
† � = 0, �A.3b�

and hence from Eqs. �A.1� and �A.3�

P̂i,jci�
† = cj�

† P̂i,j , �A.4a�

P̂i,jcj�
† = ci�

† P̂i,j , �A.4b�

showing that P̂i,j indeed permutes the i and j labels. Using
Eq. �A.1� in Eq. �A.2� it is straightforward �if lengthy� to
show that

P̂i,j = 2�Îi · Î j − Ŝi · Ŝ j� + �
i=�i,j�,�

1

2
n̂i��n̂i−� − 1�

+ �
�

�ci�
† cj� + H.c.��2 − n̂i − n̂j� +

1

2
, �A.5�

where Îi is an isospin operator �with components Îi
z= 1

2 �n̂i

−1� and Îi
+=ci↑

† ci↓
† and Îi

−= �Îi
+�†	.

If a Hamiltonian is invariant to the permutation i↔ j, then

�H , P̂i,j	=0, parity is conserved, and all states can thus be
classified according to it. The isolated trimer Hamiltonian
Htri �Eq. �1�	 is clearly invariant under interchange of the

1↔3 dot levels, P̂1,3. The full lead-coupled Hamiltonian is
by contrast invariant to simultaneous interchange of 1 and 3
labels and left and right leads, the larger �“overall L↔R”�
symmetry of H implying that the relevant involutory permu-
tation operator is

P̂L,R = P̂1,3�
k

P̂Lk,Rk, �A.6�

such that �H , P̂L,R	=0.
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