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Two-channel Kondo physics in odd impurity chains
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We study odd-membered chains of spin- 1
2 impurities, with each end connected to its own metallic lead.

For antiferromagnetic exchange coupling, universal two-channel Kondo (2CK) physics is shown to arise at
low energies. Two overscreening mechanisms are found to occur depending on coupling strength, with distinct
signatures in physical properties. For strong interimpurity coupling, a residual chain spin- 1

2 moment experiences
a renormalized effective coupling to the leads, while in the weak-coupling regime, Kondo coupling is mediated
via incipient single-channel Kondo singlet formation. We also investigate models in which the leads are tunnel-
coupled to the impurity chain, permitting variable dot filling under applied gate voltages. Effective low-energy
models for each regime of filling are derived, and for even fillings where the chain ground state is a spin singlet,
an orbital 2CK effect is found to be operative. Provided mirror symmetry is preserved, 2CK physics is shown to
be wholly robust to variable dot filling; in particular, the single-particle spectrum at the Fermi level, and hence
the low-temperature zero-bias conductance, is always pinned to half-unitarity. We derive a Friedel-Luttinger sum
rule and from it show that, in contrast to a Fermi liquid, the Luttinger integral is nonzero and determined solely
by the “excess” dot charge as controlled by gate voltage. The relevance of the work to real quantum dot devices,
where interlead charge-transfer processes fatal to 2CK physics are present, is also discussed. Physical arguments
and numerical renormalization-group techniques are used to obtain a detailed understanding of these problems.
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I. INTRODUCTION

Non-Fermi-liquid (NFL) behavior is famously realized in
the two-channel Kondo (2CK) model,1 in which a single
spin- 1

2 impurity is exchange-coupled to two equivalent but
independent metallic conduction bands. Its fascination for
theorists is evident in the wide range of techniques applied
to the model, including notably the Bethe ansatz,2–6 numerical
renormalization group,6–10 and conformal field theory10–13 (for
a review, see Ref. 14). Such methods have elucidated key
aspects of the NFL state arising from “overscreening” of
the impurity spin below the low-energy 2CK scale,1 T 2CK

K ,
including exotic physical properties such as a residual entropy
of 1

2 ln(2), and a logarithmically divergent low-temperature
magnetic susceptibility, which are symptomatic of the frus-
tration inherent when two conduction channels compete to
screen the impurity local moment.14 NFL scaling of the
conductance has also been predicted theoretically13–17 and
measured experimentally18 in quantum dots, with its square-
root temperature dependence being a characteristic signature
of the 2CK phase.

This is all of course in marked contrast to standard Fermi
liquid (FL) behavior,19 arising, for example, in the single-
channel spin- 1

2 Kondo or Anderson models19 (realized in
practice in, e.g., ultrasmall quantum dots20,21). Here, the dot
spin is completely screened by a single bath of conduction
electrons. The impurity entropy is in consequence quenched
on the lowest energy scales, and the susceptibility is constant.19

Such systems are characterised by a unitarity zero-bias
conductance, with a quadratic temperature dependence at low
energies.22

But the NFL physics of the 2CK model is delicate:
finite channel asymmetry and/or interchannel charge transfer
ultimately drive any real system out of the NFL regime11,14

to a FL ground state. The exquisite tunability of quantum dot
devices23 allows for the manipulation of such perturbations;
indeed, couplings can be fine-tuned via application of gate
voltages to effectively eliminate channel asymmetry. However,
tunnel coupling in such systems must result in some degree of
charge transfer between the metallic “leads.” This is of course
responsible for the predominance of single-channel Kondo
physics in real quantum dot systems.

Suppressing interchannel charge transfer allows for the
emergence of 2CK physics at intermediate temperatures and
energies, although the instability of the 2CK fixed point to
charge transfer means that an incipient NFL state forming
at T ∼ T 2CK

K is subsequently destroyed below a FL crossover
scale TFL. Observation of NFL behavior at higher temperatures
thus depends on a clear separation of scales, TFL � T 2CK

K .
This was achieved recently18 through use of an interacting
lead tuned to the Coulomb blockade regime, and to date
it is the only unambiguous experimental demonstration of
the 2CK effect. Alternatively, sequential tunneling through
several coupled dots should suppress charge transfer between
leads,24 and this could be exploited to access 2CK physics,
although the interplay between spin and orbital degrees of
freedom in coupled quantum dot systems can also generate
new physics, as is well known both theoretically24–46 and
experimentally.18,47–56

In light of the above, we consider here odd-membered
coupled quantum dot chains (each end of which is connected to
its own metallic lead), and we demonstrate that 2CK physics
is indeed generally accessible in these systems. In models
in which the couplings are of pure exchange type, we show
that the low-energy behavior is described by the channel-
asymmetric two-channel Kondo model,14 with pristine 2CK
physics surviving down to the lowest energy scales in the
mirror-symmetric systems of most interest. Such models are
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considered in Sec. II, where analytic predictions are confirmed
and supplemented by use of Wilson’s numerical renormal-
ization group (NRG) technique57–61 (for a recent review, see
Ref. 59). In particular, universal scaling of thermodynamic and
dynamic properties is demonstrated for odd chains of different
length, and for systems with different coupling strengths.
While the underlying 2CK physics of such systems is shown
to be robust for finite antiferromagnetic exchange coupling,
we find that the mechanism of overscreening differs according
to whether the interimpurity coupling is strong or weak. In the
former case (Sec. II A), it is the single lowest spin- 1

2 state of
the chain that effectively couples to and is overscreened by
the leads, while for weak interimpurity coupling (Sec. II B),
two-channel Kondo coupling is mediated via incipient single-
channel Kondo singlets. Clear signatures of the latter are
evident in the behavior of the frequency-dependent t matrix,
the results for which are presented and analyzed.

To investigate conductance across two-channel coupled
quantum dot chains, we study in Sec. III a related class of
models in which the terminal impurities are Anderson-like
quantum levels, tunnel-coupled to their respective metallic
leads (although with interlead charge transfer still precluded by
interimpurity exchange couplings). In the mirror-symmetric
systems considered, we derive effective low-energy 2CK
models valid for each regime of electron filling. Even-
occupation filling regimes—where the chain ground state is
a spin-singlet—are found in particular to exhibit an orbital
2CK effect, with spin playing the role of a channel index. As a
consequence, 2CK physics is found to be robust throughout all
regimes of electron-filling induced by changes in gate voltage.

Single-particle dynamics for such systems are then consid-
ered, and hence conductance (Sec. III C 1), the S matrix, and
associated phase shifts (Sec. III D), again highlighting the uni-
versality arising at low energies. It is found in particular that the
Fermi level value of the T = 0 single-particle spectrum—and
hence the zero-bias conductance—is pinned to a half-unitary
value, irrespective of electron-filling. A Friedel-Luttinger sum
rule62 is then derived in Sec. III E, relating the Fermi level value
of the spectrum to the “excess” charge due to the quantum dot
chain and the Luttinger integral.63,64 By virtue of the spectral
pinning, the sum rule relates directly the Luttinger integral
to the excess charge/dot filling, in contrast to a Fermi liquid,
where it is the Luttinger integral that is ubiquitously “pinned”
(to zero),63,64 and the dot filling then determines the value of
the spectrum at the Fermi level.19,65

Finally, in Sec. IV we consider briefly the applicability of
our findings to real coupled quantum dot devices. We argue
that the effective low-energy model describing such systems
is generically a 2CK model with both channel-asymmetry
and interlead cotunneling charge transfer. Via a suitable basis
transformation, one obtains a model in which charge transfer
between even and odd channels is eliminated, from which the
underlying behavior is readily understood in terms of that of a
pure channel-asymmetric 2CK model. The t matrix (and hence
spectrum) in a given physical channel is, however, related via
this transformation to a combination of t matrices in even
and odd channels, respectively. In the mirror-symmetric case
sought experimentally, this leads to the striking conclusion
that for sufficiently small but nonvanishing cotunneling charge
transfer, the crossover out of the NFL regime is not in fact

RL
J JJJ

JKL JKR

RL
JJ

JKL JKR

RL
JKL JKR

FIG. 1. Schematic illustration of odd-membered impurity chains,
each end of which is coupled to its own metallic lead.

apparent in conductance measurements, despite the ultimate
low-energy physics being that of a Fermi liquid.

II. 2CK HEISENBERG CHAINS

We consider a chain of Nc coupled spin- 1
2 impurities, each

end of which is also coupled to its own metallic lead, as
illustrated in Fig. 1. To investigate 2CK physics, we study
explicitly in this section a system of exchange-coupled spin- 1

2
impurities, where interlead charge transfer is eliminated from
the outset. For an impurity chain of length Nc, the full
Hamiltonian is thus HNc = HL + HNc

c + H
Nc

K . Here HL =∑
α,k,σ εka

†
αkσ aαkσ refers to the two equivalent noninteracting

metallic leads (α = L/R), and

HNc

c = J

Nc−1∑
i=1

Ŝi · Ŝi+1, (1a)

H
Nc

K = JKLŜ1 · ŝL0 + JKRŜNc
· ŝR0, (1b)

where Ŝi is a spin- 1
2 operator for impurity i, and ŝα0 is the

spin density of lead α = L(R) at impurity 1(Nc):

ŝα0 =
∑
σ,σ ′

f
†
α0σ σ σσ ′fα0σ ′ , (2a)

f
†
α0σ = 1√

N

∑
k

a
†
αkσ , (2b)

with σ the Pauli matrices and f
†
α0σ the creation operator for

the “0” orbital of the α = L/R Wilson chain (N → ∞ is the
number of orbitals or k states in the chain).

In the following, we focus on odd-Nc chains, with antifer-
romagnetic (AF) exchange couplings for both the intrachain
Heisenberg exchange, J > 0, and the Kondo exchanges,
JKα > 0. (We do not consider here even-Nc chains, where the
generic low-energy physics is quite different and in essence
that of the two-impurity Kondo model.) We also consider
both the channel symmetric case, JKR = JKL, as well as the
more general case in which channel asymmetry is present,
JKR �= JKL. The simplest member of the family, Nc = 1, is of
course the classic single-spin 2CK model,1,14 while variants of
the Nc = 3 trimer have also been considered previously.38–45

We show below that an effective single-spin 2CK model results
in all cases, from which universal 2CK physics is expected
on the lowest energy scales in the channel-symmetric case,
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although the mechanism by which the effective two-channel
coupling arises is rather different in the strong and weak
interimpurity coupling regimes.

A. Strong interimpurity coupling

We consider first the case in which the interimpurity ex-
change couplings J are sufficiently large that only the ground
state of the isolated spin chain is relevant in constructing
the effective low-energy model upon coupling to the leads.
As detailed in Sec. II B, this means in practice J � T 1CK

K,α ,
with T 1CK

K,α the scale for single-channel Kondo quenching of a
terminal spin to lead α, arising in the “uncoupled” J = 0 limit.
The lowest state of an AF-coupled odd-membered spin- 1

2 chain
is of course a spin doublet, the components of which we label
as |Nc; Sz = ± 1

2 〉. All other states are at least O(J/Nc) higher
in energy.

1. Effective 2CK model

To leading order in JKα , the low-energy model is then
obtained simply by projecting into the reduced Hilbert space
of the lowest doublet for a chain of length Nc, using

1̂Nc
=

∑
Sz

|Nc; Sz〉〈Nc; Sz|. (3)

The resultant Hamiltonian H
Nc

eff = 1̂Nc
HNc

c 1̂Nc
follows as

H
Nc

eff = 1
2JK 1̂Nc

(Ŝ1 + ŜNc
)1̂Nc

· (ŝL0 + ŝR0)

+ 1
2δK 1̂Nc

(Ŝ1 + ŜNc
)1̂Nc

· (ŝL0 − ŝR0), (4)

where JK = 1
2 (JKL + JKR) and δK = 1

2 (JKL − JKR), and we
use the symmetry 1̂Nc

Ŝ11̂Nc
= 1̂Nc

ŜNc
1̂Nc

.
In the absence of a magnetic field, ↑/↓ spin symmetry

implies P̂↑↓|Nc; Sz〉 = γ |Nc; −Sz〉, where P̂↑↓ permutes si-
multaneously all up and down spins, and γ = ±1 only since
P̂ 2

↑↓ = 1̂.45 Together with P̂↑↓Ŝz
i = −Ŝz

i P̂↑↓, it follows directly
that

〈Nc; Sz|Ŝz
1 + Ŝz

Nc
|Nc; Sz〉

= −〈Nc; −Sz|Ŝz
1 + Ŝz

Nc
|Nc; −Sz〉 ∝ Sz (5)

(as |Nc; Sz〉 is a spin doublet). Such matrix elements appear
in the z component of the contraction in Eq. (4), and by spin
isotropy an effective model of 2CK form results:

H
Nc

eff = J eff
K,Nc

Ŝ · (ŝL0 + ŝR0) + δeff
K,Nc

Ŝ · (ŝL0 − ŝR0), (6)

where Ŝ is a spin- 1
2 operator for the lowest chain dou-

blet, defined by Ŝz = ∑
Sz |Nc; Sz〉Sz〈Nc; Sz| and Ŝ± =

|Nc; ± 1
2 〉〈Nc; ∓ 1

2 |. The effective couplings are given by

J eff
K,Nc

= 〈
Nc; + 1

2

∣∣Ŝz
1 + Ŝz

Nc

∣∣Nc; + 1
2

〉
JK, (7a)

δeff
K,Nc

= 〈
Nc; + 1

2

∣∣Ŝz
1 + Ŝz

Nc

∣∣Nc; + 1
2

〉
δK. (7b)

Numerical evaluation of Eq. (7) for odd Nc yields an AF
effective coupling, J eff

K,Nc
> 0, which is renormalized with

respect to the bare coupling and diminishes as the chain length
increases, as shown in Table I.

Hence, for sufficiently low temperatures T � J/Nc, the
low-energy behavior of the system is equivalent to the single-
spin 2CK model.14 In the L/R mirror-symmetric case, JKL =

TABLE I. Effective couplings.

Nc J eff
K,Nc

/JK

1 1
3 2

3
5 0.51 . . .

7 0.42 . . .

JKR (δK = δeff
K = 0), the stable T = 0 fixed point (FP) is then

the infrared 2CK FP. The lowest spin- 1
2 state of the impurity

chain is thus overscreened by conduction electrons, giving rise
to a residual entropy of Simp = 1

2 ln(2) (kB = 1), a hallmark of
the NFL 2CK ground state.14 Overscreening sets in below a
characteristic scale T 2CK

K , given from perturbative scaling1 as

T 2CK
K ∼ J eff

K,Nc
exp

( − 1/ρJ eff
K,Nc

)
, (8)

where ρ = 1/(2D) is the lead density of states per orbital
(assumed to be uniform) and 2D is the bandwidth.

By contrast, when strict L/R mirror symmetry is broken
via distinct exchange couplings to the two leads, JKL �= JKR

(i.e., δK �= 0), the 2CK FP is destabilized in the full model
Eq. (1). This behavior is of course well known from the
single-spin 2CK model with channel anisotropy,1–3,10,14 where
the impurity local moment is fully screened by conduction
electrons in the more strongly coupled lead, and a Fermi liquid
ground state results. For δK > 0, under renormalization on
reduction of the temperature or energy scale, the system flows
to strong coupling (SC) with the left lead (JKL → ∞) while
the right lead decouples (JKR → 0).1–3,10,14 The stable T = 0
FP thus depends on the sign of δK , with “SC:L” describing
the lowest energy behavior for δK > 0 while “SC:R” is stable
for δK < 0. The mirror-symmetric case, δK = 0, is as such
the quantum critical point separating phases where a Kondo
singlet forms in either the L or R lead.

In the full model, effective single-channel Kondo screening
characteristic of flow to the Fermi liquid FP in channel-
asymmetric systems sets in below a characteristic scale, which
can likewise be obtained from perturbative scaling:1

T SC
K ∼ J>

K,Nc
exp(−1/ρJ>

K,Nc
), (9)

where J>
K,Nc

= J eff
K,Nc

+ |δeff
K,Nc

| is the effective coupling be-
tween the lowest chain doublet state and the more strongly
coupled lead.

2. NRG results: Symmetric case

The above picture indicates that in the mirror-symmetric
case, δK = 0, the lowest energy behavior for all odd chains
should be that of the single-spin 2CK model,14 but with
renormalized effective couplings [Eq. (7) and Table I] and
hence from Eq. (8) a reduced 2CK scale, T 2CK

K .
We now analyze the full model, Eq. (1), for odd Nc =

1,3,5,7 using Wilson’s NRG technique,57–59 employing a
complete basis set of the Wilson chain60 to calculate the full
density matrix.60,61 Calculations here are typically performed
using an NRG discretization parameter � = 3, retaining
the lowest Ns = 4000 states per iteration. We consider first
the impurity contribution58,59 to thermodynamics 〈	̂〉imp =
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FIG. 2. Entropy Simp(T )/ ln(2) vs T/D for chains of length Nc =
1,3,5,7 (solid, dotted, dashed, and dot-dashed lines, respectively)
in the large interimpurity coupling regime. Shown for ρJ = 0.15
and ρJK = 0.075 in the L/R-symmetric limit δK = 0. Inset: scaling
collapse onto the universal 2CK curve.

〈	̂〉 − 〈	̂〉0, with 〈	̂〉0 denoting a thermal average in the
absence of the impurity chain. We focus in particular on
the entropy, Simp(T ), and the uniform spin susceptibility,
χimp(T ) = 〈(Ŝz)2〉imp/T (here Ŝz refers to the spin of the entire
system), the temperature dependences of which provide clear
signatures of the underlying FP’s reached under renormaliza-
tion on progressive reduction of the temperature or energy
scale.58,59

Figure 2 shows representative NRG results for the T

dependence of the entropy, for odd chains with Nc = 1,3,5,7.
At high temperatures, the impurities are effectively uncoupled,
so the chain contribution to the entropy is Simp = Nc ln(2), as is
seen clearly from Fig. 2. On the scale of T ∼ J/Nc, all but the
lowest chain doublet are projected out, the entropy then drop-
ping as expected to ln(2) in all cases. Renormalization-group
(RG) flow to this local moment (LM) FP1,58 marks the regime
of validity of the effective single-spin 2CK model, Eq. (6). The
local moment is then overscreened1,14 by symmetric coupling
to the two leads on an exponentially small scale, T 2CK

K , the
T = 0 residual entropy in all cases being 1

2 ln(2). T 2CK
K itself

is determined in practice from Simp(T 2CK
K ) = 3

4 ln(2) (suitably
between the characteristic LM and 2CK FP values). The
exponential reduction of the 2CK scale with increasing chain
length (evident in Fig. 2) is expected from Eq. (8), which
depends on Nc through the effective coupling given in Table I.
The inset shows the data rescaled in terms of T/T 2CK

K . The
low-temperature behavior of all odd chains collapses to the
universal scaling curve for the single-spin 2CK model (i.e.,
the Nc = 1 case, solid line), likewise known from, e.g., the
Bethe ansatz solution,2–6 confirming the mapping of the full
model to Eq. (6).

The above FP structure and energy scales also naturally
show up in the magnetic susceptibility, as seen in Fig. 3. At
the highest temperatures, T χimp = 1

4Nc, as expected19,58 for
Nc free spins. Flow to the LM FP on the scale T ∼ J/Nc is
again clearly evident in the drop to T χimp = 1

4 , corresponding

FIG. 3. Spin susceptibility 4T χimp(T ) vs T/D for the same
parameters as Fig. 2. Inset: scaling collapse of χimp(T ) itself onto the
universal 2CK curve, with characteristic NFL form T 2CK

K χimp(T ) =
α ln(T 2CK

K /T ).

to the expected Curie law behavior. On the scale ∼T 2CK
K ,

the susceptibility drops to T χimp = 0, which remains its
T = 0 value. The inset shows T 2CK

K χimp vs T/T 2CK
K , showing

scaling collapse to the universal single-spin 2CK curve, and
demonstrating the characteristic NFL logarithmic divergence14

of the susceptibility χimp itself on approaching the 2CK FP.
We turn now to dynamics, in particular the low-energy

Kondo resonance embodied in the spectrum DρK (ω) ≡
DρK,α(ω) = −πρT Im[tα(ω)], where tα(ω) ≡ t(ω) is the t

matrix19 for the α = L/R lead (equivalent by symmetry for
δK = 0), and ρT = Nρ is the total lead density of states. Using
equation of motion techniques19,66 yields

πρT tα(ω) = π

4
ρJ 2

KαG̃αi(ω) (10)

with i = 1 for α = L and i = Nc for α = R, where

G̃αi(ω) = 〈〈
Ŝ−

i fα0↓ + Ŝz
i fα0↑; Ŝ+

i f
†
α0↓ + Ŝz

i f
†
α0↑

〉〉
ω

(11)

and 〈〈Â; B̂〉〉ω is the Fourier transform of the retarded
correlator 〈〈Â(t1); B̂(t2)〉〉 = −iθ (t1 − t2)〈{Â(t1),B̂(t2)}〉. The
correlator in Eq. (11) can be calculated directly within
NRG,59–61 hence enabling access to the spectrum DρK (ω).
However, an alternative expression for the t matrix can be
obtained in the spirit of Ref. 67, and in the wide flat-band case
considered here it is simply

πρT tα(ω) = −i

[
1 +

(
2

πρJKα

)2
Gα0(ω)

G̃αi(ω)

]−1

(12)

where Gα0(ω) = 〈〈fα0σ ; f †
α0σ 〉〉ω is the Green function for the

“0” orbital of the α = L/R Wilson chain.57 The quotient of
correlators in Eq. (12) is found to improve greatly numerical
accuracy, and is employed in the following.

Figure 4 shows the resultant spectrum DρK (ω) vs ω/D

for chains of length Nc = 1,3,5,7 with the same parameters
as Figs. 2 and 3 [noting that ρK (ω) = ρK (−ω) since the
model, Eq. (1), is particle-hole symmetric]. The low-energy
form of each spectrum naturally reflects RG flow in the
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FIG. 4. T = 0 spectrum DρK (ω) vs ω/D for the same parameters
as Fig. 2. Inset: vs ω/T 2CK

K , showing collapse to the scaling spectrum
for odd chains. Gray dotted line: low-|ω|/T 2CK

K � 1 asymptotic
behavior DρK (ω) = 1

2 [1 − b(|ω|/T 2CK
K )1/2]; gray dashed line: high-

|ω|/T 2CK
K � 1 scaling behavior, DρK (ω) = A/[ln2(|ω|/T 2CK

K ) + B].

vicinity of the 2CK FP, as studied also in a variety of
different models that exhibit 2CK behavior.13,42,45,68–71 In
particular, for all odd chains, a half-unitarity value is seen
to arise at the Fermi level, DρK (ω = 0) = 1

2 , and collapse
to the universal single-spin 2CK scaling spectrum is clearly
evident in the inset to Fig. 4. The leading low-frequency
asymptotic behavior is DρK (ω) = 1

2 [1 − b(|ω|/T 2CK
K )1/2] (in

marked contrast to the form [1 − a(|ω|/TK )2] characteristic19

of RG flow near a Fermi liquid FP), and with which the
numerics agree well for ω � T 2CK

K . At high frequencies
ω � T 2CK

K , in contrast, the leading asymptotic behavior of
the scaling spectrum is DρK (ω) = A/[ln2(|ω|/T 2CK

K ) + B],
which behavior is common to other models in which spin-flip
scattering processes are important at high energies,72 such as
the single-channel Anderson or Kondo models.

FIG. 5. Kondo temperature T 2CK
K /D vs 1/ρJK for chains of

length Nc = 1,3,5,7 (circles, squares, diamonds, and stars, respec-
tively, with lines as a guide to the eye) and common exchange coupling
ρJ = 0.15. Inset: scaling collapse to common linear form when
plotted vs 1/ρJ eff

K,Nc
[given by Eq. (7)].

Finally, we consider the evolution of the 2CK scale itself as
the impurity-lead coupling is varied in the mirror-symmetric
case, shown vs 1/ρJK in Fig. 5 for chains of length Nc =
1,3,5,7. An exponential dependence of the 2CK scale on
the impurity-lead coupling is expected from Eq. (8), and
seen clearly in the main panel. The differing slopes reflect
the renormalization of the bare Kondo coupling JK → J eff

K,Nc

with increasing impurity chain length (Table I), collapse to
common linear behavior being observed in the inset where
the 2CK scales are plotted vs 1/ρJ eff

K,Nc
, establishing thereby

quantitative agreement with Eqs. (7) and (8) and Table I, and
hence the mapping to the effective 2CK model, Eq. (6).

3. NRG results: Asymmetric case

We turn now to the channel-asymmetric case, JKL �= JKR

(i.e., δK �= 0). The effective model Eq. (6) should describe the
low-energy behavior of all odd chains, so the rich physics of
the asymmetric single-spin 2CK model1–3,10,14 is thus expected
for T � J/Nc. As discussed above, breaking L/R mirror
symmetry is a relevant perturbation10 to the 2CK FP, so FL
physics will arise generically on the lowest energy scales.
Indeed, in the limit of maximal asymmetry JK = δK , the right
lead is completely decoupled in Eq. (6); pristine single-channel
Kondo (1CK) screening by the left lead then results below a
single-channel scale T 1CK

K . For δK � T 1CK
K , however, RG flow

in the vicinity of the 2CK FP strongly affects the behavior at
higher temperatures and energies.1–3,10,14 This is indeed seen
in Fig. 6(a), where the entropy Simp(T ) vs T/D is shown
for a representative system with Nc = 3, ρJ = 0.25, and
ρJK = 0.125, varying ρδK = 10−1, 10−2, 10−3, 10−4, 10−5,
10−6, and 10−7 [lines (a)–(g)], successively approaching the
quantum critical point at the symmetric limit, δK = 0: line
(h). The scale T 1CK

K (for which ρJK = ρδK ) is ρT 1CK
K ≈ 10−3

here, and sets the scale for the crossover from “large” to
“small” channel asymmetry (ρδK � ρT 1CK

K and � ρT 1CK
K ,

respectively).
At the highest temperatures, the three impurity spins

are effectively free, yielding trivially a common entropy
Simp = 3 ln(2). As T is lowered, all but the lowest trimer
doublet state is projected out, heralding flow to the LM FP,
with characteristic1,58 entropy Simp = ln(2). For large channel
asymmetry [e.g., lines (a) and (b)], RG flow is then directly to
the SC:L FP: the impurity spin is fully screened1–3,10,14 by the
formation of a Kondo singlet with conduction electrons in the
left lead (δK > 0) below an effective single-channel Kondo
scale T SC

K , and hence Simp = 0 for T � T SC
K . The Kondo scale

itself is given by Eq. (9) in the large δK regime,74 with an
effective Kondo coupling J eff

K,Nc=3 = 2
3 (JK + |δK |) for Nc = 3

(see Table I).
In the case of smaller channel asymmetry, ρδK � ρT 1CK

K ,
RG flow to the stable Fermi liquid SC:L FP occurs via
the critical FP, which is of course the 2CK FP. The chain
spin- 1

2 associated with the LM FP is then fully screened in
a two-stage process [Fig. 6(a)]. All such systems flow first
to the 2CK FP on a common scale T 2CK

K , given by Eq. (8).
The entropy thus drops to Simp = 1

2 ln(2), symptomatic14 of
overscreening, before being quenched completely below a
scale T ∼ T � characterizing1–3,10,14 the flow to the SC:L FP
[with T ∗ defined in practice by Simp(T ∗) = 1

4 ln 2]. A clear

035119-5



MITCHELL, LOGAN, AND KRISHNAMURTHY PHYSICAL REVIEW B 84, 035119 (2011)

(A)

(B)

(C)

(D)

FIG. 6. (A) Entropy Simp(T )/ ln(2) vs T/D on progressively
approaching the transition, for Nc = 3. Shown for fixed ρJ = 0.25
and ρJK = 0.125, varying ρδK = 10−1, 10−2, 10−3, 10−4, 10−5,
10−6, and 10−7 [lines (a)–(g)], with the symmetric point ρδK = 0
shown as line (h). (B) Scaling collapse to the 1CK curve (circles) for
strong channel asymmetry, ρδK = 10−1 and 10−2, with Nc = 1,3,5,7.
(C) For small asymmetry (ρδK = 10−6 and 10−7), and Nc = 1,3,5,7.
Showing universality in the LM→2CK FP crossover, on rescaling in
terms of T/T 2CK

K , compared directly to the symmetric 2CK scaling
curve (circles). (D) Same data as (C), now rescaled in terms of T/T �,
showing universal crossover from the 2CK FP (Simp/ ln 2 = 1

2 ) to the
stable SC:L FP (Simp = 0).

Simp = 1
2 ln(2) plateau is thus seen for lines (d)–(g) in Fig. 6(a),

with T � diminishing rapidly as the transition is approached.
The evolution of T � on varying δK for different odd chains is
itself studied in Fig. 8 below, and the result in the small-|δK |
regime is a characteristic power-law decay,

T � δK→0±
∼ A|δK |ν, ν = 2 (13)

with exponent ν = 2 and common amplitudes A on approach-
ing the transition at δK = 0 from either side (as guaranteed by
symmetry). Equation (13) generalizes the known result2,3,14

for the channel-anisotropic single-spin 2CK model, and is
expected from the mapping of the full chain model [Eq. (1)]
onto the effective model, Eq. (6).

We now turn to the scaling behavior of the entropy for chains
of different length, as demonstrated by the three universal
curves given in panels (B)–(D) of Fig. 6. First, in Fig. 6(B) for
Nc = 1,3,5,7, we show strongly asymmetric systems (ρδK �
ρT 1CK

K ) with ρδK = 10−1 and 10−2. The data clearly collapse
to common scaling form when scaled in terms of T/T SC

K ,
indicative of universal one-stage quenching from the LM to
the SC:L FP. Results for the single-channel spin- 1

2 Kondo
model are also shown (circles), confirming that the crossover
is characterized by effective single-channel Kondo screening.

The situation is more subtle for weakly asymmetric systems
ρδK � ρT 1CK

K , where two-stage quenching occurs from the
LM FP, through the 2CK FP, to the fully quenched SC:L FP. As
now shown, each of these stages separately exhibit universal
scaling, in terms of the two distinct low-energy scales T 2CK

K

and T �, respectively. In Figs. 6(C) and 6(D) for Nc = 1,3,5,7,
systems close to the transition are shown. To determine the full

(A)

(B)

(C)

(D)

FIG. 7. (A) Spectra DρK,L(ω) (solid lines) and DρK,R(ω)
(dashed) vs ω/D on progressively approaching the transition for Nc =
3, using the same parameters as in Fig. 6. (B) Collapse of DρK,L(ω) to
the 1CK scaling spectrum (circles) in the strongly asymmetric limit,
ρδK = 10−1 and 10−2, for Nc = 1,3,5,7. The dotted line shows the
asymptotic low-|ω|/T SC

K FL behavior DρK,L(ω) = 1 − a(|ω|/T SC
K )2.

(C) For small asymmetry (ρδK = 10−6 and 10−7 for Nc = 1,3,5,7),
universal behavior arising on rescaling DρK,α(ω) for both α = L/R in
terms of ω/T 2CK

K , as compared with the symmetric 2CK scaling curve
(circles). The dotted line shows the asymptotic (T � � |ω| � T 2CK

K )
NFL behavior DρK,α(ω) = 1

2 [1 − b(|ω|/T 2CK
K )1/2]. (D) Same data

rescaled in terms of T/T �, showing the universal low-temperature
crossover for DρK,L(ω) (solid lines) and DρK,R(ω) ≡ 1 − DρK,L(ω)
(dashed). The T � � |ω| � T 2CK

K asymptotic behavior DρK,L(ω) =
1
2 [1 + c(|ω|/T �)−1/2] is shown as a dot-dashed line, while for |ω| �
T �, FL behavior results, DρK,L(ω) = 1 − d(|ω|/T �)2 (dotted line).

universal curves, it is of course essential to obtain good scale
separation of T 2CK

K and T �: here, T 2CK
K /T � > 108.

In Fig. 6(C), results are rescaled in terms of T/T 2CK
K .

Collapse to the universal scaling curve for the symmetric
single-spin 2CK model (shown separately, circles) is seen
clearly, the crossover from the LM FP (Simp = ln 2) to the 2CK
FP (Simp = 1

2 ln 2) being as such determined by the 2CK scale
T 2CK

K . By contrast, the universality of the crossover from the
unstable 2CK FP to the stable low-T SC:L FP with Simp = 0 is
shown in Fig. 6(D). Here, on rescaling in terms of T/T �, the
data collapse to a universal form controlled by the low-energy
scale T ∗, itself vanishing [Eq. (13)] as the quantum critical
point δK = 0 is approached.

The FP structure and energy scales naturally show up also
in dynamical quantities, such as the scattering t matrix, and
hence the spectra DρK,α(ω). These are considered in Fig. 7. In
panel (A), again for Nc = 3, we focus on DρK,L(ω) (solid
lines) and DρK,R(ω) (dashed) for systems with the same
parameters as Fig. 6(A). Results for δK < 0 are not shown,
the α = L and R spectra simply being exchanged under the
transformation δK ↔ −δK .

Nc = 3 chains with ρδK = 10−1 and 10−2 [strong channel-
asymmetry, lines (a) and (b)] show a characteristic resonance in
the left-channel spectrum, DρK,L(ω), on the scale |ω| ∼ T SC

K ,
with the Fermi level value in particular being DρK,L(0) = 1.
This is the single-channel Kondo resonance, as is physically
natural for these strongly channel-asymmetric cases because
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effective single-channel Kondo screening is operative,10 with
the behavior thus expected to be that of the single-channel
Kondo or Anderson models.19 In the particle-hole symmetric
limit of the latter, the Friedel sum rule65 guarantees satisfaction
of the unitarity limit [DρK,L(0) = 1], and in the scaling regime
|ω| � J/Nc, one expects the entire one-channel scaling spec-
trum to be recovered. This is considered in panel (B), where
results for Nc = 1,3,5,7 and ρδK = 10−1 and 10−2 are shown,
rescaled in terms of ω/T SC

K : essentially perfect agreement is
seen with the universal scaling spectrum for the single-channel
Kondo model (shown separately as circles). For T SC

K � |ω| �
J/Nc, the characteristic DρK,L(ω) ∼ A/[ln2(|ω|/T SC

K ) + B]
behavior typical of “high” energy spin-flip scattering72 arises,
while for |ω| � T SC

K , canonical Fermi liquid behavior,19

DρK,L(ω) = 1 − a(|ω|/T SC
K )2, occurs as expected.

Spectra for the right lead and channel, DρK,R(ω) [dashed
lines (a) and (b) of panel (A)], are similarly described by
the leading ∼ 1/ ln2(|ω|/T SC

K ) logarithms at high energies.
However, the upward renormalization of the effective Kondo
coupling to the right lead—and hence RG flow toward the
SC:R FP—is cut off at |ω| ∼ T SC

K , below which frequency the
impurity chain local moment becomes fully screened by strong
coupling to the left lead. Thus DρK,R(ω) = 0 for |ω| � T SC

K ,
as observed directly from the NRG results in panel (A).

We now turn to lines (e)–(g) of Fig. 7(A) for Nc = 3 systems
with much smaller channel asymmetry, ρδK � ρT 1CK

K . For
both α = L and R, a clear half-unitary plateau of DρK,α(ω) �
1
2 arises for T � � |ω| � T 2CK

K , indicative of RG flow near the
2CK FP. For |ω| ∼ T �, however, flow to the Fermi liquid SC:L
FP occurs, such that DρK,L(ω = 0) = 1 and DρK,R(ω = 0) =
0 are again satisfied. As was seen from the entropy (Fig. 6),
there are two universal scales in this regime associated with
the crossover from the LM FP to the 2CK FP [see panel (C)]
and from the 2CK FP to the SC:L FP [panel (D)].

In panel (C) of Fig. 7, results are shown for systems of chain
length Nc = 1,3,5,7 and small channel asymmetry, ρδK =
10−6 and 10−7. Each is rescaled in terms of ω/T 2CK

K , and
collapse to the universal symmetric 2CK curve (circles) is
seen in all cases—for both α = L and R spectra. In particular,
for |ω| � T 2CK

K the characteristic NFL behavior is obtained,
DρK,α(ω) = 1

2 [1 − b(|ω|/T 2CK
K )1/2] (dotted line).

Finally, panel (D) shows the same data, but rescaled now
in terms of |ω|/T �. Two universal spectra emerge: one for
DρK,L(ω) and one for DρK,R(ω). The two scaling spectra
are, however, found to be related simply by DρK,R(ω) =
1 − DρK,L(ω), so we need consider only DρK,L(ω) (solid
line). For ω � T �, the relevant L/R symmetry-breaking
operator dominates,10 driving RG flow away from the 2CK
FP. Since the scaling dimension of this operator10 is 1

2 ,
one expects DρK,L(ω) = 1

2 [1 + c(|ω|/T �)−1/2] (as indeed
found, dot-dashed line). By contrast, for |ω| � T �, irrelevant
operators10,58 affect the RG flow in the vicinity of the stable FL
FP, so one expects the leading low-|ω|/T � asymptotics to be
DρK,L(ω) = 1 − d(|ω|/T �)2 (dotted line). Good agreement
with the numerics is seen in both regimes and for both
α = L/R spectra in Fig. 7(D).

As the critical point is approached [|δK | → 0; lines (a)→(h)
in Fig. 7], the spectra fold progressively onto the 2CK spectrum
itself [line (h)] down to lower and lower frequencies. The scale

FIG. 8. Fermi liquid crossover temperature TFL/D vs ρδK for
chains of length Nc = 1,3,5,7 (circles, squares, diamonds, and
stars) and couplings ρJ = 0.25 and ρJK = 0.125. For large channel
asymmetry, TFL ≡ T SC

K : good agreement between the data and Eq. (9)
(dashed lines) is seen for each Nc in the regime |ρδK | � 0.025. The
inset shows the small asymmetry behavior on a log-log plot. Here
TFL ≡ T �, and the quadratic behavior of Eq. (13) is shown as the
solid lines, onto which data fall cleanly for ρ|δK | � 0.01.

T � describing flow away from the 2CK FP vanishes according
to Eq. (13), as is evident from the dynamics shown in Fig. 7 (or
the thermodynamics in Fig. 6). In Fig. 8, the evolution of the
low-energy scale as a function of channel asymmetry, ρδK , is
examined. Since T SC

K is the lowest energy scale of the problem
in the large-|δK | regime, while T � is the lowest scale for small
|δK |, we consider the generic crossover scale TFL in Fig. 8,
defined in practice from the entropy via Simp(TFL) = 1

4 ln(2),
which as such characterizes the flow to the ultimate stable
FL FP, and hence complete screening of the impurity spin.
TFL/D is shown versus ρδK for chains of length Nc = 1,3,5,7.
The dashed lines in the main panel show comparison to the
perturbative result for T SC

K given in Eq. (9) [with a prefactor
O(1) for each Nc adjusted to fit the numerics]. The inset shows
the same data on a log-log scale, demonstrating the quadratic
decay of T �, given by Eq. (13) in the small-|δK | regime (solid
lines).

B. Weak interimpurity coupling

The perturbative derivation of the effective 2CK model in
Sec. II A1 is valid for sufficiently large interimpurity exchange
couplings, in which regard we note that any bare energy scale
larger than the exponentially small universal scales T 2CK

K or
TFL may be considered “large.”

However, in the J = 0 limit, the physical behavior is clearly
very different. Here, each terminal spin- 1

2 impurity undergoes
the standard single-channel Kondo effect19 with its attached
α = L/R lead below a temperature T ∼ T 1CK

K,α , while the
remaining impurities remain free down to T = 0. This scale is
associated with the flow to the strong coupling (SC) FP,19 and
is given from perturbative scaling19 by

T 1CK
K,α ∼ D

√
ρJKα exp(−1/ρJKα). (14)
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FIG. 9. Schematic illustration for the Nc = 3 chain with small
interimpurity coupling J � T 1CK

K,α , as discussed in the text.

The question addressed in this section is as follows: what is the
physics for odd chains with small but finite AF interimpurity
coupling, J � T 1CK

K,α ?
A physically intuitive picture for the simplest Nc = 3 case

is depicted schematically in Fig. 9 (and discussed further in
Sec. II B 1 below). Impurity “1” forms a single-channel Kondo
singlet with the left lead, and impurity “3” likewise with
the right lead. A Fermi liquid description then applies, and
the remaining states of each lead act as an effective bath of
noninteracting electrons that participate in the screening of
impurity “2.” A residual AF exchange coupling, mediated via
the Kondo singlets, once again yields an effective 2CK model.

The above scenario is supported by the behavior of single-
channel systems involving side-coupled quantum dots.33–36

In the simplest example of a dot dimer, two-stage Kondo
screening is operative in the small interdot coupling regime:34

the dot connected to the lead undergoes a spin- 1
2 Kondo effect

on the scale TK,1, while residual AF coupling between the
remaining dot and the lead gives rise to a second Kondo effect
for T ∼ TK,2 (� TK,1), leading thereby to complete screening
of both dots on the lowest energy scales.34 Similar mechanisms
have been advanced to describe the low-energy behavior of an
asymmetric two-channel two-impurity Kondo model24 and a
triple quantum dot ring structure.43

In the present context of odd impurity chains coupled to
two leads, the most interesting behavior is expected in the
L/R-symmetric case. Here the effective coupling to the left
and right leads is also symmetric, and hence the 2CK FP must
describe the low-energy behavior of the system.

1. Effective 2CK model for Nc = 3

Before considering NRG calculations, we first derive the
effective 2CK model for the simplest Nc = 3 case, using
perturbative techniques and scaling arguments and exploiting
the Wilson chain representation57–59 (see Fig. 9) as natural
within an RG framework.

The Wilson chain for lead α = L/R is defined57–59 by
dividing the band up into logarithmic intervals, {±D�−n}
(n = 0,1,2, . . .), and then discretizing it by retaining only the
symmetric combination of states within each interval. This
Hamiltonian is then tridiagonalized to obtain a linear chain
form, with the impurity system coupled at one end.57–59 The
Nc = 3 Hamiltonian may thus be written in a dimensionless
form HN = H0 + H1,

H0 = JKLŜ1 · ŝL0 + JKRŜ3 · ŝR0,

H1 = J
(
Ŝ1 · Ŝ2 + Ŝ2 · Ŝ3

)
+

∑
α,σ

N−1∑
n=0

tn(f †
αnσ fα(n+1)σ + f

†
α(n+1)σ fαnσ ), (15)

where ŝα0 is given in Eq. (2) and the Wilson chain op-
erators f

†
αnσ are obtained recursively using the Lanczos

algorithm.57 The rescaled dimensionless couplings are given
byJKα = 2ρJKα/AN andJ = 2ρJ/AN [where AN = 1

2 (1 +
�−1)�−(N−1)/2]. For a flat-band lead density of states, the
tunnel-coupling between Wilson chain orbitals takes the
form57 tn = �(N−1)/2�−n/2ξn, with the ξn ≡ ξn(�) ∼ O(1).
The full Hamiltonian is then recovered in the N → ∞
limit57–59 via H = limN→∞{DANHN }.

We consider first the limit of strong impurity-lead coupling,
JKα � max(J ,tn), so that H0 in Eq. (15) favors the formation
of a pair of singlet states between the terminal impurities and
the “0” orbital of their attached lead. The ground state of H0

thus comprises a 1-“L0” singlet (we denote it by |s; L〉) and
a 3-“R1” singlet (denoted |s; R〉), as shown schematically in
Fig. 9.

H1 now acts perturbatively, and we project onto the lowest
state of H0 using the unity operator for the reduced Hilbert
space, 1̂s = |s; L〉|s; R〉〈s; R|〈s; L|. An effective Hamilto-
nian may be obtained using the Brillouin-Wigner perturba-
tion expansion,75 HN = E0 + H eff

I + H eff
II + H eff

III + · · ·. Here,
E0 = 1̂sH01̂s = − 3

4 (JKL + JKR) is merely a constant shift in
energy, while H eff

I = 1̂sH11̂s ≡ H̃L follows as

H̃L =
∑
σ,α

N−1∑
n=1

tn(f †
αnσ fα(n+1)σ + f

†
α(n+1)σ fαnσ ) (16)

and corresponds to a pair of free Wilson chains, with the
“0” orbital of each removed. The second-order term, H eff

II ,
contributes only potential scattering,19 here omitted for clarity.
An effective coupling between impurity “2” and the “L1” and
“R1” orbitals is generated only to third-order in H1, given75 by
H eff

III = 1̂sH1(E0 − H0)−1P̂H1(E0 − H0)−1P̂H11̂s with P̂ =
1̂ − 1̂s a projector. Combining this with Eq. (15), a rather
lengthy calculation yields

H eff
III = ρJ eff

KLŜ2 · ŝL1 + ρJ eff
KRŜ2 · ŝR1 (17)

(omitting RG irrelevant terms), with the effective coupling of
impurity “2” to the α = L/R lead given by

ρJ eff
Kα =

(
20t2

0J
9J 2

Kα

)
> 0. (18)

The effective model H eff
N = H̃L + H eff

III describes thereby the
residual AF coupling between impurity “2” and the “L1” and
“R1” orbitals of a pair of leads (with impurities “1” and “3”
and lead orbitals “L0” and “R0” removed); see Fig. 9. This is
a model of 2CK form.

The above analysis presupposes the existence of the local
singlet states |s; L〉 and |s; R〉. However, we note that for
J � T 1CK

K,α [as given by Eq. (14)], RG flow is expected near
a Fermi-liquid-type FP, comprising single-channel strong-
coupling states in each lead, with a free, disconnected local
moment on impurity “2” (and which “SC × SC × LM” FP is of
course stable only at the point J = 0). Renormalization of the
impurity-lead coupling JKα → J̃Kα on successive reduction of
the temperature and energy scales naturally results in incipient
formation of Kondo singlets between each terminal impurity
and its attached lead below T ∼ T 1CK

K,α for the α = L/R

channel, respectively. An effective 2CK model should then
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result via the mechanism described above, where the local
singlet states |s; L〉 and |s; R〉 are now Kondo singlets.

The central question then is as follows: how does Eq. (18)
flow under renormalization? Specifically, what is the effective
coupling ρJ̃ eff

Kα for T ∼ T 1CK
K,α ?

To answer this, recall first that the effective temperature57–59

within the RG framework is related to the iteration-number or
Wilson chain length, N , via T ∼ �−N/2. The operators for
the Wilson chain orbitals also scale with N . In particular,
operators for the “0” orbital of the Wilson chain scale
as57,58 fα0σ ∼ �−N/4. Thus JKα → J̃Kα ∼ �−N/2, since the
impurity-lead exchange coupling is associated with a pair
of “0” orbital fermionic operators. The key result is thus
that the renormalized impurity-lead coupling J̃Kα ∼ T 1CK

K,α

for T ∼ T 1CK
K,α —in accord with the physical expectation that

disruption of the α = L/R Kondo singlet costs an energy
O(T 1CK

K,α ). By contrast, the coupling between the impurities,J ,
is not associated with any chain operators, and hence does not
get renormalized with N . Further, as pointed out in Ref. 76,
once the “0” orbital of a Wilson chain has been frozen out
(e.g., by the formation of a Kondo singlet), the “1” orbital
operators then scale as fα1σ ∼ �−N/4. Thus the renormalized
tunnel-coupling t̃0 ∼ �−N/4, so that for T ∼ T 1CK

K,α , t̃2
0 /J̃Kα

remains O(1). From Eq. (18), the renormalized effective
Kondo coupling at T ∼ T 1CK

K,α can then be estimated to have
the functional dependence ρJ̃ eff

Kα ∼ J/T 1CK
K,α .

For simplicity, we focus now on the mirror-symmetric case,
where JKα ≡ JK and T 1CK

K,α ≡ T 1CK
K , from which one has the

effective low-energy Hamiltonian for Nc = 3,

H eff
Nc

= H̃L + ρJ̃ eff
K,Nc

Ŝ · (ŝL1 + ŝR1), (19)

with Ŝ ≡ Ŝ2 and the effective coupling

ρJ̃ eff
K,Nc

=
(

J

T 1CK
K

)
x(Nc) (20)

valid for T � T 1CK
K . Determination of the constant x(Nc) is

obviously beyond the scope of this analysis, although it can
be deduced directly from NRG calculations as demonstrated
in the next section.

2CK physics is thus expected for T ∼ T 2CK
K (� T 1CK

K ), as
given from perturbative scaling1 by

T 2CK
K ∼ T 1CK

K ρJ̃ eff
K,Nc

exp
( − 1/ρJ̃ eff

K,Nc

)
, (21)

where the physical origin of the prefactor T 1CK
K is simply that

the effective bandwidth of the problem is already reduced
to ∼T 1CK

K at the temperature T ∼ T 1CK
K , below which the

effective model, Eq. (19), is valid.

2. NRG results for odd chains

The physical picture for the Nc = 3 system is thus clear,
and we now turn to NRG results for odd chains of length Nc =
3,5,7 in the regime of weak coupling between the impurities.
For accurate numerics, we found it necessary to retain Ns =
4000, 6000, and 12 000 states per iteration for Nc = 3, 5,

and 7, since higher-energy chain states remain important down
to T ∼ J � T 1CK

K .
Figure 10(A) shows Simp(T ) versus T/D for the Nc = 3

case discussed explicitly above, for a common ρJK and with

ρJ = λ(T 1CK
K /D), where λ = 10−n/10 and n = 0,5,7,9,11,13

[lines (a)–(f)]. T 1CK
K was itself determined from a J = 0

calculation which, modulo a free spin on impurity 2, is
equivalent to two separate single-channel Kondo models with
the same JK . At high T , the trivial Simp = 3 ln(2) behavior
expected for three free spins- 1

2 arises in all cases. Line (a)
crosses directly to Simp = 1

2 ln(2) on the scale J = T 1CK
K ≈

T 2CK
K , characterizing flow to the 2CK FP. In contrast, lines

(b)–(f) flow first to the SC × SC × LM FP [Simp = ln(2)].
We also show for comparison SJ=0

imp (T ) = ln(2) + 2S1CK
imp (T )

(diamonds), where S1CK
imp (T ) is the entropy of a single-channel

Kondo model19 with the same Kondo coupling; SJ=0
imp (T ) thus

describes the entire temperature dependence of the entropy for
J = 0. Lines (c)–(f) follow this curve perfectly for T � T 2CK

K ,
as expected from the single-channel Kondo screening of
impurities “1” and “3”. An intermediate Simp = ln(2) plateau
is thus observed, the single-channel T 1CK

K remaining constant
while the two-channel scale T 2CK

K diminishes rapidly as J is
decreased. RG flow thus persists in the vicinity of the SC ×
SC × LM FP over an extended T range, but below T ∼ T 2CK

K

all systems are described by the 2CK FP, with residual entropy
Simp = 1

2 ln(2).
We now comment on the generic behavior expected for

impurity chains with Nc > 3, which is a physically natural
extension of the Nc = 3 case above. Following the “removal”
of the terminal impurities through the formation of single-
channel Kondo singlets for T ∼ T 1CK

K , the remaining odd
(Nc − 2) impurities form a residual spin- 1

2 on the scale T ∼ J

(�T 1CK
K ). This doublet state now feels an effective coupling

to the two leads via the mechanism described in Sec. II B 1,
but with a further renormalization of the effective Kondo
exchange, as expected from the discussion in Sec. II A in
the regime of large interimpurity coupling. Extension of the
above analysis for Nc = 3, which we do not give here, then
leads us to expect (as tested below, Fig. 12) that the form
Eq. (20) should hold for odd Nc > 3, with ratios x(Nc +
2)/x(Nc = 3) which are the same as those inferred from Table I
but with two sites excluded from the spin chain (reflecting
quenching of the terminal spins “1” and “Nc” to form Kondo
singlets), i.e., from Table I that x(Nc = 5) ≈ 2

3x(Nc = 3) and
x(Nc = 7) ≈ 0.51x(Nc = 3).

2CK physics is thus is expected for all odd chains in the
small interimpurity coupling regime below T 2CK

K , as given by
Eqs. (21) and (20). This is confirmed in Fig. 10(B), where we
consider chains of length Nc = 3,5,7, taking J = 1

2T 1CK
K as

an illustrative example. Again, at the highest temperatures
T � J , one obtains Simp = Nc ln(2). For sufficiently large
separation between T 1CK

K and J , one expects the entropy to
drop first to Simp = (Nc − 2) ln(2) on the scale T 1CK

K (due to
single-channel Kondo quenching19 of the terminal impurities),
followed by a further drop for T ∼ J to the LM value Simp =
ln(2), although in Fig. 10(B), T 1CK

K and J are comparable, so
no distinct (Nc − 2) ln(2) plateau arises. In all cases, however,
Simp = 1

2 ln(2) is seen below T 2CK
K , characteristic of flow to

the stable 2CK FP,14 with scales T 2CK
K that evidently diminish

with increasing Nc, as expected qualitatively from the above
discussion. Figure 10(C) shows the scaling curve obtained
when results are plotted versus T/T 2CK

K (with n = 9,11 chosen
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(A)

(B)

(C)

FIG. 10. (A) Simp(T )/ ln(2) vs T/D as the interimpurity coupling
is reduced, for the symmetric Nc = 3 case (ρδK = 0). Shown for
fixed ρJK = 0.15, varying ρJ = λ(T 1CK

K /D), where λ = 10−n/10 and
n = 0,5,7,9,11,13 [lines (a)–(f)], with T 1CK

K determined from a J =
0 calculation. Behavior for T � T 2CK

K is described by SJ=0
imp (T ) =

ln(2) + 2S1CK
imp (T ) (diamonds), with S1CK

imp (T ) for a single-channel
Kondo model with the same JK . (B) Comparison of behavior
for Nc = 3,5,7 (solid, dotted, and dashed lines) with J = 1

2 T 1CK
K .

(C) Results for Nc = 3,5,7 (with n = 9 and 11): scaling collapse to
the universal 2CK curve (circles) is seen in all cases.

to ensure good scale separation between T 2CK
K and T 1CK

K ). The
universal curve is precisely that of the standard 2CK model
(circles).

Dynamics are now considered briefly, Fig. 11(A) showing
the T = 0 DρK (ω) for Nc = 3 chains with the same parameters
as in Fig. 10(A). All systems show RG flow in the vicinity
of the Fermi-liquid-type SC × SC × LM FP (reflecting
single-channel Kondo screening of the terminal impurities),
and hence an incipient single-channel Kondo resonance19

in each channel. For comparison, we show Dρ1CK
K (ω) for a

standard single-channel Kondo model with the same Kondo
coupling (diamonds), which recovers perfectly the spectral
behavior for |ω| � T 2CK

K . In particular, for lines (d)–(f) in
the range T 2CK

K � |ω| � T 1CK
K , characteristic FL behavior19

DρK (ω) = 1 − a(|ω|/T 1CK
K )2 arises, and thus the unitarity

limit DρK (ω) = 1 is reached in this intermediate energy
window. For any finite J , T 2CK

K is, however, always finite, so
ultimately RG flow to the stable 2CK FP yields DρK (ω) = 1

2
for |ω| � T 2CK

K .
Figure 11(B) shows spectra for Nc = 3,5,7 chains with

common J = 1
2T 1CK

K , as in Fig. 10(B). These display the
same qualitative behavior as for Nc = 3, with a single-channel
Kondo resonance appearing at |ω| ∼ T 1CK

K , before crossing
over to the 2CK FP for |ω| ∼ T 2CK

K . Since T 2CK
K diminishes

with increasing chain length, while T 1CK
K remains fixed,

apparent FL behavior consequently persists down to lower
energies for the longer chains.

For Nc = 3,5,7 chains with the same couplings as in
Fig. 10(C) and Fig. 11(C) shows the spectrum arising when
results are shown versus ω/T 2CK

K : collapse to a single universal
scaling curve is seen clearly. One might naively expect to
obtain the 2CK scaling spectrum here, since in this regime an
effective 2CK model [Eq. (19)] describes the system. However,
this model is only valid after the single-channel Kondo effect

(A)

(B)

(C)

FIG. 11. (A) Spectra DρK (ω) vs ω/D as the interimpurity
coupling is reduced, for the symmetric Nc = 3 case (with the same
parameters as Fig. 10). Behavior at |ω| � T 2CK

K is described by
Dρ1CK

K (ω) (diamond points) for a single-channel Kondo model.
(B) Comparison of Nc = 3,5,7 (solid, dotted, dashed lines) with
J = 1

2 T 1CK
K . (C) Spectra vs ω/T 2CK

K for Nc = 3,5,7 with n = 9
and 11: universal scaling collapse is seen. For T 2CK

K � |ω| � T 1CK
K ,

the asymptotic behavior is DρK (ω) = 1 − A/[ln2(|ω|/T 2CK
K ) + B]

(gray dashed line), while for |ω| � T 2CK
K , NFL scaling is observed:

DρK (ω) = 1
2 [1 + b(|ω|/T 2CK

K )1/2] (gray dotted line). The entire curve
is described by DρK (ω) = 1 − Dρ2CK

K (ω) (circles), with ρ2CK
K (ω) the

scaling spectrum of the standard 2CK model.

has already taken place in each lead, conferring a phase shift
of π/2 to the conduction electrons.19 As a consequence,
the scaling spectrum in the small-J limit is DρK (ω) = 1 −
Dρ2CK

K (ω), with Dρ2CK
K (ω) the scaling spectrum of the regular

single-spin 2CK model. Comparison with the latter (circles)
confirms this directly.

Finally, in Fig. 12 we analyze the variation of the two-
channel Kondo scale as a function of the interimpurity coupling
strength, ρJ , and the chain length, Nc. The T 2CK

K /D in the

FIG. 12. Evolution of the two-channel Kondo scale: T 2CK
K /D vs

ρJ for symmetric chains of length Nc = 3,5,7 (squares, diamonds,
and stars), and Kondo coupling ρJK = 0.15 (with δK = 0). For large
interimpurity coupling, T 2CK

K is given by Eqs. (7) and (8) (indicated by
arrows). For each chain, the maximum value T 2CK

K ≈ T 1CK
K is obtained

for J ≈ 10T 1CK
K . For J < T 1CK

K , the Kondo scale diminishes rapidly,
as is seen also in the inset, where ln(T 2CK

K ) vs T 1CK
K /J is shown,

confirming Eqs. (20) and (21). The slopes yield x(Nc = 3) ≈ 1/6,
x(Nc = 5) ≈ 1/9, and x(Nc = 7) ≈ 1/12.
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FIG. 13. Schematic of the Nc = 3 trimer with impurities “1”
and “3” modeled as Anderson-like correlated levels, each tunnel-
coupled to both source (s) and drain (d) leads, with hybridizations �αγ

(where α = L/R and γ = s/d). The impurities are exchange-coupled
to eliminate L ↔ R charge-transfer processes that destroy 2CK
physics, but conductance through impurity 1 (3) in channel α = L (R)
can be measured.

large-J limit (indicated by arrows) are in accord with Eqs. (7)
and (8). However, as ρJ is decreased, T 2CK

K first increases
(reaching its maximum of T 2CK

K ≈ T 1CK
K for J ≈ 10T 1CK

K

in each case), then diminishes very rapidly for J � T 1CK
K .

The behavior for small interimpurity coupling is seen most
clearly in the inset, where ln(T 2CK

K /D) is shown versus
T 1CK

K /J . The linear behavior confirms Eqs. (20) and (21),
with the slopes yielding x(Nc = 3) ≈ 1/6, x(Nc = 5) ≈ 1/9,
and x(Nc = 7) ≈ 1/12, as is consistent with the expectation
discussed above.

III. GATE VOLTAGE EFFECTS AND CONDUCTANCE

Having analyzed in detail the Heisenberg chain model,
Eq. (1), we now consider a variant in which the terminal
impurities are treated as correlated levels (dots), tunnel-
coupled to their respective leads. Each lead α = L and R can
be “split” into source (s) and drain (d), allowing the con-
ductance through dot “1” (or “Nc”) to be measured; see
Fig. 13. The Hamiltonian we study is HNc = HL + HNc

c +
HNc

hyb, where the four equivalent noninteracting leads are given
by

HL =
∑

α = L/R

γ = s/d

∑
k,σ

εkc
†
αγ kσ cαγ kσ , (22)

and the impurity chain is described by

HNc

c = J

Nc−1∑
i=1

Ŝi · Ŝi+1

+U (n̂1↑n̂1↓ + n̂Nc↑n̂Nc↓) + ε(n̂1 + n̂Nc
), (23)

where n̂i = ∑
σ n̂iσ = ∑

σ d
†
iσ diσ is the number operator for

dot i = 1 or Nc, ε is its level energy, and U is its Coulomb
repulsion (charging energy). In a real quantum dot device, the
level energy is proportional to the gate voltage, ε ∝ Vg . The
leads and chain are coupled via

HNc

hyb =
∑

γ = s/d

k,σ

(
VLγ c

†
Lγ kσ d1σ + VRγ c

†
Rγ kσ dNcσ

+ H.c.
)
,

(24)

where Vαγ is the tunnel-coupling matrix element for the α =
L/R and γ = s/d lead. The hybridization strength follows as
�αγ = πρT V 2

αγ (with ρT = Nρ the total lead density of states
as before). Finally, a simple canonical transformation of the
lead orbitals, via

cαskσ = aαkσ cos(θα) + ãαkσ sin(θα),
(25)

cαdkσ = aαkσ sin(θα) − ãαkσ cos(θα),

with tan(θα) = Vαd/Vαs , yields an effective two-channel
model with

HL =
∑
α,k,σ

εka
†
αkσ aαkσ , (26a)

HNc

hyb =
∑
k,σ

(VLa
†
Lkσ d1σ + VRa

†
Rkσ dNcσ

+ H.c.), (26b)

where V 2
α = V 2

αs + V 2
αd , so that in particular for V 2

L = V 2
R ≡

V 2 (and hence �L = �R ≡ � = πρT V 2) the model is mirror-
symmetric. To investigate 2CK physics on the lowest energy
scales, this is the situation now considered. We also focus on
the simplest example of the Nc = 3 trimer, variants of which
have been studied recently in certain parameter regimes,38–45

including exchange-coupled chain42 and ring43,45 structures at
half-filling. As shown below, a physically intuitive perturbative
treatment of the model for different fillings yields effective
2CK models—in spin and orbital sectors—from which the
gate voltage dependence of the 2CK scale can be identified.

A. Effective low-energy models for Nc = 3

In the atomic limit (V = 0) of the isolated Nc = 3 trimer,
the number of chain electrons jumps discontinuously between
integer values N = n1 + n3 + 1 = 1 → 5 as the gate voltage
Vg ∝ ε is varied (recall that impurity “2” is a strict spin- 1

2 ).
On tunnel-coupling to the leads, this Coulomb-blockade (CB)
staircase is naturally smoothed into a continuous crossover.
Regimes of occupancy can still, however, be identified, and
sufficiently deep within the CB valleys, N will be approx-
imately integral. Here, a full O(V 2) Schrieffer-Wolff (SW)
transformation19,77 can be performed in the strongly correlated
regime of interest U � V , perturbatively eliminating virtual
excitations into high-energy manifolds with (N ± 1) chain
electrons.

In the atomic limit, the ground state in any givenN -electron
sector is a doublet, which we denote |N ; ± 1

2 〉. Projecting onto
the reduced (chain) Hilbert space of this doublet using the
unity operator

1̂N =
∑

γ=± 1
2

|N ; γ 〉〈N ; γ | (27)

yields an effective model Heff
N = HL + Heff

N ,II, where the
leading O(V 2) contribution arising from tunnel coupling to
the leads [Eq. (26b) with VL = VR and Nc = 3, denoted as
H′] is given by the SW transformation19,77

Heff
N ,II = 1̂NH′(E0 − HNc=3

c

)−1H′1̂N . (28)

Here E0 = 1̂NHNc=3
c 1̂N is the energy of the ground chain

doublet (and retardation has as usual been neglected19).
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In the following, we also exploit the particle-hole transfor-
mation

diσ → d
†
iσ , aαkσ → −a

†
α−kσ ,

(29)
Ŝ±

2 → −Ŝ∓
2 , Ŝz

2 → −Ŝz
2,

which yields directly N̂ → (6 − N̂ ). The full Hamiltonian
[parametrized byH ≡ H(ε) for given U , J , and V ] transforms
as H(ε) → H(−ε − U ) + (2U − 4ε). In general, the physical
behavior of H(ε) and H(−ε − U ) is equivalent, since the
constant shift (2U − 4ε) is irrelevant in the calculation of
observable quantities. Thus, the N = 1 ↔ 5 and N = 2 ↔ 4
sectors are related by the reflection about the particle-hole
symmetric point ε = − 1

2U . Together with the singly occupied
(N = 3)-electron case, three distinct regions of electron filling
must arise as a consequence. We now consider them in turn.

1. (N = 3)-electron regime

For −(U + 1
4J ) < ε < 1

4J , the atomic limit trimer ground
state is a singly occupied spin doublet45

|N = 3; Sz〉 = σ√
6

[
Ŝσ

2 (d†
1↑d

†
3↓ − d

†
3↑d

†
1↓)

− 2Ŝ−σ
2 d

†
1σ d

†
3σ

]
|vac〉, (30)

where Sz = σ
2 with σ = ± for spins ↑/↓, and Ŝσ

2 ≡ Ŝ±
2

is a spin raising (lowering) operator. |vac〉 = ∑
σ2

|−; σ2; −〉
defines the “vacuum” state of the local (chain) Hilbert space,
in which dots “1” and “3” are unoccupied, while “2” carries a
free spin- 1

2 .
Using Eq. (30) with Eqs. (27) and (28) leads eventually to

the effective low-energy model deep in the N = 3 CB valley,

Heff
N=3 = HL + J eff

K,N=3Ŝ · (ŝL0 + ŝR0), (31)

where we have omitted potential scattering contributions for
clarity, and Ŝ is a spin- 1

2 operator for the lowest chain
doublet, defined by Ŝz = ∑

Sz |N = 3; Sz〉Sz〈N = 3; Sz| and
Ŝ± = |N = 3; ± 1

2 〉〈N = 3; ∓ 1
2 |. Equation (31) is of 2CK

form, with effective Kondo coupling

ρJ eff
K,N=3 = 4�

6π

{
9

J + 4ε + 4U
+ 9

J − 4ε

− 1

5J + 4ε + 4U
− 1

5J − 4ε

}
, (32)

which is AF throughout the entire N ≈ 3 sector. In the
particle-hole symmetric Kondo limit in particular (ε = − 1

2U ),
one obtains ρJ eff

K,N=3 = 2
3ρJK to leading order in 1/U [with

ρJK = 8�/(πU ) the effective exchange coupling of a single
Anderson impurity19 tunnel-coupled to leads], which as such is
consistent with Eq. (7) and Table I for the Nc = 3 Heisenberg
chain studied in Sec. II A.

Two-channel Kondo physics thus arises in the N ≈ 3
regime, with T 2CK

K in particular given from Eqs. (8) and (32).

2. (N = 2,4)-electron regime: Orbital 2CK effect

As above, the (N = 2,4)-electron regimes are related by
the particle-hole transformation Eq. (29), so we consider
explicitly only the N = 4 case. The N = 4 regime is the

ground state of the free trimer over an ε interval of width J/2,
specifically −(U + 3

4J ) < ε < −(U + 1
4J ). The ground state

comprises a degenerate pair of spin singlets, since the spin- 1
2 on

impurity “2” can form a local singlet with either “1” or “3”
(the remaining site being doubly occupied). Since the states are
spin singlets, two-channel spin-Kondo physics will obviously
not arise here.

The N = 4 states are, however, doubly degenerate, so they
may be associated with an orbital pseudospin (T̂ ) and be
expressed as

|N = 4; T z〉 = σ√
2

[
(Ŝ−

2 d
†
(2+σ )↑ − Ŝ+

2 d
†
(2+σ )↓)

× d
†
(2−σ )↑d

†
(2−σ )↓)

]
|vac〉, (33)

with T z = σ
2 for σ = ±1. Projecting into this reduced Hilbert

space using the N = 4 unity operator Eq. (27) with the SW
transformation Eq. (28) yields an effective orbital 2CK model

Heff
N=4 = HL + J eff

K,N=4T̂ · (τ̂ 0,↑ + τ̂ 0,↓), (34)

with an effective exchange coupling

ρJ eff
K,N=4 = �

2π

{
1

ε + U − 3
4J

+ 2

ε + U + 3
4J

− 3

ε + U + 1
4J

}
, (35)

which is AF within the N ≈ 4 regime. The trimer orbital
pseudospin T̂ is a spin- 1

2 operator defined by T̂ z = ∑
T z |N =

4; T z〉T z〈N = 4; T z| and T̂ ± = |N = 4; ± 1
2 〉〈N = 4; ∓ 1

2 |.
Similarly, we may define a lead pseudospin τ̂ 0,σ for each
real spin σ = ↑/↓ as τ̂ z

0,σ = 1
2 (f †

L0σ fL0σ − f
†
R0σ fR0σ ) and

τ̂+
0,σ = f

†
L0σ fR0σ [with τ̂−

0,σ = (τ̂+
0,σ )†], where f

†
α0σ is given by

Eq. (2b).
The important “pseudospin-flip” processes embodied in

Eq. (34) correspond physically to moving an electron of given
real spin from one lead to the other, while simultaneously
switching the trimer orbital participating in the local singlet,
such that no net charge transfer occurs between leads. Real
spin σ = ↑/↓ here plays the role of the channel index, and
as such orbital 2CK physics is expected below T ∼ T 2CK

K , as
given by Eq. (8) using the effective coupling Eq. (35).

3. (N = 1,5)-electron regime

For ε < −(U + 3
4J ), the ground state in the atomic limit

lies in the (N = 5)-electron regime. It is a spin doublet, com-
prising the free spin-1/2 on “impurity” 2, with sites “1” and “3”
each doubly occupied: |N = 5; Sz〉 = Ŝσ

2 d
†
1↑d

†
1↓d

†
3↑d

†
3↓|vac〉.

Virtual excitations to the (N = 4)-electron sectors are pertur-
batively eliminated to O(V 2) by the SW transformation [Eq.
(28)], leading to

Heff
N=5 = HL + J eff

K,N=5Ŝ2 · (ŝL0 + ŝR0), (36)

with effective coupling

ρJ eff
K,N=5 = �

π

{
1

ε + U − 1
4J

− 1

ε + U + 3
4J

}
, (37)
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FIG. 14. Entropy Simp(T ) vs T/D for a trimer with tunnel-
coupled leads. Shown for ρJ = 0.075, U/π� = 10, and �/D =
10−2, varying ε/π� = −5, − 12.5, − 14.5 (solid, dashed, and dotted
lines), respectively, representing systems “deep” in the N = 3,4,5
CB valleys. Identical results are obtained for their particle-hole
transformed counterparts. Inset: the low-temperature scaling behavior
in terms of T/T 2CK

K , compared with the standard 2CK model (circles).

which is AF throughout the (N ≈ 5)-electron regime. Two-
channel spin-Kondo physics is thus again expected below T ∼
T 2CK

K [given via Eq. (8)].

B. Thermodynamics and scaling

The physical picture is clear: 2CK physics, whether of
spin or orbital character, is expected when sufficiently deep in
each region of electron filling. We confirm this directly using
NRG for the full trimer model in Fig. 14, where the entropy
Simp(T )/ ln(2) versus T/D is shown for fixed representative
ρJ , U/π�, and �/D, varying ε/π� for systems deep in the
(N = 3,4,5)-electron CB valleys.

In each case, the high-temperature T > U behavior is
simply that of two free orbitals and a free spin, giving
Simp = 5 ln(2). The LM FP is reached directly as T is lowered,
yielding Simp = ln(2); flow to the 2CK FP with characteristic14

Simp = 1
2 ln(2) follows below T ∼ T 2CK

K . Upon rescaling in
terms of T/T 2CK

K (see inset), the systems in each regime
of filling collapse to the universal 2CK curve (circles), thus
confirming the effective low-energy models Eqs. (31), (34),
and (36).

Figure 15 shows the evolution of the 2CK scale as the
level energy (ε ∝ Vg) is varied essentially continuously over
a wide range of ε/π�, for systems with the same ρJ , U/π�,
and �/D as in Fig. 14. NRG results (points) are compared
with the perturbative result for T 2CK

K given in Eq. (8), using
the effective Kondo couplings valid in the N = 3 regime
[Eq. (32)], the N = 2,4 regimes [Eq. (35)], and the N = 1,5
regimes [Eq. (37)]. Throughout the majority of parameter
space, the agreement is excellent; only at the boundary
between regimes does the perturbative treatment (naturally)
break down. Further, while the mechanism for overscreening
changes from spin-2CK (odd-N ) to orbital-2CK (even-N )
across these boundaries, T 2CK

K itself is found from NRG to

FIG. 15. Evolution of the two-channel Kondo scale T 2CK
K /D vs

ε/π� for ρJ = 0.075, U/π� = 10, and �/D = 10−2. NRG results
(points) are compared with Eq. (8) using effective Kondo couplings
valid in the N = 3 regime [Eq. (32), solid line], N = 2,4 regimes
[Eq. (35), dashed lines], and the N = 1,5 regimes [Eq. (37), dotted
lines].

vary smoothly, with the 2CK FP remaining the stable FP in all
cases (including for ε/π� < −14 and > +4 in Fig. 15, where
T 2CK

K diminishes rapidly but nonetheless remains finite).

C. Single-particle dynamics and conductance

We turn now to dynamics, focusing again on the spectrum
−πρT Im[tL(ω)] ≡ π�D1(ω), where D1(ω) = − 1

π
Im[G1(ω)]

with G1 the local retarded Green function for dot “1.” We
obtain it through the Dyson equation,

[G1(ω)]−1 = [
G0

1(ω)
]−1 − �1(ω), (38)

where G0
1(ω) is the noninteracting propagator (obtained for

U = 0 = J ), and �1(ω) = �R
1 (ω) − i�I

1 (ω) is the proper
electron self-energy. The noninteracting G0

1(ω) is simply19

[G0
1(ω)]−1 = ω+ − ε − �(ω) (with ω+ = ω + i0+), where

�(ω) = �R(ω) − i�I (ω), with �I (ω) = � (=πV 2ρT ) for all
|ω| < D inside the band, and �R(ω = 0) = 0.

An expression for �1(ω) is readily obtained using equation
of motion methods,19,66 and is given by

�1(ω) = [G1(ω)]−1
{
U 〈〈d1↑n̂1↓; d†

1↑〉〉ω
+ 1

2
J
〈〈
d1↓Ŝ−

2 + d1↑Ŝz
2; d†

1↑
〉〉

ω

}
, (39)

where the local Green function itself is G1(ω) = 〈〈d1σ ; d†
1σ 〉〉ω

[independent of spin σ in the absence of a magnetic field,
and with G1(ω) = G3(ω) in the mirror-symmetric systems
considered]. The self-energy can be calculated directly within
the density-matrix formulation of NRG59–61,67 via Eq. (39),
with G1(ω) then obtained from Eq. (38). In particular, the local
propagator for ω = 0 may be expressed simply as [G1(0)]−1 =
−ε∗ + i�∗ in terms of the renormalized single-particle level
ε∗ and renormalized hybridization �∗, given by

ε∗ = ε + �R
1 (0), (40a)
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 16. (a)–(c) T = 0 single-particle spectrum π�D1(ω) vs
ω/�. Shown for ρJ = 0.075, U/π� = 10, �/D = 10−2, with
ε/π� = −5 [N = 3, panel (a)], −12.5 [N ≈ 4, panel (b)], and
−14.5 [N ≈ 5, panel (c)]. (d) Collapse to the universal 2CK scaling
spectrum (circles). The scaling behavior of the proper self-energy,
plotted as �I

1 (ω)/� and [�R
1 (ω) + ε]/�, is shown in (e) and (f).

Asymptotic |ω| � T 2CK
K behavior described by π�D1(ω) = 1

2 [1 −
b(|ω|/T 2CK

K )1/2] (dashed line); �I
1 (ω)/� = 1 + 2b(|ω|/T 2CK

K )1/2

(dotted line); and [�R
1 (ω) + ε]/� = −sgn(ω)2b(|ω|/T 2CK

K )1/2 (dot-
dashed line).

�∗ = � + �I
1 (0) (40b)

in terms of the self-energy at ω = 0. The Fermi level value of
the single-particle spectrum then follows as

π�D1(ω = 0) = �

�∗
1

1 + (ε∗/�∗)2
. (41)

NRG results are considered in Fig. 16, panels (a)–(c),
showing π�D1(ω) versus ω/� for fillings N = 3,4,5, with
the same parameters as used in Fig. 14. First, we comment
briefly on the high-energy “Hubbard satellites” clearly visible
in D1(ω). As usual,19 these reflect simple one-electron addition
(ω > 0) or subtraction (ω < 0) from the isolated chain N -
electron ground states. Their locations, broadened somewhat
on coupling to the leads, are thus readily understood from
the V = 0 atomic limit ground states of Sec. III A. Given
their simplicity, we do not comment further on them, save
to note that in the N = 3 particle-hole symmetric example
of panel (a), D1(ω) = D1(−ω) as expected, and that for the
N = 5 example in panel (c), high-energy features are naturally
observed only for ω < 0, corresponding to excitations to
(N = 4)-electron states.

The most important feature of D1(ω) in Fig. 16 is of course
the low-energy Kondo resonance, associated with RG flow in
the vicinity of the stable 2CK FP. This is shown in panel (d),
where spectra from the N = 3,4,5 regimes are again shown,
but now rescaled in terms of ω/T 2CK

K . Collapse to a single
curve is seen, with the value at the Fermi level in particular
pinned to π�D1(ω = 0) = 1

2 , independent of ε. The low-ω

asymptotics of the scaling spectrum (dashed line) are found to
be

π�D1(ω)
|ω|

T 2CK
K

�1

∼
1

2

[
1 − b

(|ω|/T 2CK
K

)1/2]
, (42)

as consistent with behavior near the 2CK FP discussed in
connection with a variety of related two-channel models
(see, e.g., Refs. 13,42,45,68–71). Indeed, comparison to the
spectrum DρK (ω) for the 2CK model shows perfect agreement
in the low-energy scaling regime. This behavior is in striking
contrast to that arising19 in a FL phase for |ω| � TK :
π�D(ω) = sin2(δ) − a1(ω/TK ) − a2(ω/TK )2, describing the
approach to the Fermi level value, which itself depends on
the phase shift, δ. For the Anderson model,19 δ = π

2 nimp by
the Friedel sum rule,19,65 with nimp the “excess” charge in the
system induced by addition of the impurity. Thus, D(ω = 0)
depends on the dot filling—and hence on the level energy
ε—in a regular FL. The situation is clearly quite different in
the stable NFL phase obtained for the chain models studied
in the present work, and we shall consider the analog of the
Friedel sum rule in Sec. III E below.

Further insight is gained, however, from the electron self-
energy itself, the imaginary and real parts of which are shown,
respectively, in panels (e) and (f) of Fig. 16. To emphasize
the low-energy scaling of interest, we show the results for
N = 3,4,5 in terms of ω/T 2CK

K . The common asymptotic form
for |ω| � T 2CK

K is found to be

�I
1 (ω)/� ∼ 1 + 2b

(|ω|/T 2CK
K

)1/2
, (43a)

�R
1 (ω)/� ∼ −ε/� − sgn(ω)2b

(|ω|/T 2CK
K

)1/2
(43b)

[with b ∼ O(1) precisely the same constant as in Eq. (42)].
At the Fermi level in particular, �I

1 (ω = 0) = �, in contrast
to generic FL behavior �I (ω = 0) = 0. Indeed, extensive
examination of NRG results over the entire parameter space
confirms Eq. (43) generally—for any value of the bare
level energy ε, and for all interaction strengths U/� and
exchange couplings ρJ > 0. The renormalized level energy
and hybridization then follow from Eq. (40) as ε∗ = 0 and
�∗ = 2�. From Eq. (41), the spectrum at the Fermi level
is consequently pinned to a universal half-unitarity value,
π�D1(ω = 0) = 1

2 for all underlying bare parameters, as
illustrated in panel (d) of Fig. 16.

1. Conductance

To measure the differential conductance through dot “1,” a
bias voltage Vsd is applied across the L source and drain leads,
inducing a chemical potential difference μs − μd = eVsd . The
L/R symmetry required to observe 2CK physics on the lowest
energy scales also requires of course that the same bias be
applied across the R lead. Following Meir and Wingreen,78

the zero-bias conductance through dot “1” is given exactly by

Gc = 2e2

h
G0

∫ ∞

−∞
dω(−)

∂f (ω)

∂ω
π�D1(ω), (44)

where D1(ω) is the single-particle spectrum at equilibrium,
f (ω) = [eω/T + 1]−1, and � = �s + �d is the total hybridiza-
tion as before. The dimensionless G0 = 4�s�d/(�s + �d )2

embodies simply the relative coupling to source and drain
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leads, such that for �s = �d , G0 = 1 is maximal, while in the
extreme asymmetric limit �s � �d (where the drain acts as a
weak tunneling probe), G0 ∼ 4�d/�s � 1.

For T = 0, Eq. (44) reduces simply to

G0
c = 2e2

h
G0π�D1(ω = 0), (45)

and Eq. (42) then gives a universal zero-bias conductance
G0

c/G0 = e2/h at T = 0, obtained for any value of the gate
voltage Vg ∝ ε. This result is thus consistent with that known
for related models in the singly occupied Kondo limit, which
demonstrate 2CK behavior (see, e.g., Refs. 15–18,24,42,45).
For finite T , the Fermi level value of the spectrum has
the same low-T/T 2CK

K dependence45 as the T = 0 spectrum
does of ω/T 2CK

K [Eq. (42)], viz., π�D1(ω = 0; T ) ∼ 1
2 [1 −

b′(T/T 2CK
K )1/2]. Combined with Eq. (42), Eq. (44) is then

readily shown45 to yield Gc(T )/G0 ∼ e2

h
[1 − γ (T/T 2CK

K )1/2],
with γ = b′ + b

√
πη( 1

2 ) and
√

πη( 1
2 ) � 1.07, which T de-

pendence is also known to arise for the single-spin 2CK
model.13,16,17,70

Calculating the conductance at finite bias is of course a
different matter, and an exact (or even numerically exact)
treatment of the underlying nonequilibrium physics is a
formidable open problem. Here we merely make the sim-
plifying approximation that the self-energy does not depend
explicitly on the bias voltage,79 which leads to

Gc � e2

h
G0

∫ ∞

−∞
dω

(
−∂fs(ω)

∂ω
− ∂fd (ω)

∂ω

)
π�D1(ω),

(46)

where fγ (ω) = [e(ω−μγ )/T + 1]−1 is the Fermi function for
the γ = s/d lead. While this approximation is exact both for
Vsd = 0 and for all Vsd in the extreme asymmetric limit �s �
�d (Ref. 22) (conductance measured with a “perfect STM”),
in the standard case relevant to semiconductor quantum dot
devices, the leads are more symmetrically coupled. Here we

FIG. 17. Conductance Gc/(2G0e
2h−1) vs eVsd/� for systems

with the same parameters as Figs. 14 and 16. Inset: scaling collapse to
a universal curve with asymptotic eVsd � T 2CK

K behavior Gc(Vsd ) =
G0e

2h−1[1 − b(eVsd/T 2CK
K )1/2] (dot-dashed line).

consider a symmetric voltage split between the leads, μs/d =
± 1

2eVsd , for which Eq. (46) yields

Gc(Vsd ) � e2

h
G0π�

[
D1

(
ω = 1

2
eVsd

)

+ D1

(
ω = −1

2
eVsd

)]
(47)

for T = 0. This approximation thus allows us to work with
single-particle spectra determined at equilibrium, obtained
from a two-lead NRG calculation59–61,67 as before.

Figure 17 shows the resultant differential conductance
Gc/(2G0e

2h−1) versus eVsd/�, calculated using Eq. (47), for
the same N = 3,4,5 systems as in Figs. 14 and 16. Since the
conductance comprises a symmetrized combination of the total
dot spectrum, similar features to that in Fig. 16 are naturally
observed. Peaks at high bias originate from the Hubbard
satellites and correspond to simple single-electron sequential
tunneling processes. Importantly, the Kondo resonance also of
course shows up, with the zero-bias value of G0

c/G0 = e2/h

arising for eVsd � T 2CK
K in each case. Universal scaling of the

conductance in terms of eVsd/T 2CK
K is also shown in the inset,

demonstrating in particular the eVsd � T 2CK
K asymptotic form

Gc(Vsd )
eVsd

T 2CK
K

�1

∼
e2

h
G0

[
1 − b

(
eVsd/T 2CK

K

)1/2]
, (48)

which behavior is likewise known15,16,18 in the NFL regime of
the 2CK device constructed in Ref. 18.

D. Phase shifts and the S matrix

We now consider the leading low-ω behavior of the single-
particle scattering S matrix, S(ω) = e2iδ(ω), and associated
phase shift δ(ω) = δR(ω) + iδI (ω). The S matrix is given by65

S(ω) = 1 − 2i�G1(ω), (49a)
with �G1(ω) related to the tL(ω) matrix by

πρT tL(ω) = �G1(ω) (49b)

such that (as in Sec. III C) −πρT ImtL(ω) = π�D1(ω). It
follows from Eq. (49a) that

π�D1(ω) = 1
2 {1 − e−2δI (ω) cos[2δR(ω)]}, (50)

leading in particular to the limiting behavior

π�D1(ω) =
{

sin2[δR(ω)], δI (ω) → 0,

1
2 , δI (ω) → ∞.

(51)

To obtain S(ω), it is convenient to express the propagator
as G1(ω) = [A(ω) + iB(ω)]−1, where

A(ω) = ω − ε − �R
1 (ω), B(ω) = � + �I

1 (ω) (52)

such that A(0) = −ε∗ and B(0) = �∗ by Eq. (40) [and for
simplicity we take here the wide-band limit for the lead
density of states, �(ω) = −i�, which does not affect any of
the following results]. From Eq. (49a) it follows that

e2iδ(ω) = A(ω) − iB ′(ω)

A(ω) + iB(ω)
, (53)

where

B ′(ω) = � − �I
1 (ω). (54)
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First consider the familiar situation that would arise if
the system were a regular Fermi liquid, for which �I

1 (ω =
0) = 0. In this case, B(0) = B ′(0), and Eq. (53) yields δ(0) =
arg[G1(0)]. The S matrix is then unitary at the Fermi level,
|S(0)|2 = 1, and, since δI (0) = 0, the Fermi level spectrum
follows from Eq. (51) as π�D1(0) = sin2[δR(0)].

The situation is of course quite different for the present
problem. The low-frequency behavior of the self-energy is
given by Eqs. (43), and from which Eqs. (52)–(54) yield

e2iδ(ω) ∼ b

( |ω|
T 2CK

K

) 1
2

[1 − i sgn(ω)] (55)

as the leading asymptotic form for |ω|/T 2CK
K → 0, i.e.,

δR(ω) ∼ 1
2 arctan[−sgn(ω)], (56a)

e−2δI (ω) ∼
√

2b

( |ω|
T 2CK

K

) 1
2

. (56b)

In evident contrast to a FL, the imaginary part of the phase
shift thus diverges logarithmically as ω → 0,

δI (ω) ∼ − 1
4 ln

(|ω|/T 2CK
K

)
, (57)

the divergence itself reflecting [see Eq. (51)] the pinning of
the Fermi level spectrum to a half-unitary value (Sec. III C).
As a consequence, the S matrix vanishes at the Fermi level,
S(0) = 0, as is known for the single spin- 1

2 2CK model. 80–82

This does not of course mean that an electron sent in to scatter
off the dot is “absorbed” (the conductance being generically
nonzero), but rather that electrons scatter completely into
collective excitations, characteristic of the NFL state. 80,82

Notice also from Eq. (56a) that the real part of the phase
shift is discontinuous across the Fermi level, and that δR(ω =
0±) �= arg[G1(0)] (again in contrast to a FL). cos[2δR(0)] =
1/

√
2 is, however, continuous across ω = 0, and, combined

with Eq. (56b), Eq. (50) recovers precisely Eq. (42) for the
low-ω asymptotics of π�D1(ω).

E. Friedel-Luttinger sum rule

We now consider further implications of the pinning of the
T = 0 Fermi level spectrum, π�D1(0) = 1

2 , regardless of bare
model parameters and even when the dot occupancies change
drastically on varying the bare level energy ε. In particular,
we obtain an analog of the Friedel sum rule19,65—a Friedel-
Luttinger sum rule62—relating the Fermi level spectrum to the
“excess” charge induced by addition of the impurity chain,19

via the Luttinger integral.63,64

To this end, consider first the excess charge nimp, de-
fined as the difference in charge of the entire system with
and without the trimeric impurity chain,19 and also n′

imp,
defined correspondingly but with only the two terminal dots
(“1” and “3”) of the chain removed. Since impurity “2” is a
strict spin, it follows trivially that nimp = n′

imp + 1. Using, e.g.,
equation of motion methods,19,66 it is readily shown that

n′
imp = − 4

π
Im

∫ 0

−∞
dω G1(ω)

[
1 − ∂�(ω)

∂ω

]
(58)

(noting that sites “1” and “3” are equivalent by symmetry). In
practice, as expected physically, n′

imp differs negligibly from

the charge 2〈n̂1〉 on the terminal dots, to which it reduces
precisely in the wide flat-band limit where �(ω) = −i� is
constant.

Note next that Eq. (41) can be written as

π�D1(ω = 0) = (�/�∗) sin2(θ ) (59)

with θ = arctan(�∗/ε∗) (≡ arg[G1(0)]). Equivalently, using
arg[G1(ω = −∞)] = 0,

θ = Im
∫ 0

−∞
dω

∂

∂ω
ln G1(ω). (60)

But from the definition of the propagator, G1(ω) = [ω+ − ε −
�(ω) − �1(ω)]−1, it follows that

∂

∂ω
ln G1(ω)= − G1(ω)

[
1−∂�(ω)

∂ω

]
+G1(ω)

∂�1(ω)

∂ω
. (61)

The Friedel-Luttinger sum rule then follows directly from
Eq. (60) as

θ = π

4
n′

imp + IL, (62)

where the Luttinger integral63,64

IL = Im
∫ 0

−∞
dω G1(ω)

∂�1(ω)

∂ω
(63)

involves integration over all energy scales.
Again consider briefly the situation that would arise if the

system were a normal FL. In this case, the Luttinger integral
vanishes63,64 regardless of bare model parameters, and θ ≡
δR(0) (as in Sec. III D). Equation (62) then reduces to a Friedel
sum rule,19,65 relating the static phase shift to the excess charge.

The present problem is not of course a Fermi liquid, and
IL does not vanish. The single-particle spectrum is, however,
ubiquitously pinned at π�D1(ω = 0) = 1

2 (i.e., �∗ = 2� and
ε∗ = 0), from which θ = π/2 regardless of bare parameters.

Equation (62) in this case thus becomes a sum rule relating
the Luttinger integral to the excess charge:

IL = π

4
(2 − n′

imp) = π

4
(3 − nimp). (64)

Under the particle-hole transformation Eq. (29), it is easily
shown that n′

imp → 4 − n′
imp (or equivalently nimp → 6 −

nimp). Hence IL → −IL under the transformation, and in
particular it vanishes at the particle-hole symmetric point
ε = −U/2, where nimp = 3 identically.

The behavior of nimp as, e.g., the level energy ε is
varied is naturally a smoothed and continuous version of the
Coulomb-blockade staircase arising in the atomic limit (where
on varying ε the total number of electrons in the free chain, N ,
jumps discontinuously between integer values characteristic of
each CB valley). IL itself will thus reflect that variation, and
sufficiently deep in each CB valley, where nimp (� N ) is close
to integral, each regime may be loosely associated with its own
value of IL.

The above discussion is exemplified clearly by Fig. 18,
where the Luttinger integral IL/π is shown versus the level
energy ε/π� for systems with common U/π� = 10 and
ρJ = 0.075. The points correspond to direct calculation of IL

via Eq. (63), using the full Green function and self-energy from
NRG. The line is simply Eq. (64), using nimp as determined
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FIG. 18. Luttinger integral IL/π vs level energy ε/π� for
systems with ρJ = 0.075, U/π� = 10, and �/D = 10−2. Direct
calculation via Eq. (63) shown as points, compared with Eq. (64)
(line) using nimp determined from a standard thermodynamic NRG
calculation.

from a standard thermodynamic NRG calculation.58 The
agreement is excellent over the wide range of electron fillings
shown, the overall form of the curve reflecting the smoothed
CB staircase as anticipated above.

Our focus has been the Nc = 3 trimer, but for longer (odd)
chains one naturally expects the same 2CK physics to occur on
low-energy scales. We have indeed confirmed this explicitly
by NRG for the Nc = 5 case. In particular, the single-particle
spectrum of dot “1” at the Fermi level is again always pinned
to half-unitarity, π�D1(ω = 0) = 1

2 (from which the zero-
bias conductance through a terminal dot remains Gc/G0 =
e2/h). The result θ = π/2 thus holds generally, as does the
Friedel-Luttinger sum rule Eq. (62), with n′

imp now related to
the total excess charge by nimp = n′

imp + (Nc − 2), and as a
consequence, the general result for the Luttinger integral for
odd chains follows:

IL = π

4
(2 − n′

imp) = π

4
(Nc − nimp). (65)

IV. CONCLUDING REMARKS: REAL
QUANTUM DOT SYSTEMS

The exchange-coupled impurity chains studied in this paper
may be considered as approximate low-energy models of
quantum dot devices. In real systems, however, the dots are
mutually tunnel-coupled rather than pure exchange-coupled;
the 2CK fixed point is rendered unstable by the interlead
charge transfer that results, and the system crosses over to
FL behavior on a low-energy scale T � TFL. Experimental
access to 2CK physics must thus contend with both channel
anisotropy (as studied in Sec. II) and charge-transfer terms. On
the level of a toy model calculation, we now consider briefly
the generic behavior arising when the latter perturbation is
included, considering explicitly the L/R mirror symmetric
case (although the analysis is readily extended to include
explicit channel anisotropy).

To motivate this, recall that a single (Nc = 1) one-
level quantum dot tunnel-coupled to two metallic leads
does not of course exhibit 2CK physics.20–22 This fol-
lows from the Anderson Hamiltonian itself, HAnd =
Hdot + ∑

α=L/R[Hα
L + Hα

hyb], where Hdot = ε(n̂d↑ + n̂d↓) +
Un̂d↑n̂d↓, Hα

L = ∑
k,σ εka

†
αkσ aαkσ , and Hα

hyb = V
∑

k,σ

(a†
αkσ dσ + H.c.). Transforming canonically to even (e) and

odd (o) lead orbitals,

aekσ = 1√
2

(aLkσ + aRkσ ) ,

(66)

aokσ = 1√
2

(aLkσ − aRkσ ) ,

HAnd is equivalent to HAnd = Hdot + He
L + √

2He
hyb, in which

the dot couples solely to the e-lead, exhibiting as such single-
channel physics only.

In the singly occupied dot regime, a low-energy spin- 1
2

Kondo model follows from a SW transformation19,77 of HAnd,
leading simply to HSW = HL

L + HR
L + HK with

HK = JK Ŝ · (ŝL0 + ŝR0) + JLRŜ · ŝLR0 (67)

(potential scattering is ignored), where ŝα0 is given by Eq. (2)
and ŝLR0 is defined as

ŝLR0 =
∑

σ,σ ′,α

f
†
α0σ σ σσ ′fᾱ0σ ′ (68)

with ᾱ = R,L for α = L,R. Equation (67) consists formally of
a symmetric 2CK model—the first term—together with a term
Ŝ · ŝLR0 that transfers (cotunnels) charge between the leads.
In fact, applying the transformation Eq. (66) yields HSW =
He

L + Ho
L + HK with

HK = JK Ŝ · (ŝe0 + ŝo0) + JLRŜ · (ŝe0 − ŝo0), (69)

where ŝe0 and ŝo0 are e/o lead spin densities, a model that
is generically of channel-asymmetric 2CK form. But for the
single-dot Anderson model itself, the couplings are necessarily
equal, JLR = JK . In this case, the dot is exchange-coupled
solely to the even lead, and Eq. (69) reduces as it must to a
single-channel Kondo model with Kondo coupling 2JK .

In systems comprising several tunnel-coupled quantum
dots, however, cotunneling charge-transfer can be effectively
suppressed,24 with JLR � JK expected for longer chains (a
simple estimate yielding JLR/JK ∼ [t/U ]Nc−1 with t the
inter-dot tunnel coupling). Here we simply regard Eq. (67),
with JLR �= JK , as an effective toy model to mimic such
effects in odd-Nc dot chains (with Ŝ representing the lowest
chain doublet). From Eq. (69) it is clear that the resultant
low-energy or low-temperature physics is then that of the
channel-asymmetric 2CK model.1–3,10,14 The 2CK FP is thus
rendered unstable by the perturbation JLR , any nascent 2CK
state forming at T 2CK

K being destroyed below the FL crossover
scale TFL, although inclusion of the JLR term should not
obscure the 2CK physics for T � TFL, provided JLR itself is
sufficiently small. Note also that any direct interlead tunneling
terms of the type

∑
k,k′ (a

†
Lkσ aRk′σ + H.c.)—as opposed to

cotunneling, which intrinsically proceeds via the dot spin—are
equivalent [through the transformation Eq. (66)] to simple
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FIG. 19. Upper panel: entropy Simp(T ) vs T/D for a single-
spin 2CK model with explicit left-right lead charge transfer
[see Eq. (67)]. Shown for fixed ρJK = 10−1, varying ρJLR =
10−1,10−2,10−3,10−4,10−5,10−6 [lines (a)–(f)], successively ap-
proaching the pure 2CK limit with ρJLR = 0, line (g). Lower panel:
T = 0 spectra DρK (ω) vs ω/D for the same systems. S1CK

imp (T ) and
1
2 Dρ1CK

K (ω) for a 1CK model with ρJK = 0.2 (circles) are also shown
for comparison.

potential scattering in the even and odd channels. This does
not destabilize the 2CK FP,11 which is why we do not include
such terms here.

The above scenario is explored in Fig. 19, where NRG
results for Eq. (67) are shown. We fix ρJK = 10−1 and vary
the cotunneling term ρJLR = 10−1,10−2,10−3,10−4,10−5 and
10−6 [lines (a)–(f)], approaching the pure 2CK limit JLR = 0
[line (g)]. The top panel shows the entropy Simp(T )/ ln(2)
versus T/D, from which the behavior associated with the
channel-asymmetric 2CK model1–3,10,14 is seen to arise, as
expected from Eq. (69). In the extreme case JK = JLR

[line (a)], the odd channel is completely decoupled, no
2CK physics occurs, and the behavior is that of a single-
channel Kondo model (circles), the impurity entropy being
completely quenched below T ∼ T 1CK

K [cf. Eq. (14)]. For
smaller JLR � T 1CK

K , however, the 2CK scale T 2CK
K emerges

[cf. Eq. (8)], below which temperature a characteristic Simp =
1
2 ln(2) plateau occurs [lines (d)–(g)]. Flow to the FL FP below
T ∼ TFL, for all systems with JLR �= 0, is then manifest in the

final drop to Simp = 0, the FL crossover scale TFL being found
to vanish as

TFL
JLR→0±

∼ A|JLR|ν, ν = 2 (70)

with exponent ν = 2, just as expected from mapping to the
channel-asymmetric 2CK model, Eq. (69).

We turn now to the T = 0 spectra DρK (ω) ≡ DρK,α(ω) =
−πρT Im[tα(ω)] for lead α = L or R (the two being equivalent
by mirror symmetry), shown in the lower panel of Fig. 19.
The spectral behavior is rather different from what might
naively be expected from the entropy, since no low-energy TFL

scale is apparent (compare, e.g., to the channel-asymmetric
2CK models studied in Fig. 7). This, however, reflects the
fact that the model Eq. (67) is channel-asymmetric 2CK in
the e/o basis [Eq. (69)], rather than the L/R basis, and is
readily understood using the transformation Eq. (66), from
which one obtains DρK,α(ω) = 1

2 [DρK,e(ω) + DρK,o(ω)] in
terms of the spectra for e/o channels. For JK = JLR [line
(a)], the odd channel is decoupled in Eq. (69), so DρK,α(ω) =
1
2DρK,e(ω) ≡ 1

2Dρ1CK
K (ω), where Dρ1CK

K (ω) is the spectrum
for a 1CK model with Kondo coupling 2JK [as confirmed
explicitly (circles) in the lower panel of Fig. 19].

However, for lines (c)–(f) (corresponding to JLR � T 1CK
K ),

the spectra are indistinguishable from the pure 2CK spectrum,
line (g), over the entire range of frequencies. For TFL �
|ω| � T 2CK

K , RG flow in the vicinity of the 2CK FP naturally
results in the universal behavior DρK,e(ω) = DρK,o(ω) =
1
2 [1 − b(|ω|/T 2CK

K )1/2], as expected for a 2CK model with
small even-odd channel asymmetry (see Fig. 7). Consequently,
DρK (ω) shows the same behavior. For |ω| � TFL, by con-
trast, the spectrum for the more strongly coupled e-channel
has the asymptotic form DρK,e(ω) = 1 − d(|ω|/TFL)2, while
the weakly coupled o-channel is described by DρK,o(ω) =
d(|ω|/TFL)2 (see Fig. 7 and discussion thereof). Indeed, we
found in Sec. II A that the entire universal crossover to the
Fermi liquid FP for the strongly coupled lead is related to
that of the weakly coupled lead by DρK,e(ω) = 1 − DρK,o(ω).
Thus, DρK (ω) = 1

2 arises for all |ω| � T 2CK
K , as indeed found.

As such, the spectrum DρK (ω) is effectively “blind” to the
Fermi liquid crossover induced by small finite JLR: the 2CK
FP appears to be stable on the lowest energy scales—although
from, e.g., the entropy, we know that this is not the case.
Ironically, then, experiments that probe the t matrix (such as
measurement of the zero-bias conductance across dot “1”) will
always appear to yield 2CK physics, provided JLR � T 1CK

K .
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