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An exact expression is derived for the electron Green function in two-channel Kondo models with one and
two impurities, describing the crossover from non-Fermi liquid (NFL) behavior at intermediate temperatures to
standard Fermi liquid (FL) physics at low temperatures. Symmetry-breaking perturbations generically present
in experiment ensure the standard low-energy FL description, but the full crossover is wholly characteristic of
the unstable NFL state. Distinctive conductance lineshapes in quantum dot devices should result. We exploit a
connection between this crossover and one occurring in a classical boundary Ising model to calculate real-space
electron densities at finite temperature. The single universal finite-temperature Green function is then extracted
by inverting the integral transformation relating these Friedel oscillations to the t matrix. Excellent agreement is
demonstrated between exact results and full numerical renormalization group calculations.
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I. INTRODUCTION AND PHYSICAL PICTURE

The full power of the renormalization group (RG) concept is
perhaps most clearly seen in its application to quantum impu-
rity systems.1 The classic paradigm is the Kondo model,2 being
the simplest to capture the fundamental physics associated with
all quantum impurity models: universal RG flow from an unsta-
ble fixed point (FP) to a stable one on successive reduction of
the temperature or energy scale. The Kondo model describes a
single local spin-1/2 “impurity,” coupled by antiferromagnetic
exchange to a single channel of noninteracting conduction
electrons. Here, perturbative scaling arguments3 indicate an
RG flow from a high-energy unstable “free fermion” FP
(describing a free impurity decoupled from a free conduction
band), to a low-energy stable “strong coupling” FP (where the
impurity is screened by conduction electrons via formation
of a “Kondo singlet”). This RG flow is characterized by a
scaling invariant—the Kondo temperature TK—which sets the
crossover energy scale. But analysis of the crossover itself goes
beyond simple scaling ideas and the conventional RG picture.
Wilson’s numerical renormalization group4 (NRG) allows an
exact nonperturbative calculation of certain thermodynamic
and dynamical quantities that show the crossover (for a review,
see Ref. 5). Universal scaling of all physical quantities in terms
of the crossover scale TK confirms the basic RG structure of
the problem.

However, a different RG flow occurs when the impurity is
coupled to two or more independent conduction channels.6 In
this multichannel Kondo model, the frustration inherent when
several channels compete to screen the impurity spin renders
the strong coupling FP unstable. A third FP at intermediate
coupling6 then dictates the low-energy physics. This FP
exhibits non-Fermi liquid (NFL) behavior, including notably
a residual entropy7 of 1

2kB ln(2) in the two-channel Kondo
(2CK) model. The crossover from the free-fermion FP to the
2CK FP has been the focus of much theoretical attention. In
particular, solution of the model using the Bethe ansatz yields
the exact crossover behavior of thermodynamic quantities,7

while NRG has been used to calculate thermodynamics8 and
dynamics9,10 numerically. It was also shown recently that this
2CK physics can arise in odd-membered quantum dot rings11

and chains12 and in quantum box systems.13–16

Indeed, the same type of NFL behavior17–19 arises in the
two-impurity Kondo (2IK) model.20 The tendency to form a
trivial local singlet state is favored by an exchange coupling
acting directly between the impurities, while the coupling of
each impurity to its own conduction channel favors separate
single-channel Kondo screening. The resulting competition
gives rise to a critical point20 that is identical to that of the
2CK model with additional potential scattering.19 2IK physics
is also expected to appear in certain double quantum dot
systems,21 and other even-impurity chains.18

A description of the NFL FPs of such two-channel models
in terms of an effective boundary conformal field theory
(CFT) shows that the operator controlling the FP has an
anomalous scaling dimension.22,23 This implies unconven-
tional energy/temperature dependencies of physical quantities
such as conductance Gc(V,T ), measured as a function of bias
voltage V and temperature T . In the 2CK device of Ref. 24,√

V/TK and
√

T/TK corrections to the NFL FP conductance
predicted by CFT were directly observed in experiment.
Similar signatures are expected18,21 in the channel-asymmetric
2IK model; although leading linear behavior emerges in the
symmetric 2IK.19 This behavior is of course in marked contrast
to (V/TK )2 and (T/TK )2 Fermi liquid (FL) behavior obtained
ubiquitously in the single-channel case.25

The NFL FP itself (and the crossover to it) has now
been rather well studied. However, NFL physics is extremely
delicate: various symmetry-breaking perturbations destabilize
the NFL FP22,23 and generate a new crossover scale T ∗. At
T = 0, the impurities are thus completely screened and all
residual entropy is quenched. Indeed, regular FL behavior,1

including the standard (V/T ∗)2 and (T/T ∗)2 corrections to
conductance, must appear at low temperatures T � T ∗ and
energies V � T ∗. Therefore no evidence of nascent NFL
physics can manifest in the immediate vicinity of the FL FP.
Only on fine tuning the perturbation strength δ → 0 to the
critical point so that T ∗ → 0 does one obtain NFL physics on
the lowest energy scales.

But RG analysis in the vicinity of the free fermion, NFL
and FL FPs implies two successive crossovers, with TK setting
the energy scale for flow to the NFL FP, and T ∗ characterizing
flow away from it. Even in the FL phase away from the critical
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point (which is the generic case relevant to experiment), NFL
behavior can be observed at higher temperatures and energies,
provided there is good scale separation T ∗ � TK (see Fig. 1
for a schematic phase diagram). In this case, conductance
Gc(V,T ) through the 2CK quantum dot device of Ref. 24,
or proposed 2IK devices,18,19 should exhibit a clean NFL to
FL crossover.

In Ref. 26, we considered this conductance crossover at
T = 0 as a function of bias V , corresponding to the crossover
labeled by arrow (a) in Fig. 1 (and V here playing the role of the
external energy scale ω). It was shown26 that the full crossover
is wholly characteristic of the high-energy NFL state. The
T = 0 crossover is expected to describe the behavior at very
low temperatures. From a scaling perspective, RG flow is cut
off on the energy scale V ∼ T , so Gc(V,T ) � Gc(V,0) for
T � T ∗ since there are no further crossovers below T ∗.

By contrast, at higher temperatures T � T ∗ (�TK ), no
evidence of the NFL to FL crossover will be observed (see
Fig. 1), and only the NFL FP is probed. Indeed, this is the
likely scenario in the experiment of Ref. 24: rather than
tuning to the critical point δ = 0, signatures of the true FL
ground state are simply washed out by temperature. But the
behavior as a full function of temperature T and energy scale
ω for finite perturbation strength δ is much more subtle, and
naturally strengthens connection to experiment. Exploring the
third temperature axis in Fig. 1, and considering the resultant
NFL to FL crossover [e.g., arrow (b)], is thus the focus of the
present work.

In this paper we combine Abelian bosonization
methods17,27,28 with the powerful machinery of CFT22,23 to
obtain an exact description of the NFL to FL crossover in
two-channel Kondo models. In particular, we calculate the
full electron Green function at finite temperature, from which
conductance follows.29,30 The field-theoretic description links
the 2IK model with a classical Ising model on a semi-infinite
plane.23 Application of a boundary magnetic field h in this
boundary Ising model (BIM) results in RG flow from an
unstable FP with free boundary condition h = 0 to a stable FP
with fixed boundary condition h → ±∞.31,32 This RG flow
due to h is identical to that occurring between NFL and FL
FPs in the 2IK model due to a small perturbation δ.23 Indeed,

FIG. 1. (Color online) Schematic phase diagram for the 2CK and
2IK models as a function of temperature T , external energy scale ω,
and symmetry-breaking perturbation strength δ. The three FPs of each
model give rise to three distinct regimes: free fermion, NFL, and FL.
We considered the NFL to FL crossover at T = 0 in Ref. 26, indicated
by arrow (a). Here, we generalize the results to finite temperature,
arrow (b).

an emergent symmetry of the NFL FP in the 2IK model,23

together with the common CFT description of 2IK and 2CK
models,19,22,23 implies the existence of a single universal NFL
to FL crossover function for both models, resulting from
any combination of relevant perturbations.26 Exact results33,34

for the BIM are the source of our solution, which becomes
exact when there is good scale separation T ∗ � TK , as sought
experimentally.

The exact crossover Green function at T = 0 was calculated
in Ref. 26 by exploiting the above connection. However, ambi-
guities appear at finite temperature that prevent straightforward
generalization of those results. Thus we take a different
route here: the BIM solution is used to calculate real-space
Friedel oscillations around the impurities at finite temperature,
which are themselves related by integral transformation35 to
the Green function. The problematic analytic continuation is
avoided in this way.

The paper is organized as follows. In Sec. II, we intro-
duce the 2CK and 2IK models, together with representative
symmetry-breaking perturbations that generate the NFL to FL
crossover. We then present and discuss our main results for the
exact finite-temperature Green function along the crossover.
The corresponding conductance crossover for quantum dot
systems that might realize 2CK or 2IK physics is then
calculated. In Secs. III–VI, we derive the analytic results.
First, we consider the 2IK model at T = 0 with a single
detuning perturbation. In Sec. III, we calculate the resulting
crossover Green function, exploiting the analogy to the BIM.
In Sec. IV, we extend the calculation to finite temperatures,
extracting the desired t matrix from Friedel oscillations. The
results are generalized to the 2CK model in Sec. V and to
an arbitrary combination of perturbations in Sec. VI. Exact
results are compared with finite-temperature NRG calculations
in Sec. VII. Other quantities showing the crossover such
as entropy and nonequilibrium transport are then briefly
considered in Sec. VIII. The paper concludes with a general
discussion in Sec. IX, and details of certain calculations can
be found in the appendixes.

II. MODELS AND RESULTS

We consider the standard 2CK and 2IK models,

H2CK = H0 + J 
S · (
s0L + 
s0R) + δH2CK, (1)

H2IK = H0 + J (
SL · 
s0L + 
SR · 
s0R) + K 
SL · 
SR + δH2IK,

(2)

where H0 =∑α,k εkψ
†
kσαψkσα describes two free conduc-

tion electron channels α = L/R, with spin density 
s0α =∑
σσ ′ ψ

†
0σα( 1

2 
σσσ ′)ψ0σ ′α (and ψ
†
0σα =∑k ψ

†
kσα) coupled to

one spin- 1
2 impurity 
S (2CK) or two impurity spins 
SL,R (2IK).

For δH2CK = 0, the NFL ground state of H2CK is described by
the 2CK FP. Likewise, a critical interimpurity coupling Kc can
be found such that the ground state of H2IK is again a NFL,20

and is similarly described by the 2CK FP for δH2IK = 0.17–19

Relevant perturbations to the above models (embodied by
δH2CK and δH2IK) are those that destabilize the NFL FP, and
result in a FL ground state. A new scale T ∗ is thus generated,
characterizing RG flow from NFL to FL FPs. The relevance
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(a) (b)

FIG. 2. (Color online) Schematic illustration of possible 2CK (a)
and 2IK (b) setups to measure conductance. The left lead is “split”
into source and drain, allowing the resulting conductance through the
attached impurity to be measured.

of such perturbations can be traced to the breaking of certain
symmetries,22,23 such as parity or particle-hole symmetries. In
fact, there are many possible perturbations to the 2CK and 2IK
models; but two perturbations may be considered “equivalent”
if they break the same underlying symmetry—and their effect
on the low-energy physics will be identical.22,23

For concreteness, we consider now the simplest pertur-
bations that exemplify such symmetry breaking and that in
combination generate all possible NFL to FL crossovers at
low energies/temperatures. Specifically,

δH2CK =
∑

�=x,y,z

	�

∑
α,β

∑
σσ ′

ψ
†
0σα

(
1

2

σσσ ′τ �

αβ

)
ψ0σ ′β · 
S

+ 
B · 
S, (3)

describes L/R channel asymmetry in the 2CK model for 	z �=
0, while charge transfer between the leads is embodied in the
	x and 	y components of the first term [here, 
τ (
σ ) are the
Pauli matrices in the channel (spin) sector]. The second term
describes a magnetic field acting on the impurity. For the 2IK
model, the critical point is destabilized by finite (Kc − K), and
also through

δH2IK =
∑

σ

(VLRψ
†
0σLψ0σR + H.c.) + 
Bs · (
SL − 
SR), (4)

where VLR describes electron tunneling between the leads
and 
Bs the application of a staggered magnetic field. Channel
anisotropy could also be included in the 2IK model, but the crit-
ical point can always be recovered18 on retuning K . Similarly,
spin-assisted tunneling between channels

∑
σ ψ

†
0σLψ0σR


SL ·

SR + H.c. (as arises in a two-impurity Anderson model36)
is expected to have the same destabilizing effect as the VLR

term in Eq. (4), since they both have the same symmetry at
the NFL FP37 (although the resulting crossover energy scales
may themselves be different36). Thus we do not consider such
perturbations explicitly here.

A. Quantities of interest

Signatures of the NFL to FL crossover on the scale of
T ∗ should appear in all physical quantities. In 2CK or 2IK
quantum dot devices that could access this physics,18,19,24 the
quantity of interest is the dI/dV conductance Gα

c (V,T ) ≡
(2e2h−1Gα

0 )G̃α
c (V,T ) through channel α = L or R. Here,

Gα
0 = 4�α

s �α
d /(�α

s + �α
d )2 describes the relative strength of

coupling to source and drain leads (see Fig. 2 for an illustration
of the setup). At zero bias V = 0, the conductance is given

exactly by29

G̃α
c (0,T ) = 1

2

∑
σ

∫ ∞

−∞
dω

−∂f (ω,T )

∂ω
tσα(ω,T ), (5)

where f (ω,T ) = (eω/T + 1)−1 is the Fermi function, and
tσα(ω,T ) is the energy-resolved local density of states (or
“spectrum”),

tσα(ω,T ) = −πνImTσα,σα(ω,T ), (6)

itself related to the t matrix1 Tσα,σα(ω,T ), describing scattering
of a σ =↑ or ↓ electron within channel α = L or R, with
bare lead density of states per spin ν. Note that for equal
hybridization to source and drain leads, �α

s = �α
d , Gα

0 = 1 is
maximal, while in the asymmetric limit �α

s � �α
d , Gα

0 � 1.
In the latter case, the weakly coupled source lead probes the
system perturbatively, so the system remains near equilibrium,
even at finite bias V > 0. The resulting conductance is then
simply,30

G̃α
c (V,T ) = 1

2

∑
σ

∫ ∞

−∞
dω

−∂f (ω − V,T )

∂ω
tσα(ω,T ), (7)

where tσα is the equilibrium (zero-bias) spectrum.
The t matrix itself must show signatures of the NFL to FL

crossover since scattering is purely inelastic at the NFL FP,22,23

but inelastic scattering must cease at energies � T ∗, where the
impurity degrees of freedom are fully quenched.38 Thus the
crossover also shows up in conductance. Our goal here is to
calculate the full crossover t matrix, and hence conductance, at
finite temperature for the 2CK and 2IK models in the presence
of symmetry-breaking perturbations described by Eqs. (1)–(4).

B. Survey of results and discussion

In the next sections, we derive an exact expression for
the desired t matrix, describing the universal crossover from
NFL to FL behavior in the 2CK and the 2IK models at finite
temperature—and which as such generalize the results of our
previous work in Ref. 26. Here, we pre-empt the full derivation,
and present our key results.

The NFL to FL crossover is characterized by a low-energy
scale T ∗ arising due to the presence of symmetry-breaking per-
turbations to the 2CK and 2IK models. It is given generically
by39

T ∗ = λ2, (8)

where λ2 =∑8
j=1 λ2

j . The eight contributions correspond to
relevant perturbations that have distinct symmetry at the NFL
FP. Two perturbations that have the same symmetry correspond
to the same λj . The perturbations given in Eqs. (3) and (4) are
classified, viz.,

TABLE I. Classification of perturbations.

λj 2CK model 2IK model

λ1 c1ν	z

√
TK c1(Kc − K)/

√
TK

λ2 c1ν	x

√
TK cV ReνVLR

√
TK

λ3 c1ν	y

√
TK cV ImνVLR

√
TK


λB cB

B/

√
TK cB


Bs/
√

TK
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where 
λB ≡ {λx
B,λ

y

B,λz
B} = {λ4,λ5,λ6}. The perturbations as-

sociated with coupling constants λ7 and λ8 do not conserve
total charge22,23 and so are ignored here (although we note
that such operators can be of importance, for example, in the
context of strongly correlated superconductors40).

c1,cV ,cB = O(1) are fitting parameters39 that depend on
the model and on J , and TK ∝ e− 1

νJ is the Kondo temperature,
characterizing RG flow from the high-energy free fermion FP
to the NFL FP.19 We do not discuss the high-energy crossover
in the present work.

The various perturbations described by Eqs. (3) and (4)
describe very different physical processes—but the resulting
crossover scale Eq. (8), has a simple form due to an emergent
SO(8) symmetry of the effective NFL FP Hamiltonians, as
discussed in the following sections.

The main result of this paper is the NFL to FL crossover t

matrix, given by

2πiνTσα,σ ′α′(ω,T ) = δσσ ′δαα′ − Sσα,σ ′α′G
(

ω

T ∗ ,
T

T ∗

)
, (9)

where Sσα,σ ′α′ is the scattering S matrix, which is an ω = 0 and
T = 0 quantity characterizing the FL FP. For the 2CK model,
it is given by

S2CK
σα,σ ′α′ = [−δσσ ′(
λf · 
ταα′ ) + i(
λB · 
σσσ ′)δαα′ ]/λ, (10)

with 
λf = {λ2,λ3,λ1}. For the 2IK model, it is

S2IK
σα,σ ′α′ = [− λ1δσσ ′δαα′ + iδσσ ′

(
λ2τ

x
αα′ + λ3τ

y

αα′
)

+ i(
λB · 
σσσ ′)τ z
αα′
]
/λ. (11)

The single function G describes the crossover due to a
generic combination of relevant perturbations in both 2CK and
2IK models. It does not depend on details of the model or the
particular perturbations present, except through the resulting
crossover scale T ∗. Thus G(ω̃,T̃ ) is a universal function of
rescaled energy ω̃ = ω/T ∗ and temperature T̃ = T/T ∗. Our
exact result at finite temperature is

G(ω̃,T̃ ) =
−i√
2π3T̃

tanh ω̃

2T̃

�
(

1
2 + 1

2πT̃

)
�
(
1 + 1

2πT̃

) ∫ ∞

−∞
dx

e
ixω̃

πT̃

sinh x

× Re

[
2F1

(
1

2
,
1

2
; 1 + 1

2πT̃
,
1 − coth x

2

)]
, (12)

where � is the Gamma function and 2F1(a,b,c,z) is the Gauss
hypergeometric function.41 At T = 0, Eq. (12) reduces39 to
the result of Ref. 26:

G(ω̃,0) = 2

π
K [−iω̃] , (13)

where K[z] is the complete elliptic integral of the first kind,
yielding asymptotically G(ω̃,0) = 1 − iω̃/4 − (3ω̃/8)2 +
O(ω̃3) for ω̃ � 1 and G(ω̃,0) =

√
i

2π
[π − 2i ln(16ω̃)]ω̃−1/2 +

O(ω̃0) for ω̃ � 1.
Below we consider the local density of states (spectrum)

tασ (ω,T ), from which conductance can be calculated [see
Eqs. (5) and (7)]. It is related to the t matrix via Eq. (6),
and is thus given exactly along the NFL to FL crossover by
Eqs. (9)–(12):

tσα(ω,T ) = 1

2
− 1

2
Re[Sσα,σαG(ω̃,T̃ )], (14)

FIG. 3. (Color online) Spectrum tσL(ω,T ) vs ω/T ∗ for T/T ∗ =
10−1,1,10,102, approaching tσL = 1/2 from above (λ1 > 0) or below
(λ1 < 0). Circles show T = 0 result of Eq. (13).

where the required diagonal elements of the full S matrix
[Eqs. (10) and (11)] are more simply expressed as

S2CK
σα,σα = (− αλ1 + iσλz

B

)
/λ = αS2IK

σα,σα (15)

with σ = ±1 for spins ↑ / ↓ and α = ±1 for channel L/R

(and we use 
λB ‖ ẑ for simplicity). For λx
f = λ

y

f = 0 and
λx

B = λ
y

B = 0, scattering preserves channel and spin, and the
FL phase shift δσα then follows from Sσα,σα = exp[2iδσα].
These exact results for the crossover are compared with
finite-temperature NRG calculations in Sec. VII, with excellent
agreement.

We now examine the generic behavior of the spectral
function at finite temperatures in the crossover regime.
Although we consider explicitly L-channel spectra tσL(ω,T )
in the following, note from Eq. (15) that tσL(ω,T ) ↔ tσR(ω,T )
upon exchanging 	z ↔ −	z in the 2CK model, or 
Bs ↔ − 
Bs

in the 2IK model. Also, t↑α(ω,T ) ↔ t↓α(ω,T ) on reversing the
magnetic field, 
B ↔ − 
B (and in the zero-field case, σ =↑ and
↓ spectra are of course identical).

In Fig. 3, we take the representative case of finite channel
anisotropy 	z in the 2CK model, or finite detuning (K − Kc)
in the 2IK model, and plot tσL(ω,T ) as a full function of ω/T ∗
for different temperatures T/T ∗. Since only λ1 acts in either
case, Sσα,σ ′α′ = ±δσσ ′δαα′ is diagonal [see Eqs. (10) and (11)],
meaning that an electron in channel α scatters elastically at
low energies, and stays in channel α. By Eq. (14), the spectrum
tσα(ω,T ) then probes the real part of the universal function G
because Sσα,σα is real.

General scaling arguments suggest that RG flow stops
on an energy scale given by the temperature. As seen from
Fig. 3, this is indeed the case, with the spectrum tσL(ω,T ) �
tσL(0,T ) essentially constant for |ω| � T . Mutatis mutandis,
for T � T ∗ one obtains tσL(ω,T ) � tσL(ω,0), corresponding
to the T = 0 limit considered previously.26 At T = 0 and
ω = 0, Eq. (14) yields tσα(0,0) = 1

2 − 1
2 ReSσα,σα , which is

determined solely by the S matrix and hence the phase shift
associated with the stable FL FP. When only λ1 acts, the
spectrum is thus tσα(0,0) = 0 or 1 only (with corresponding
phase shifts 0 or π/2). In particular, the Kondo phase is
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characterized by unitarity tσα(0,0) = 1, obtained in the more
strongly coupled channel for the 2CK model, and in both
channels for K < Kc in the 2IK model.

In the opposite limit T � T ∗ (�TK ), RG flow to the
FL FP is completely cut off, and inelastic scattering38 at
the NFL FP results in tσα(ω,T ) � 1

2 for all |ω| � TK . The
generic RG picture illustrated in Fig. 1 and supported by
Fig. 3, suggests an approximate complementarity between
ω and T . This is explored further in Fig. 4, where we
compare the zero-frequency value of the spectrum as a
function of temperature with the zero-temperature spectrum as
a function of frequency. As immediately seen, there is a striking
similarity. Indeed, a classic signature of FL physics (arising
at low-energies/temperatures |ω|,T � T ∗) is the common
quadratic dependence of the spectrum on both frequency and
temperature:

tσα(ω,T )
FL∼ tσα(0,0) + a

(
ω

T ∗

)2

+ b

(
T

T ∗

)2

, (16)

with a and b constants O(1) that depend on the particular
model under consideration. Perturbation theory with respect
to the FL FP in the spirit of Nozières,42 yields a/b = 9/(7π2)
for the 2IK model (see Appendix A). This same ratio also
follows directly from the limiting behavior of the full crossover
function, Eq. (12), which yields |a| = 9/128 ≈ 0.07 and |b| =
7π2/128 ≈ 0.54, and as such provides a stringent check of our
results.

But the exact symmetry between ω and T in Eq. (16)
is a special property of the FL FP itself, and does not, in
general, apply at higher energies; although as seen from
Fig. 4, the qualitative behavior over the full crossover is in
fact rather similar. In the vicinity of the NFL FP [arising for
T ∗ � max(ω,T ) � TK ], Eq. (12) gives asymptotically

tσL(ω,T = 0)
NFL∼ 1

2
±
(
β ′ + δ ln

ω

T ∗
) ( ω

T ∗
)− 1

2
, (17a)

tσL(ω = 0,T )
NFL∼ 1

2
± β ′′

(
T

T ∗

)− 1
2

, (17b)

ln[

FIG. 4. (Color online) tσL(ω = 0,T = y) and tσL(ω =
y
√

b/a,T = 0) vs y/T ∗ for λ1 > 0. Common FL asymptote Eq. (16)
shown as dot-dashed line; NFL asymptotes Eq. (17) shown as dashed
and dotted lines.

with ± for λ1 ≷ 0, β ′ = (1+π)(2γ−π+ln 64)
25/2π

≈ 0.5061 (where γ is
Euler’s constant), δ = − 1

23/2π
≈ −0.1125, and β ′′ ≈ 0.4925.

Terms of the form (ω/T ∗)−1/2 and (T/T ∗)−1/2 in Eq. (17)
signal the scaling dimension 1/2 of the relevant perturbation.
Whereas such power laws occur in both the frequency and
temperature dependencies, additional logarithmic corrections
appear in the frequency dependence only. This difference
can be understood by comparing the full T = 0 result [see
Eq. (13)] with the high-T behavior captured by perturbation
theory around the NFL FP (see Ref. 43 and Appendix B 2. The
full dependence on ω and T described by Eq. (12) naturally
leads to more subtle behavior when |ω| and T are of the same
order, as shown in Fig. 3.

When some degree of interchannel charge transfer is
also present, the NFL to FL crossover is generated by the
combination of relevant perturbations λ1 and λ2. In the 2CK
model, this corresponds to finite channel anisotropy 	z and
impurity-mediated tunneling 	x [see Eq. (3)], while for 2IK it
corresponds to finite detuning (K − Kc) and direct tunneling
VLR [see Eq. (4)]. The resulting behavior in the 2CK model
can be simply understood because the perturbations 	z and 	x

are related by a “flavor” rotation of the bare Hamiltonian, as
discussed further in Sec. VI A. The 2IK model does not possess
such a flavor symmetry, although an emergent symmetry22,23

of the NFL FP Hamiltonian can be exploited when T ∗ � TK .
In fact, as shown in Sec. VI C, this symmetry allows all the rel-
evant perturbations in either 2CK or 2IK models to be simply
related,26 implying the existence of a single crossover function.

The rotation (λ1,λ2) → λ̃1 can be used to relate systems
where both λ1 and λ2 act, to those in which λ1 alone acts
(as in Fig. 3). But tσα(ω,T ) probes the system in the original
unrotated basis, and hence the spectra undergo a rescaling
when finite λ2 is included: tσα(ω,T ) → 1

2 + ∣∣ λ1
λ

∣∣ [t̃σα(ω,T ) −
1
2 ]. In particular, the spectral function is totally flattened the
limit |λ2| � |λ1|, with tσα � 1/2 at both FL and NFL FPs.
At the FL FP, electrons thus scatter elastically between α = L

and R channels, and the corresponding S matrix |Sσα,σ ′α′ | =
δσσ ′(1 − δαα′ ) is purely off-diagonal when interchannel charge
transfer dominates [see Eqs. (10) and (11)]. Thus no crossover
shows up in the spectrum or conductance, although T ∗ is of
course finite [see Eq. (8)], and the crossover can still appear in
other physical quantities.12

When a uniform (2CK) or staggered (2IK) magnetic field
acts (finite λz

B only), Sσα,σα = ±i is pure imaginary (with
phase shifts δσα = ±π/4), and again, we obtain tσα(0,0) =
1/2 at the FL FP. However, tσα(ω,T ) now probes the imaginary
part of the universal function G [see Eq. (14)], and so the full
spectrum along the NFL to FL crossover due to λz

B is simply
the Hilbert transform of the spectrum due to λ1—compare
Figs. 3 and 5.

A spectral feature in consequence appears on the inter-
mediate scale of T ∗ for finite λz

B , even though tσα = 1/2 at
both NFL and FL FPs, as shown in Fig. 5. The existence of
such a feature can be understood physically from the impurity
magnetization M ∼ Bz arising for small applied field Bz in
the 2CK model (or staggered magnetization Ms ∼ Bz

s due to a
staggered field in the 2IK model). Since the magnetization
M(T ) ∝ ∫∞

−∞ dωf (ω,T )[t↑α(ω,T ) − t↓α(ω,T )] �= 0 is finite
for finite applied field, t↑α(ω,T ) �= t↓α(ω,T ). A “pocket” thus
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FIG. 5. (Color online) tσL(ω,T ) vs ω/T ∗ for T/T ∗ =
10−1,1,10,102, in the presence of finite uniform (staggered) magnetic
field in the 2CK (2IK) model, λz

B > 0. Spectra approach tσL = 1/2
from above (σ =↑) or below (σ =↓). Circles show T = 0 result.

opens between the “up” and “down” spin spectra at |ω| ∼ T ∗,
whose area is proportional to the magnetization. In particular,
the temperature dependence of the magnetization can be
extracted from the universal function, Eq. (12), viz.,

M(T ) ∝
∫ TK

−TK

dωf (ω,T )ImG
(

ω

T ∗ ,
T

T ∗

)
, (18)

valid for small perturbations λz
B , such that T ∗ � TK as usual

[the high-frequency cutoff |ω| ∼ TK then being justified since
t↑α(ω,T ) � t↓α(ω,T ) for |ω| � TK , as confirmed directly from
NRG].

Using Eq. (13), the zero-temperature magnetization de-
pends on TK via

M(0) = c
√

TKT ∗ ln

(
TK

T ∗

)
, (19)

and since T ∗ ∼ (Bz)2/TK [see Eq. (8), it follows that M(0) ∼
Bz ln(TK/Bz). The full temperature dependence M(T ) versus
T is shown in Fig. 6, demonstrating scaling collapse for
different Kondo scales TK . The asymptotic behavior in the
vicinity of the FL and NFL FPs follows as

1√
TKT ∗ [M(T ) − M(0)]

T/T ∗�1∼ −d

(
T

T ∗

)2

, (20a)

T/T ∗�1∼ −c ln

(
T

T ∗

)
, (20b)

yielding in particular M(T ) ∼ Bz ln(TK/T ) when T ∗ � T �
TK . This asymptotic behavior can again be understood from
perturbation theory around the FL and NFL FPs. Furthermore,
since χimp(T ) = limBz→0 M(T )/Bz, when T ∗ � Bz � T �
TK , one obtains

χimp(T ) ∼ ln(TK/T ), (21)

for the uniform (staggered) magnetic susceptibility of the 2CK
(2IK) model. This diverging susceptibility is a classic signature
of the NFL FP, known, for example, from the Bethe ansatz

FIG. 6. (Color online) Magnetization [M(T ) − M(0)]/
√

TKT ∗

vs T/T ∗ for λz
B > 0 and TK/T ∗ = 106,107,108,109. NFL asymptote

Eq. (20b) shown as dashed line and FL asymptote Eq. (20a) shown
as dotted line in the inset.

solution of the 2CK model,44 or from CFT for the 2IK model.23

However, at lower temperatures T � Bz, M(T )/Bz does not
correspond to the magnetic susceptibility; here, the NFL to FL
crossover itself is being probed. Indeed, for T � T ∗ � Bz,
we obtain a quadratic (T/T ∗)2 temperature dependence of
magnetization, Eq. (20a), characteristic of the FL FP.

Finally, we turn to conductance G̃α
c (V,T ), obtained from

the spectrum tσα(ω,T ) by combining Eqs. (7), (12), and (14).
It follows as

G̃α
c (V,T ) = 1

2
− �

(
1
2 + 1

2πT̃

)
(8πT̃ )3/2�

(
1 + 1

2πT̃

)
×
∑

σ

Im

{
Sσα,σα

∫ ∞

−∞
dxI (V,T ,x)

× Re

[
2F1

(
1

2
,
1

2
; 1 + 1

2πT̃
,
1 − coth x

2

)]}
,

(22)

where the integral over ω can be evaluated using contour
methods,

I (V,T ,x) =
∫ ∞

−∞
dω̃

exp
(

ixω̃

πT̃

)
sech2

(
ω̃−Ṽ

2T̃

)
sinh(x) tanh

(
ω̃

2T̃

)
= 2πiT̃ csch2(x)sech2

(
Ṽ

2T̃

)

×
{

cosh(x) − exp

(
ixṼ

πT̃

)[
1 + ix

π
sinh

(
Ṽ

T̃

)]}
,

(23)

with rescaled Ṽ = V/T ∗, T̃ = T/T ∗, ω̃ = ω/T ∗ as before.
In particular, at zero bias,

I (V = 0,T ,x) = πiT̃

cosh2
(

x
2

) . (24)
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FIG. 7. (Color online) Conductance G̃L
c (V,T ) ≡

GL
c (V,T )/(2e2h−1GL

0 ) vs bias V and temperature T for λ1 > 0.
Black lines connect regions of constant conductance. Light colors
correspond to high conductance near the FL FP, dark colors
correspond to lower conductance near the NFL FP.

A color plot of conductance G̃α
c (V,T ) along the NFL to

FL crossover is shown in Fig. 7, for the representative case of
λ1 > 0. The black lines connect regions of equal conductance.
In the FL regime V,T � T ∗, the quadratic form of Eq. (16)
thus yields a simple ellipse, while in the NFL regime there is a
pronounced V -T anisotropy. The detailed behavior of Eq. (22)
is seen on taking cuts through Fig. 7 at constant V and T , as
shown in Fig. 8.

Returning to the 2CK quantum dot system of Ref. 24, we
comment now on the possible strength of symmetry-breaking
perturbations present in the experiment. Due to the Coulomb
blockade physics of the quantum box, interchannel charge
transfer was effectively suppressed. In the absence of a
magnetic field, the dominant perturbation is thus channel
anisotropy, 	z [see Eq. (3)]. The experiment showed24 2CK
scaling of conductance around TK , but no FL crossover at
T ∗. This implies T ∗ � T � TK—see, for example, Fig. 3 for
T/T ∗ = 100, which shows little sign of the crossover. Since
T/TK ≈ 0.1 in the experiment and taking T/T ∗ > 100, from
Eq. (8) and Table I it follows that c1ν	z could be at most ∼0.03
[c1 = O(1) depends on details of the model/device setup]. The
observed 2CK physics is thus an impressive testament to the
tunability and control available in such quantum dot devices.
Having presented our main results and discussed their physical
implications, we turn in the following sections to the formal
derivation.

FIG. 8. (Color online) Conductance G̃L
c (V,T ) ≡

GL
c (V,T )/(2e2h−1GL

0 ) arising for finite λ1. (Top) Conductance
vs temperature T/T ∗ for V/T ∗ = 10−1,1,10,102, approaching
G̃L

c = 1/2 from above (λ1 > 0) or below (λ1 < 0). Circles show
the exact zero-bias result. (Bottom) Conductance vs bias V/T ∗ for
T/T ∗ = 10−1,1,10,102. Diamonds show zero-temperature result.

III. EXACT T = 0 CROSSOVER GREEN FUNCTION IN
THE 2IK MODEL

Our goal is an exact expression for the NFL to FL crossover
t matrix, which is related to the electron Green function. In
Ref. 26, we calculated the crossover at T = 0; further details
of that calculation are presented here, providing as they do the
necessary foundations for our generalization of the results to
finite temperature.

A. Fixed point Hamiltonians and Green functions

The structure of the NFL fixed point Hamiltonian of the
2IK model allows for an elegant description of the NFL to
FL crossover.26 Before presenting that derivation, we discuss
first some relevant preliminaries that will be of later use. In
particular, we consider now the representation of the fixed
point Hamiltonians within CFT and the structure of the
corresponding Green functions.

Our starting point is a description of the free conduction
electron Hamiltonian H0 in terms of chiral Dirac fermions. A
1D quadratic dispersion relation ε(
k) ≡ εk = k2/2m − εF can
be linearized near the Fermi points k = ±kF , εk � ±vF (k ∓
kF ) (with vF the Fermi velocity). This is the standard case1

and applies to arbitrary dimension within the assumption that
the bare density of states is flat at low energies.45 Conduction
electron operators can be Fourier transformed and expanded
near the Fermi points, focusing on states within width
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2D � vF kF around εF :

�σα(x) =
∑

k

eikxψkσα

∼= eikF x

kF +D/vF∑
k=kF −D/vF

ψkσαei(k−kF )x + (kF → −kF ).

(25)

We thus define left and right movers,45

ψ(l,r)σα(x) =
D/vF∑

k=−D/vF

eikxψk∓kF ,σα, (26)

defined for x � 0, with x the distance from the impurities
located at the “boundary” x = 0. With a boundary condi-
tion ψr,σα(0) = ψl,σα(0), we introduce a single left-moving
chiral Dirac fermion for all x, ψσα(x) = θ (x)ψl,σα(x) +
θ (−x)ψr,σα(−x). Since the new operators satisfy the usual
fermionic anticommutation relations {ψ†

σα(x1),ψσ ′α′ (x2)} =
δσσ ′δαα′δ(x1 − x2), the free Hamiltonian H0 can be expressed
as a chiral Hamiltonian,45

H0 = vF

∑
σ,α

∫ ∞

−∞
dxψ†

σαi∂xψσα. (27)

Hereafter, we set vF ≡ 1 [and the Fermi level density of states
is then ν = 1/(2πvF ) ≡ 1/(2π )].

The free electron Green function then follows as46

〈ψσα(τ,x1)ψ†
σ ′α′ (0,x2)〉0 =

1
2π

π
β
δσσ ′δαα′

sin[ π
β

(τ + ix1 − ix2)]

≡ δσσ ′δαα′G0(τ,x1 − x2), (28)

where τ is imaginary time. The corresponding Matsubara
Green function is then defined by the transformations

G0(τ,x1 − x2) = 1

β

∑
n

e−iωnτG0(x1 − x2,iωn),

G0(x1 − x2,iωn) =
∫ β/2

−β/2
dτeiωnτG0(τ,x1 − x2), (29)

with Matsubara frequencies ωn = π
β

(1 + 2n) for integer n, and
where β = 1/kBT is inverse temperature. Direct evaluation of
Eq. (29) using Eq. (28) then yields simply,

G0(x1 − x2,iωn) = ieωn(x1−x2)δσσ ′δαα′ [θ (ωn)θ (x2 − x1)

− θ (−ωn)θ (x1 − x2)]. (30)

Of course, the interesting behavior arises when coupling
to the impurities is switched on. As usual,1 the full Green
function is related to the t matrix via

G(x1,x2,iωn) = G0(x1 − x2,iωn)

+G0(x1,iωn)T (iωn)G0(−x2,iωn), (31)

where G, G0, and T are 4 × 4 matrices with indices taking
the values σα =↑ L, ↓ L, ↑ R, ↓ R. In particular, it should
be noted that the t matrix is local. Equations (30) and (31)
also imply that if x1 and x2 have equal sign then the full Green
function reduces to the free Green function, reflecting the chiral

nature of the Dirac fermion, Eq. (27). Since all such fermions
are now left moving, information about scattering from the
impurities located at the boundary x = 0—and hence the t

matrix—is obtained from the full Green function with x1 and
x2 located on opposite sides of the boundary.

The free Green function (28) is naturally obtained at
FPs where the free boundary condition pertains. But at
any conformally invariant FP, the powerful machinery of
boundary CFT gives nonperturbative information about the
Green function. Specifically, when the boundary condition
is obtained from fusing with some primary field a, then
correlation functions are given generically by32

〈Od (τ,ix1)O†
d (0,ix2)〉 =

Sd
a /Sd

0

S0
a /S0

0

(τ + ix1 − ix2)2d
, (32)

where d is the scaling dimension of the primary field O and Sa
j

are elements of the modular S matrix.32 Using the conformal
mapping from the plane to the cylinder with circumference β,
one obtains32 the generalization to finite temperature T = β−1,

〈Od (τ,ix1)O†
d (0,ix2)〉 =

Sd
a /Sd

0

S0
a /S0

0{
β

π
sin[ π

β
(τ + ix1 − ix2)]

}2d
.

(33)

In the present context, we are interested in the electron
Green function at the conformally invariant free fermion, NFL,
and FL FPs of the 2IK model. With O = ψσα the d = 1/2
fermion field, the full FP Green functions takes the form23

GBCFT
σα,σ ′α′(τ,x1 − x2) =

1
2π

π
β
Sσα,σ ′α′

sin
[

π
β

(τ + ix1 − ix2)
] , (34)

where S can be understood as the one-particle to one-particle
scattering matrix and can be calculated from the modular
S matrix in the case of boundary conditions obtained by
fusion.32 Thus the effective FP theory is identical to that of
the free theory discussed above, but with a modified boundary
condition that determines the scattering matrix S.

Choosing x1 > 0 and x2 < 0 in Eq. (31) yields iT = 1 −
S, or equivalently tσα = 1

2 (1 − ReSσα,σα), where the above
convention ν = 1/(2π ) was used. At an FL FP, the scattering
matrix is unitary,1 S†S = 1, and as such describes purely
elastic scattering. By contrast, at the NFL FP of the 2IK
model, it has been shown23 that S = 0, which implies fully
inelastic scattering: a single electron sent in to scatter off the
impurities decays completely into collective excitations, and
no single-particle state emerges. Such behavior is manifest
by a half-unitarity spectrum, tσα = 1/2. However, along a
crossover between FPs, the Green function does not, in general,
take the form of Eq. (34).

B. S0(8) Majorana fermion representation

Further insight into the FPs of the 2IK model is provided
by a representation in terms of Majorana fermions (MFs).
Considering again the free theory described by H0, four
nonlocal fermions can be defined by Abelian bosonization and
refermionization17,27,47 of the four original Dirac fermions ψσα

with spin σ =↑ , ↓ and channel index α = L,R. 8 MFs are
then obtained by taking the real and imaginary part of each.
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Specifically, four bosonic fields φσα are defined, viz.,

ψσα ∼ Fσαe−iφσα , (35)

where Fσα are Klein factors.48 Linear combinations of these
bosonic fields are then used to construct new fields,

{φc,φs,φf ,φX} = 1

2

∑
σα

φσα{1,(−1)σ+1,(−1)α+1,(−1)σ+α},

(36)

where σ ≡↑ , ↓= 1,2 and α ≡ L,R = 1,2. Refermionizing
yields

ψA ∼ FAe−iφA (A = c,s,f,X), (37)

where the Klein factors FA are related to Fσα as described in
Appendix C. Thus four new fermionic species ψA are defined,
with A = c,s,f,X corresponding to “charge,” “spin,” “flavor,”
and “spin flavor.” The real and imaginary parts of each,

χA
1 = ψ

†
A + ψA√

2
, χA

2 = ψ
†
A − ψA√

2i
, (38)

fulfill the Majorana property (χA
i )† = χA

i and sat-
isfy separately the fermionic anticommutation relation
{(χA

i )†(x),χB
j (x ′)} = δij δABδ(x − x ′), and so are referred to

as MFs.
The free-fermion FP Hamiltonian [corresponding to

Eqs. (1) and (2) with J = 0 and δH = 0] then follows as

HFP = i

2

∫ ∞

−∞
dx 
χ (x) · ∂x 
χ(x), (39)

where 
χ ≡ {χX
2 ,χ

f

1 ,χ
f

2 ,χs
1 ,χs

2 ,χX
1 ,χc

1 ,χc
2 }, and the scattering

states are defined by the trivial boundary condition 
χ (x) =

χ (−x)|x→0. The fixed point thus possesses a large SO(8)
symmetry in terms of these MFs.

Likewise, the FL FP Hamiltonian (in which the impurity
degrees of freedom are quenched) is similarly described by
Eq. (39). The corresponding boundary condition is encoded in
the single-particle FL scattering S matrix Sσα,σ ′α′ . Although it
depends on the specific perturbations generating the crossover,
the boundary condition is thus trivial at the FL FP. In particular,
finite detuning K > Kc results in 
χ (x) = 
χ (−x)|x→0, as
obtained at the free fermion FP.

The remarkable fact is that the NFL FP Hamiltonian
also takes the form of Eq. (39), and its nontrivial boundary
condition23 is again simple in terms of the MFs. It can
be accounted for by defining the scattering states χX

2 (x) =
−χX

2 (−x)|x→0, and χA
j (x) = χA

j (−x)|x→0 for (j,A) �= (2,X).
Thus seven of the eight MFs are described by the free theory
at the NFL FP.

C. Bose-Ising decomposition

The FP Hamiltonian (39) describes a higher SO(8) symme-
try than is present in the original Hamiltonian. The explicit
symmetries of the 2IK model also allow a separation of
the theory into different symmetry sectors. Specifically, the
SU(2)1 × SU(2)1 × SU(2)2 × Z2 symmetry sectors comprise
a Bose-Ising representation,23 describing a coset construction
of three Wess-Zumino-Witten (WZW) nonlinear σ models,

together with a Z2 Ising model. The two SU(2)1 theories
with central charge c = 1 correspond to conserved charge in
the left and right channels. The SU(2)2 theory with c = 3/2
corresponds to conserved total spin. Finally, the Ising model
Z2 is a c = 1/2 theory corresponding to a single MF. This
non-Abelian representation is connected with the eight MFs, as
discussed in Ref. 47. The symmetry “currents” of those sectors,
such as the spin current 
J (x) = ψ†(x) 
σ

2 ψ(x), are represented
quadratically in terms of MFs as described in Appendix C.
Specifically, the SU(2)1 × SU(2)1 charge currents in left and
right channels are represented in terms of 4 MFs {χf

1 ,χ
f

2 }
and {χc

1 ,χc
2 }, while the SU(2)2 spin current 
J is represented

in terms of three MFs, 
χs = {χs
1 ,χs

2 ,χX
1 }. The Z2 theory

corresponds to the remaining MF, χX
2 .

The important implication for our purposes is that the Green
function can be factorized into pieces coming from different
sectors associated with the various MFs. We now exploit the
above Bose-Ising construction,23 in terms of which the fermion
field can be expressed by the bosonization formula,

ψσα(x) ∝ [hα]1(x)gσ (x)σL(x). (40)

Here, the dimension d = 1/2 fermion field has been decom-
posed into a dimension dh = 1/4 factor [hα]1 representing the
α = L,R spin-1/2 primary field of the SU(2)1 charge theories,
a dimension dg = 3/16 factor (gσ ) representing the spin-1/2
primary field of the SU(2)2 spin theory, and the dimension
dσ = 1/16 factor σL originating from the Ising sector. The
subscript L emphasizes that σL is only the left-moving chiral
component of the full spin operator σ of the Ising sector, arising
here because ψσα is the chiral left-moving fermion field. Since
the NFL FP of the 2IK model is conformally invariant,23 we
may use Eqs. (40) and (33) to determine the contribution to
the full Green function coming from each of the sectors:

GNFL
σα,σ ′α′(τ,x1 − x2) ∝ δσσ ′δαα′ [G0(τ,x1 − x2)]

7
8

×〈σL(τ,ix1)σL(0,ix2)〉. (41)

The free boundary condition in the charge and spin sectors
yields the first factor, corresponding to the free Green
function Eq. (28) but with power 2(dh + dg) = 7/8 arising
because seven of the eight MFs are associated with these
sectors. The NFL boundary condition is expressed in terms
of fusing with the dσ = 1/16 field σL from the Ising sec-
tor in Eq. (40). The second factor thus comes from the
remaining Ising sector. At the NFL FP it follows from

Eq. (33) that 〈σL(τ,ix1)σL(0,ix2)〉 =
(

S
1/16
1/16 /S

1/16
0

S0
1/16/S

0
0

)
[G0(τ,x1 −

x2)]
1
8 . Since the modular S matrix for fusion with the a =

1/16, Ising operator has a vanishing element S
1/16
1/16 = 0, the

entire Green function thus vanishes at the NFL FP;23 consistent
with Eq. (34) with Sσα,σ ′α′ = 0.

In summary, the nontrivial boundary condition at the NFL
FP affects only the Ising sector of the 2IK model. The function
〈σL(τ,ix1)σL(0,ix2)〉 in Eq. (41) is a quantity pertaining to
the Z2 Ising model and contains the nontrivial physics; while
the spin and charge sectors are simply spectators. In the
next section, we exploit Eq. (41) and a connection23 between
the 2IK and a classical Ising model to determine the Green
function along the crossover from the NFL FP to the FL FP.
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D. Crossover due to K �= Kc in the 2IK model

As highlighted above, the NFL FP of the 2IK model
is described by the free theory in all sectors except the
Ising sector, which takes a modified boundary condition.
When the small perturbation λ1 is included (corresponding to
detuning K �= Kc), the NFL FP is destabilized. The effective
Hamiltonian in the vicinity of the NFL FP is then HQCP =
HFP[ 
χ ] + δHQCP, with HFP the FP Hamiltonian itself, given
in Eq. (39) and parametrized in terms of the scattering states

χ that encode the boundary condition. The correction is given
by

δHQCP ∝ iλ1χ
X
2 (0)a, (42)

where a is a local MF involving impurity spin operators17 that
satisfies a2 = 1 and anticommutes with all other MFs, χA

j .
The perturbation λ1 thus acts only in the Ising sector.

Indeed, the difference in boundary conditions between the
NFL and FL FPs is also confined to the Ising sector (all other
sectors have free boundary conditions at both FPs). The entire
crossover from NFL to FL FP thus occurs completely within
the Ising sector because the λ1 perturbation does not spoil the
decoupling of the sectors, which becomes exact52 in the limit
T ∗ � TK . The other sectors then act as spectators along the
crossover.

This implies a generalization of Eq. (41) to the full
crossover. One can still interpret the first factor in Eq. (41)
with power 7/8 as the product of autocorrelation functions
of seven spin fields that undergo no change in the boundary
condition. But the σ field originating from the Z2 sector in
the SU(2)1 × SU(2)1 × SU(2)2 × Z2 construction has flowing
boundary condition (which is not conformally invariant).

We consider first the equal-time Green function with x1 =
−x2 positioned symmetrically on either side of the boundary:

〈ψσα(τ,x)ψ†
σ ′α′ (τ, − x)〉 ≡ Gσα,σ ′α′(0,x, − x),

∝ [G0(0,2x)]
7
8 × 〈σL(τ,ix)σL(τ, − ix)〉, (43)

where the factor 〈σL(τ,ix)σL(τ, − ix)〉 now describes the
crossover in the Ising sector in terms of the chiral (left-moving)
Ising magnetization operator σL(τ,ix).

We now use standard boundary CFT methods31 to relate the
two-point chiral function 〈σL(τ,ix)σL(τ, − ix)〉 living in the
full plane [see Fig. 9(b)] to the product of chiral holomorphic
σL(τ + ix) and antiholomorphic σR(τ − ix) operators living
in the half plane with a boundary. But bulk operators in CFT
may be expressed as σ (τ,x) = σL(τ + ix)σR(τ − ix), and
so the desired correlator is simply 〈σL(τ,ix)σL(τ, − ix)〉 =
〈σ (τ,x)〉 in terms of the bulk Ising magnetization operator,
evaluated at a distance x from the boundary [see Fig. 9].
Finally, we note that σ (τ,x) ≡ σ (x) is independent of τ due
to translational invariance along the boundary. The Green
function along the NFL to FL crossover then follows as

Gσα,σ ′α′ (0,x, − x) = δσσ ′δαα′

(
1

8πi

) 1
8

[G0(0,2x)]
7
8 〈σ (x)〉,

≡ Gσα,σ ′α′ (x), (44)

[with the factor (8πi)−1/8 required for normalization]. At
long distances where the Green function describes the FL FP,
Eq. (44) implies 〈σ (x)〉 = (2/x)1/8 as T → 0. We now exploit

ττ

x

(a) (c)(b)

x

xx

z=ix 1

τ

τz =  +ix

τ
2

z*=−ix z =   +ix
22

1 1

FIG. 9. A one-point function of a bulk operator evaluated at
distance x from the boundary in (a) is mapped to the two point
function of the associated chiral fields in the absence of a boundary
shown in (b) and evaluated at image positions with respect to the line
x = 0. (c) Generalization of the two point function away from image
points.

a connection23 between the 2IK model at criticality with a
simpler Ising model to obtain 〈σ (x)〉 and hence the exact Green
function Gσα,σ ′α′ (x) along the NFL to FL crossover.

When a small magnetic field h is applied to the boundary
of a classical Ising model on a semi-infinite plane, the local
magnetization shows a crossover31,32 as a function of distance
from the boundary. The crossover in this boundary Ising model
(BIM) can be understood as an RG flow31,32 from an unstable
FP at short distances (with free boundary condition h = 0), to a
stable FP at large distances (with fixed boundary condition h =
±∞). The universal crossover is characterized by an energy
scale T ∗ ≡ 4πh2 (or a corresponding lengthscale ξ ∗ ∝ 1/T ∗).

Importantly, it was shown in Ref. 23 that the RG flow in the
BIM due to small h at the critical temperature is identical to
the RG flow in the 2IK model due to small detuning K �= Kc

at T = 0. As such, the NFL and FL FPs of the 2IK model can
be understood in terms of the BIM FPs with free and fixed
boundary conditions. The crossover energy scale in the 2IK
model can then be identified as

T ∗ = c2
1(K − Kc)2

TK

≡ λ2
1 : 2IK,

= 4πh2 : BIM, (45)

with c1 = O(1) as in Table I.
In Ref. 33, Chatterjee and Zamolodchikov derived an exact

expression for the Ising magnetization 〈σ (x)〉 on the semi-
infinite plane geometry in the continuum limit. Their result33

is

〈σ (x)〉CZ = ±(2/x)1/8
√

8h2xe4πh2xK0(4πh2x), (46)

with K0 the modified Bessel function of the second kind;
and ± for h ≷ 0. We take now h > 0 (corresponding to K >

Kc) for concreteness. Note that Eq. (46) yields asymptotically
〈σ (x)〉 = (2/x)1/8 at long distances x → ∞, consistent with
the normalization of Eq. (44).

We now show that the analyticity of the Green function
and the local nature of the Kondo interaction implies a
generalization of Gσα,σ ′α′(x) in terms of spatial coordinate
x [see Fig. 9(b)], to Gσα,σ ′α′(z1 − z2) ≡ 〈ψσα(z1)ψ†

σ ′α′(z2)〉
in terms of general complex coordinates z1 = τ + ix1 and
z2 = ix2 [see Fig. 9(c)]. Using the free chiral Green function
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Eq. (30) in the definition of the t matrix Eq. (31), one obtains

Gσα,σ ′α′(x1,x2,iωn) = −δσσ ′δαα′θ (−ωn)

× eωn(x1−x2)[i + Tσα,σ ′α′(iωn)], (47)

where x1 > 0 and x2 < 0 as before, and the t matrix is local
in space.

The Matsubara transform then yields

Gσα,σ ′α′(τ,x1,x2) = −δσσ ′δαα′

β

∑
n

θ (−ωn)

×e−iωn(τ+ix1−ix2)[i + Tσα,σ ′α′(iωn)]

≡ Gσα,σ ′α′

(
z1 − z2

2i

)
. (48)

Thus the Green function only depends on (z1 − z2). This is a
somewhat counterintuitive result, because the boundary breaks
the translational invariance along the spatial coordinate x.
In Appendix B 1, we give an alternative proof, showing that
Eq. (48) holds to all orders in perturbation theory around the
NFL FP.

Comparing Eqs. (48) and (44), it follows
that Gσα,σ ′α′ (0,x, − x) = Gσα,σ ′α′ (τ,x1,x2) when
x = (z1 − z2)/(2i). Employing this substitution in Eqs.
(44) and (46), then taking the Matsubara transform, we obtain

Gσα,σ ′α′ (x1,x2,iωn) = δσσ ′δαα′

∫ ∞

−∞
dτ

(
eiωnτ

4πix

)

×
√

8h2xe4πh2xK0(4πh2x), (49)

where we have used β → ∞ as appropriate for Eq. (46), and so
ωn = π

β
(1 + 2n) is continuous. Setting x1 = 0+ and x2 = 0−,

we define the infinitesimal δ = x1 − x2 > 0, such that x =
τ+iδ

2i
. With the integral representation of the Bessel function

K0(z) = e−z
∫∞

0 dk e−2kz√
k(k+1)

(for Rez > 0), we obtain

Gσα,σ ′α′(0+,0−,iωn) = δσσ ′δαα′

π
√

i
h

∫ ∞

0
dk

g(ωn + 4πh2k)√
k(k + 1)

,

(50)

with the integral over τ evaluated by contour methods,

g(z) =
∫ ∞+iδ

−∞+iδ

dτ
eizτ

√
τ

= θ (−z)

√
4πi

z
. (51)

For negative Matsubara frequencies ωn < 0, the Green func-
tion then follows as

Gσα,σ ′α′(0+,0−,iωn) = δσσ ′δαα′

πi

∫ − ωn

4πh2

0

dk√
k(k + 1)

(− ωn

4πh2 − k
)

≡ δσσ ′δαα′
2

πi
K

(
ωn

4πh2

)
, (52)

where the k integral has been expressed more simply in the
last line in terms of the complete elliptic integral of the first
kind, K(z) = ∫ π/2

0
dθ√

1−z sin2 θ
= ∫ 1

0
dt√

(1−t2)(1−zt2)
.

Since K(z) has a branch cut discontinuity in the complex
z plane running from 1 to ∞, the analytic continuation to
real frequencies, iωn → ω + i0+ can be performed without
crossing any singularity. Thus, if one has Gσα,σ ′α′ (x) as an
analytic function of spatial coordinate x [as in Eq. (44)], then

a full knowledge of both space and time dependencies of the
Green function is implied by analytic continuation.

Using Eq. (31), one recovers our earlier result26 for the
T = 0 crossover t matrix in the 2IK model due to perturbation
K �= Kc,

2πiνTσα,σ ′α′ (ω,T = 0) = δσσ ′δαα′

[
1 ∓ 2

π
K(−iω/T ∗)

]
,

(53)

in terms of T ∗ ≡ 4πh2 [and with ν = 1/(2π ) as before]. Here,
∓ is used for K ≷ Kc, corresponding to local singlet or Kondo
screened phases of the 2IK model, respectively. Eq. (53) is thus
equivalent to Eqs. (9) and (13) with the scattering S matrix
Sσα,σ ′α′ = ±δσσ ′δαα′ . In the next section, we generalize these
results to finite temperature.

IV. DERIVATION AT FINITE TEMPERATURES

Our starting point for the derivation of the finite-
temperature crossover Green function is Eq. (44). Gσα,σ ′α′(x)
thus follows from the Ising magnetization 〈σ (x,β)〉 evaluated
at temperature T ≡ β−1. In Ref. 43, we considered the
magnetization at temperature β−1 and distance x from the
boundary in a quantum 1D transverse field Ising critical chain,
with a magnetic field h applied to the first spin at the point
boundary. It is given by

〈σ (x,β)〉 = f (βh2) × 〈σ (x,β)〉LLS, (54)

with

f (βh2) =
√

2βh2
�
[

1
2 + 2βh2

]
�[1 + 2βh2]

, (55)

and where

〈σ (x,β)〉LLS =
(

4π
β

sinh 2πx
β

) 1
8

×2F1

(
1

2
,
1

2
; 1 + 2βh2,

1 − coth 2πx
β

2

)
, (56)

is the result of Leclair, Lesage, and Saleur (LLS) in
Ref. 34, who generalized the T = 0 result of Chatterjee and
Zamolodchikov33 for the semi-infinite plane geometry [see
Eq. (46)] to the geometry of a semi-infinite cylinder with
circumference β, and magnetic field h > 0 applied to the
circular boundary. The latter is equivalent to the quantum
Ising chain with transverse field. We showed43 that while
〈σ (x,β)〉LLS gives the full and highly nontrivial x dependence
of 〈σ (x,β)〉, it misses the multiplicative scaling function of the
variable βh2, given in Eq. (55).

In the low-temperature limit β → ∞, one obtains
f (βh2) → 1 and

2F1

(
1

2
,
1

2
; 1 + 2βh2,

1 − coth 2πx
β

2

)
β→∞→

(8h2x)1/2e4πh2xK0(4πh2x), (57)

such that Eqs. (54) and (56) reduce as they must to Eq. (46). In
the limit h → ∞, one recovers the fixed boundary condition,
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describing the FL fixed point. Again, f (βh2) → 1 but Eq. (56)
reduces now to

〈σ (x,β)〉LLS
h→∞→

(
4π
β

sinh 2πx
β

) 1
8

. (58)

This limiting behavior can also be obtained using the con-
formal mapping from the semi-infinite plane geometry with
boundary Imz = 0, to the semi-infinite cylinder geometry
parametrized by Rez′ ∈ (−β/2,β/2), with boundary Imz′ =
0,

z = tan

(
πz′

β

)
. (59)

On the semi-infinite plane, the Ising magnetization in the limit
h → ∞ is known32 to decay as 〈σ (x)〉 = (2/x)1/8, yielding
precisely Eq. (58) on the semi-infinite cylinder.

Combining Eqs. (44), (54)–(56), we obtain the crossover
Green function at finite temperature,

Gσα,σ ′α′ (x) = δσσ ′δαα′

√
2βh2

2βi sinh( 2πx
β

)

�[ 1
2 + 2βh2]

�[1 + 2βh2]

× 2F1

(
1

2
,
1

2
; 1 + 2βh2,

1 − coth 2πx
β

2

)
. (60)

For h → ∞, this gives correctly Gσα,σ ′α′ (0,x, − x) ≡
GFL

σα,σ ′α′ (0,x, − x) = 1/[2βi sinh( 2πx
β

)], as expected from the
boundary CFT result for the FL FP Green function, Eq. (34)
(with Sσα,σα = 1).

Of course, the function f (βh2) does become important
when considering the behavior of the Green function over the
entire range of βh2 (or equivalently, T/T ∗). In particular, at
high temperatures β → 0 (and finite h), one obtains f (βh2) →
0. Thus Gσα,σ ′α′(0,x, − x) ≡ GNFL

σα,σ ′α′ (0,x, − x) = 0, again
correctly recovering the known boundary CFT result23 for
the NFL FP Green function (34) (with Sσα,σ ′α′ = 0). The
factor f (βh2) is indeed necessary to cancel the unphysical
logarithmic divergence of 〈σ (x,β)〉LLS as β → 0 (see also
Appendix A).

A. Ambiguities in analytic continuation at finite T

The quantity of interest is of course the t matrix T (iωn),
related via Eq. (31) to the Matsubara Green function, itself
obtained from Eq. (60) via

G↑L,↑L(x1,x2,iωn) =
∫ β/2

−β/2
dτeiωnτG↑L,↑L

(
z1 − z2

2i

)
, (61)

with z1 = τ + ix1 and z2 = ix2 as usual. Using the integral
representation of the hypergeometric function,

2F1(a,b; c; z) = �[c]

�[b]�[c − b]

∫ 1

0
dt

tb−1(1 − t)c−b−1

(1 − tz)a
, (62)

we then obtain

G↑L,↑L(0+,0−,iωn) =
√

2βh2

8π3/2i

∫ 1

0
dt

(1 − t)2h2β− 1
2√

t
An, (63)

where

An =
∫ β/2

−β/2
dτe

iπτ
β

(2n+1)

4π
β

sinh
[

π
β

(δ−iτ )
]

√
1 − t

1−coth
[

π
β

(δ−iτ )
]

2

, (64)

for x1 = 0+ and x2 = 0− such that δ = x1 − x2 > 0, and with
n = βωn

2π
− 1/2 a negative integer. Using contour integration,

it can be shown that

An = 8π3/2(−1)n+1 (1 − t)−n−1

�(−n)�
(

3
2 + n

)
× 2F1

(
1

2
,1 + n,

3

2
+ n,

1

1 − t

)
. (65)

However, the naive substitution iωn → ω (or n → βω

2πi
− 1

2 ) is
problematic here and leads to unphysical divergences. Indeed,
such analytic continuation always involves ambiguities due
to the fact that (−1)2n = 1 on the integers, but it becomes
−eβω upon analytic continuation. Thus it is hard to find the
function G↑L,↑L(0+,0−,iωn) that gives the physical analytic
continuation.

B. Finite-T Green function from Friedel oscillations

Equation (60) describes the chiral electron Green function
Gσα,σ ′α′ (x) ≡ 〈ψσα(x)ψ†

σ ′α′(−x)〉. The information contained
in such Green functions is directly linked to the physical
density oscillations around impurity (Friedel oscillations),
which in turn can be calculated from the t matrix, T (ω).35,49,50

Indeed, in Ref. 35, the real-space densities and hence Green
function Gσα,σα(x) for the NFL to FL crossover in the 2CK
model was explicitly calculated at T = 0 using the exact t
matrix announced in Ref. 26. It was also highlighted35 that
far from the impurity, the integral transformation relating the
t matrix to the Friedel oscillations can be inverted.

In this section, we exploit these connections to calculate
T (ω) directly from the density oscillations described by
Gσα,σα(x), and thus circumvent the need for problematic
analytic continuation. For simplicity, we restrict ourselves
to 1D in this section; although we note that the resulting
t matrix is general, because at low energies, the standard
flat band situation of most interest is recovered. The den-
sity of the 1D fermion field �(x) at position x is given
by ρ(x) = 〈�†(x)�(x)〉. Expanding around the left (l) and
right (r) Fermi points at low energies using Eq. (26), one
obtains

�(x) = ψr (x)eikF x + ψl(x)e−ikF x, (66)

with the oscillating part of the density following as

ρosc(x) = 1
2e2ikF x〈ψ†

l (x)ψr (x) − ψr (x)ψ†
l (x)〉 + H.c. (67)

In the presence of particle-hole symmetry, ρ(x) = 1/2 for all
x (with lattice spacing set to unity), and there are no density
oscillations, ρosc(x) = 0. However, an introduction of potential
scattering breaks particle-hole symmetry and leads generically
to real-space density oscillations, which contain information
about the t matrix. Such potential scattering produces a phase
shift δP at the Fermi energy, independent of the underlying
Kondo physics, but which does modify the boundary condition
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at x = 0, according to ψr (0) = e2iδP ψl(0). As before, we
define a chiral left-moving field on the infinite line, but now
take into account this change in the boundary condition:

ψ(x) = ψl(x)θ (x) + e−2iδP ψr (−x)θ (−x). (68)

Using the imaginary time ordering of the chiral Green
function defined in Eq. (44), we have G(−x + i0+) =
〈ψ(−x)ψ†(x)〉 and G(−x − i0+) = −〈ψ†(x)ψ(−x)〉, from
which it follows that

ρosc(x) = −1

2
e2ikF x+2iδP

× [Gσα,σα(−x −i0+) + Gσα,σα(−x+i0+)]+H.c..

(69)

The oscillating part of the density given by Eq. (69) can
also be obtained35,49,50 from the t matrix. Generalizing to finite
temperatures, we have

ρosc(x) = − 1

π

∫ ∞

−∞
dωf (ω,T )

×Im{[G0(ω,x)]2Tσα,σα(ω,δP )}, (70)

where f (ω,T ) is the Fermi function, G0(ω,x) is the free
Green function Eq. (28) as a function of real frequency ω,
and Tσα,σα(ω,δP ) is the scattering t matrix, defined in the
presence of the potential scattering. As shown in Ref. 50, at
low energies,

2πνTσα,σα(ω,δP ) = e2iδP [2πνTσα,σα(ω) + i] − i (71)

in terms of the desired t matrix defined without the po-
tential scattering. Indeed, far from the impurity one obtains
asymptotically50

[G0(ω,x)]2 = − 1

v2
F

e2ikF x+2iωx/vF . (72)

The oscillating part of the density can then be expressed as

ρosc(x) = 1

4πv2
F

∫ ∞

−∞
dω[1 − 2f (ω,T )]e2ikF x+2iδP +2iωx/vF

×
[
iTσα,σα(ω) − 1

2πν

]
+ H.c. (73)

Comparing now to Eq. (69) and inverting the Fourier transform
by operating on the resulting equations with

∫∞
−∞

dx
π

e−2iωx , we
obtain

2πiνTσα,σα(ω) = 1 − 4πνv2
F

tanh( βω

2 )

∫ ∞

−∞
dxe2iωx/vF

×[Gσα,σα(x − i0+) + Gσα,σα(x + i0+)],

(74)

where Gσα,σα(x) is given as an analytic function in Eq. (60).
We now set vF ≡ 1 and 2πν ≡ 1 as before. Note that the hyper-
geometric function 2F1(a,b,c,z) has a branch cut discontinuity
in the complex z plane running from 1 to ∞. The discontinuity
occurs only in the imaginary part of the function, with
Im2F1(a,b,c,z + i0+) = −Im2F1(a,b,c,z − i0+) for z > 1.
Furthermore, Im2F1(a,b,c,z) = 0 for z � 1. Thus, integrating
symmetrically above and below the real x axis, as per Eq. (74),

amounts to taking only the real part of 2F1(a,b,c,z), whence
we obtain our final result

2πiνTσα,σα(ω) = 1 + 2i
√

2βh2

tanh
(

βω

2

) �
(

1
2 + 2βh2

)
�(1 + 2βh2)

×
∫ ∞

−∞
dx

(
e2iωx

β sinh 2πx
β

)
(75)

× Re 2F1

(
1

2
,
1

2
; 1 + 2βh2,

1 − coth 2πx
β

2

)
.

Using the definition of the crossover scale T ∗ = 4πh2 [see
Eq. (45)], this gives the announced results (9) and (12) for
the 2IK model in the special case of perturbation K > Kc,
where Sσα,σ ′α′ = δσσ ′δαα′ . By simple extension, for K < Kc

(corresponding to h < 0), one obtains the same crossover but
with Sσα,σ ′α′ = −δσσ ′δαα′ . Finally, we note that taking the limit
β → ∞ of Eq. (75) yields correctly Eq. (53). In the next
section, we show that an identical crossover occurs in the 2CK
model due to channel anisotropy.

V. CROSSOVER IN THE 2CK MODEL

The NFL fixed point Hamiltonians of the 2IK and the 2CK
models have the same basic structure.18,19,27,28,47 Although
the underlying symmetries of the 2CK model are different
from those of the 2IK model, the free conduction electron
Hamiltonian can be written in terms of the same MFs in both
cases [see Eqs. (35)–(38)]. The CFT decomposition22 of the
2CK model into U (1) × SU(2)2 × SU(2)2 symmetry sectors
(corresponding to conserved charge, spin, and flavor), can then
be expressed in terms of these MFs: the U (1) theory with
central charge c = 1 consists of a free boson or equivalently
two MFs χc

j (j = 1,2); the spin SU(2)2 theory with c = 3
2

consists of three MFs 
χs = (χs
1 ,χs

2 ,χX
1 ); similarly, the flavor

SU(2)2 theory consists of three MFs 
χf = (χf

2 , − χ
f

1 , − χX
2 ).

The charge, spin, and flavor currents can also be written in
terms of the MFs corresponding to those symmetry sectors, as
given in Eq. (C3) of Appendix C.

In particular, the NFL fixed point Hamiltonian is of the form
of Eq. (39), with a boundary condition that is again simple in
terms of the MFs. In the 2CK model, the NFL physics arises
due to a modification of the boundary condition in the spin
sector only (the free boundary condition pertains in charge
and flavor sectors). The nontrivial boundary condition can
be accounted for by defining the scattering states 
χs(x) =
−
χs(−x) and 
χf (x) = 
χf (−x), χc

j (x) = χc
j (−x) for j = 1,2.

Indeed, the finite-size spectrum at the NFL FP22 can be
understood in terms of excitations of a free Majorana chain.51

The NFL fixed point of the 2CK model is destabilized by
certain symmetry-breaking perturbations. These perturbations
can again be matched to MFs, with the correction to the
NFL fixed point Hamiltonian being of the form of Eq. (42)
in the simplest case of channel anisotropy λ1 ∝ 	z �= 0
(see Table I).22

Importantly, it was shown recently in Ref. 19 that the NFL
fixed points of the 2CK and 2IK model are in fact identical
in the sense that they both lie on the same marginal manifold
parametrized by potential scattering. Indeed, the low-energy
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effective model for the 2IK model in the limit of strong channel
asymmetry is the 2CK model,18,19 but with an additional π/2
phase shift felt by the conduction electrons of one channel.19

For concreteness, we consider now a variant of the standard
2IK model in which channel asymmetry appears explicitly:

H2IK = H0 + JL

SL · 
s0L + JR


SR · 
s0R + K 
SL · 
SR. (76)

One thus recovers Eq. (2) at the symmetric point JL = JR .
In the limit JL � JR , the left impurity is Kondo screened
by the left lead on the single-channel scale T L

K . At energies
∼T L

K , the right impurity is still essentially free. However, it
feels a renormalized coupling to its attached right lead, and
an effective coupling to the remaining Fermi liquid bath states
of the left lead (which suffer a full π/2 phase shift due to the
first-stage Kondo effect in that channel). The relative effective
coupling strengths between left and right channels can be tuned
by the interimpurity coupling K . Tuning K to its critical value
Kc yields the 2CK critical point,18 while deviations K �= Kc

correspond to finite channel anisotropy 	z �= 0 in the effective
2CK model. In consequence, one expects the NFL to FL
crossover in the two models to be simply related.

Since the NFL fixed point itself is the same in both 2CK
and 2IK models (up to potential scattering),19 and because
the correction to the fixed point Hamiltonian due to the λ1

perturbation is the same,22,23 the RG flow along the NFL to FL
crossover is identical. To calculate the corresponding crossover
Green function, we simply incorporate the additional π/2
phase shift felt by the left-channel conduction electrons into
our scattering states definition. Using ψ ′

σL(x) = sign(x)ψσL,
one straightforwardly obtains

〈ψσα(z1)ψ†
σ ′α′(z2)〉2CK,	z>0 = 〈ψ ′

σα(z1)ψ ′†
σ ′α′ (z2)〉2IK,K>Kc

= −τ z
αα′Gσα,σ ′α′

(
z1 − z2

2i

)
,

(77)

in terms of the analytic crossover Green function for the 2IK
model given in Eq. (60). Following the steps of Sec. IV B, the
t matrix follows as

2πiνT 2CK
σα,σα(ω) = 1 − τ z

αα′
[
2πiνT 2IK

σα,σα(ω) − 1
]
. (78)

This result was obtained at T = 0 in Ref. 26, where the corre-
spondence was checked by explicit numerical renormalization
group calculation.

In the 2CK model with 	z > 0, the left lead is more strongly
coupled, and completely screens the impurity at the FL FP
on the lowest energy scales, while the right lead decouples
asymptotically. The physical interpretation of Eq. (78) is thus
that a Kondo resonance appears in the spectral function on
the scale of T ∗ in the α = L channel, while the resonance is
destroyed in the α = R channel (hence the dependence on the
flavor-space Pauli matrix τ z

αα′ ).

VI. GENERALIZATION TO ARBITRARY COMBINATION
OF PERTURBATIONS

In Sec. IV, we considered the finite-temperature crossover
Green function in the 2IK model due to the detuning pertur-
bation K �= Kc, while in Sec. V, we calculated the analogous
crossover Green function in the 2CK model due to channel

anisotropy 	z �= 0. In this section, we generalize the results to
an arbitrary combination of perturbations in either model.

A. Flavor rotation in the 2CK model

Before discussing the full calculation, we motivate the
general approach by exploiting a bare symmetry of the 2CK
model, in a simple intuitive example. Unlike the 2IK model,
the 2CK model possesses a bare flavor symmetry [see Eq. (1)].
The perturbations 	x , 	y , and 	z break this symmetry, but
are themselves related by rotations in flavor space.

A canonical transformation of the conduction electron
operators of the bare Hamiltonian is defined, viz.,(

ψkσA

ψkσB

)
= U
(

ψkσL

ψkσR

)
, (79)

such that the unitary matrix U satisfies U( 
	 · 
τ )U† = |	|τ z.
With the parametrization 
	 = |	|(sin θ cos φ, sin θ sin φ,

cos θ ), one obtains explicitly U = exp[ θ
2 (− sin φτx +

cos φτy)]. It follows that δH2CK(	x,	y,	z) →
δH2CK(0,0,	̃z), with 	̃2

z = 	2
x + 	2

y + 	2
z [cf. Eq. (8)].

The physical interpretation is that the impurity couples more
strongly to one linear combination of channels than the other.
Thus the perturbations λ1, λ2, and λ3 in Table I are simply
related, and their combined effect enters only through 
λf . In
particular, this implies only one fitting parameter c1 for the
different components of the perturbation 
	 in the 2CK model.

The physical behavior in the case of arbitrary 
λf can now be
understood in terms of the situation where λ1 alone acts using
the flavor rotation Eq. (79). For example, the Green function
〈〈ψkσL; ψ†

k′σL〉〉ω probes the physical channel σα with α = L

in the original basis. Using the transformation Eq. (79), it can
be expressed as

〈〈ψkσL; ψ†
k′σL〉〉ω = 1

2

(
1 + 	z

	̃z

)
〈〈ψkσA; ψ†

k′σA〉〉ω

+ 1

2

(
1 − 	z

	̃z

)
〈〈ψkσB ; ψ†

k′σB〉〉ω,

(80)

in terms of the Green functions in the rotated basis, which
correspond to those calculated for 	̃z only, as considered in
the previous section. It is then easy to show that the t matrix
for arbitrary 
λf is given by

2πiνTσα,σα(ω) = 1 +
∣∣∣∣λ1

λ

∣∣∣∣ [2πiνT̃σα,σα(ω) − 1] (81)

in terms of the t matrix T̃ due to λ1 given in Eq. (78). The
simple rescaling of the spectral function discussed in Sec. II B
and the precise form of Eq. (10) follow immediately.

B. Emergent symmetries

In this section, we make use of the field theoretical
description of the NFL fixed point for both 2CK and 2IK
models in the presence of relevant perturbations.52–54 A large
SO(8) emergent symmetry at the fixed point allows these
perturbations to be related by a unitary transformation, in full
analogy to the method demonstrated explicitly in the previous
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section for the case of the bare flavor symmetry in the 2CK
model.

We express the NFL fixed point Hamiltonian in terms the
free MF scattering states,

HQCP = HFP[ 
χ] + δHQCP, (82)

where HFP[ 
χ ] is given in Eq. (39), and with 
χ a vector of the
eight MFs. As already commented, the structure of the NFL
fixed point Hamiltonian is the same for 2CK and 2IK models;
only the definition to the scattering states is different. To fix
notation, we define

{χ1, . . . ,χ8} = {− sign(x)χX
2 ,χ

f

1 ,χ
f

2 ,χs
1 ,χs

2 ,χX
1 ,χc

1 ,χc
2

}
(83)

for the 2IK model and

{χ1, . . . ,χ8} = {− χX
2 ,χ

f

2 , − χ
f

1 ,sign(x)χs
1 ,sign(x)χs

2 ,

sign(x)χX
1 ,χc

1 ,χc
2

}
(84)

for the 2CK model. With this ordering of components, the
correction to the NFL fixed point due to relevant perturbations
is given by

δHQCP ∝ i

8∑
j=1

λjχj (0)a, (85)

with a a local MF as before. The λ1 perturbation corresponding
to K �= Kc in the 2IK model or 	z �= 0 in the 2CK model was
considered explicitly in Eq. (42). The other coupling constants
are defined in Table I; with the single resulting crossover
energy scale being the sum of their squares, Eq. (8). For a
detailed derivation of Eq. (85), see Refs. 17,52 and 53. The
two MFs χ7,χ8 corresponding to the real and imaginary parts
of the total charge fermion are not in fact allowed in the 2CK
and 2IK models due to charge conservation.

C. Unitary transformations

The crucial observation following from Eq. (85) is that only
the linear combination λ−1∑8

j=1 λjχj (x) of the eight MF
scattering states participates in the crossover. The particular
linear combination depends on the ratios of the various
perturbations (for example, K − Kc, VLR , 
Bs in the 2IK
model).

From Secs. IV and V, we know the crossover Green function
caused by the λ1 perturbation. The strategy is thus to fix the λ1

perturbation as the direction in the eight-dimensional space of
perturbations along which the Green function is known, then
use an SO(8) rotation to obtain the general crossover Green
function.

We search now for a unitary operator UU † = 1 that
transforms the full Hamiltonian with an arbitrary combination
of perturbations into one involving the single perturbation λ1.
Specifically, we demand that

UHFP[ 
χ]U † = HFP[ 
χ],
(86)

UδHQCPU
† = iλχ1(0)a.

This transformation is accomplished by an operator that rotates
the eight-component vector 
χ in the eight-dimensional space
of perturbations. The 28 generators of such rotations are of the

form i
∫

dxχj (x)Ajj ′χj ′ (x), where Ajj ′ is a real antisymmetric
8 × 8 matrix. It is easy to verify that the desired operator
satisfying Eq. (86) is

U = eθ
∫∞
−∞ dxχ1(x)χ⊥(x), (87)

where

θ = arcsin
λ⊥
λ

, λ⊥ =
√

λ2 − λ2
1,

χ⊥(x) = λ−1
⊥
∑
j �=1

λjχj (x). (88)

One can apply this transformation to the expectation value
of an operator written in terms of the original elec-
trons, such as the Green function 〈ψσα(x)ψ†

σ ′α′(x ′)〉HQCP =
〈Uψσα(x)U †Uψ

†
σ ′α′(x ′)U †〉UHQCPU † . The crucial property of

the unitary transformation Eq. (87) is that it acts as a simple
rotation also on the electron fields. This occurs due to the
existence of linear relations between the 28 quadratic forms of
the original electron fields and of the MFs χA

j , as discussed in
Appendix C and Ref. 55.

As a simple relevant example, consider the 2IK model, per-
turbed by a combination of K − Kc and tunneling VLR , such
that only λ1 and λ2 are finite. In this case, the unitary operator

reads U = eθ
∫∞
−∞ dxχ1(x)χ2(x) with λ⊥ = λ2 and λ =

√
λ2

1 + λ2
2.

Using Eq. (83), χ1(x)χ2(x) = −sign(x)χX
2 (x)χf

1 (x). The
quadratic form χX

2 (x)χf

1 (x) is related to a quadratic form for
the original electrons χX

2 (x)χf

1 (x) = − i
2ψ†τ xψ , as shown in

Appendix C. The operator U can now be understood as a
simple rotation of electron fields,

Uψσα(x)U † =
∑
σ ′α′

M
≷
σα,σ ′α′ψσ ′α′ (x), (89)

for x ≷ 0, and where the rotation matrix acts here in flavor
space,

(M≷
σα,σ ′α′ )λ1,λ2 �=0 = δσσ ′

[
δαα′ cos

θ

2
∓ iτ x

αα′ sin
θ

2

]
. (90)

The Green function then follows as

〈ψσα(x)ψ†
σ ′α′ (x ′)〉HQCP =

∑
σ1α1σ

′
1α

′
1

M>
σα,σ1α1

(M<†)σ ′
1α

′
1,σ

′α′

×〈ψσ1α1 (x)ψ†
σ ′

1α
′
1
(x ′)〉UHQCPU † ,

(91)

where x > 0 and x ′ < 0 is assumed. In terms of complex
coordinates z1 = τ + ix1 and z2 = ix2 (with x1 > 0, x2 < 0),
the full Green function 〈ψσα(z1)ψ†

σ ′α′ (z2)〉HQCP is then obtained

from Gσ1α1,σ
′
1α

′
1
( z1−z2

2i
) = −〈ψσ1α1 (z1)ψ†

σ ′
1α

′
1
(z2)〉UHQCPU † , as

given in Eq. (60) for the case of finite λ1 < 0 in the 2IK
model.

Now we define a 4 × 4 unitary Fermi liquid scattering S

matrix for the 2IK model

S2IK
σα,σ ′α′ = −(M> · M<†)σα,σ ′α′ (92)

such that

〈ψσα(z1)ψ†
σ ′α′(z2)〉HQCP = Sσα,σ ′α′Gσα,σα

(
z1 − z2

2i

)
. (93)
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Using Eq. (90), one obtains Sσα,σ ′α′ = −δσσ ′(δαα′ cos θ −
i sin θτ x

αα′ ) = δσσ ′
−λ1δαα′ +iλ2τ

x
αα′

λ
for the case of finite λ1 and

λ2 in the 2IK model; consistent with Eq. (11).
For arbitrary combination of {λ1, . . . ,λ6}, one has

U = e−θ
∫∞
−∞ dxsign(x)χX

2 [λ2χ
f

1 +λ3χ
f

2 +
λB · 
χs ]/λ⊥

(94)
= ei θ

2

∫∞
−∞ dxsign(x)ψ†[λ2τ

x+λ3τ
y+(
λB ·
σ )τ z]ψ/λ⊥ .

From Eq. (89), it then follows that

M≷ = cos
θ

2
∓ i sin

θ

2

[
λ2τ

x + λ3τ
y + (
λB · 
σ )τ z

λ⊥

]
, (95)

(suppressing spin and channel indices). Using Eq. (92), we
recover our final result for the 2IK model, Eq. (11).

Following the same steps for the 2CK model [and noting
Eq. (77)], we obtain

S2CK
σα,σ ′α′ = −(M>τzM<†)σα,σ ′α′ (96)

with

M≷ = cos
θ

2
− i sin

θ

2

[
λ2τ

y − λ3τ
x ± (
λB · 
σ )τ z

λ⊥

]
, (97)

yielding precisely Eq. (10) for the 2CK model.

VII. NUMERICAL RENORMALIZATION GROUP

Wilson’s numerical renormalization group4 (NRG) has
been firmly established as a powerful technique for the accurate
solution of a wide range of quantum impurity problems.5

Its original formulation provided access to numerically exact
thermodynamic quantities for the Kondo4 and Anderson
impurity56 models. An increase in available computational
resources subsequently allowed straightforward extension to
multi-impurity and multichannel systems.5

More recently, the identification of a complete basis within
NRG (the “Anders-Schiller basis” comprising discarded states
across all iterations57) has permitted rigorous extension to
calculation of dynamical quantities. In particular, equilibrium
spectral functions can be calculated using the full density
matrix approach,58,59 yielding essentially exact results at zero-
temperatures on all energy scales. Although discrete NRG
data must be broadened to produce the continuous spectrum,59

artifacts produced by such a procedure are effectively elimi-
nated by averaging over several interleaved calculations (the
so-called z trick60). Indeed, resolution at high-energies can be
further improved by treating the hybridization term exactly.61

Our exact analytic results were tested and confirmed by
comparison to NRG at T = 0 in Ref. 26.

Due to the logarithmic discretization of the conduction band
inherent to NRG,4 finite-temperature dynamical information
cannot however be captured59 on the lowest energy scales
|ω| � T . But spectral functions for |ω| > T are accurately
calculated, and the total normalization of the spectrum is
guaranteed,59 implying that the total weight contained in
the spectrum for |ω| < T can be deduced. From a scaling
perspective, one expects RG flow to be cut off on the energy
scale |ω| = O(T ), so that there should be no further crossovers
in spectral functions for |ω| < T . The somewhat arbitrary
strategy59 commonly employed is thus to smoothly connect

the spectrum calculated at ω ≈ ±T , in such a way as to
preserve the total weight. Our exact finite-temperature results
for the crossover t matrix of the 2CK and 2IK models thus
offers the perfect opportunity to benchmark NRG calculations
for interacting systems exhibiting a nontrivial temperature
dependence of their dynamics.

For concreteness, we consider now the 2CK model with
channel-anisotropy 	z > 0 [see Eqs. (1) and (3)]. To obtain
the numerical results, we discretize flat conduction bands of
width 2D logarithmically using � = 5, and retain 8000 states
per iteration in each of z = 6 interleaved NRG calculations.5

All model symmetries are exploited.
To ensure the desired scale separation T ∗ � TK , we

take representative νJ = 0.15 and small 2ν	z = 10−6,
yielding TK/D = 2 × 10−3 and T ∗/D = 9 × 10−14 [TK ∼
D exp(−1/νJ ) is defined in practice here from the t matrix
(6), tσα(ω = TK,T = 0) = 1/4, T ∗ is defined according to
Eq. (9), corresponding here to tσα(ω = T ∗,T = 0) � 0.95].
From Eq. (8) and Table I, we thus obtain c1 ≈ 14. The t matrix
for this 2CK model can be expressed as

Tσα,σ ′α′ (ω,T ) = δσσ ′δαα′

(
Jα

2

)2

G̃α(ω,T ) (98)

with Jα = J ± 1
2	z for α = L,R, where

G̃α(ω,T ) = 〈〈Ŝ−ψ0↓α + Ŝzψ0↑α; Ŝ+ψ
†
0↓α + Ŝzψ

†
0↑α〉〉ω,T .

(99)

As usual 〈〈Â; B̂〉〉ω,T is the Fourier transform of the retarded
correlator 〈〈Â(t1); B̂(t2)〉〉T = −iθ (t1 − t2)〈{Â(t1),B̂(t2)}〉T .
The alternative expression given in Ref. 12 is

πνTσα,σα(ω,T ) = −i

[
1 +
(

2

πνJα

)2
Gα(ω,T )

G̃α(ω,T )

]−1

,

(100)

where Gα(ω,T ) = 〈〈ψ0σα; ψ†
0σα〉〉ω,T is the Green function for

the “0”-orbital of the α = L,R Wilson chain.5 Both G̃α(ω,T )
and Gα(ω,T ) can be obtained directly by NRG, but Eq. (100)
gives much better numerical accuracy12 and is employed in
the following. The desired spectral function tσα(ω,T ) is then
obtained from Eq. (6) and is plotted in Fig. 10 as the dotted lines
for temperatures T/T ∗ = 10−1,1,10,102, as in Fig. 3. The
corresponding exact results for the NFL to FL crossover from
Eq. (9) are plotted as the solid lines. As immediately seen, near-
perfect agreement is obtained for all energies |ω| � TK and
temperatures T � TK where comparison between numerical
and exact results can be made.

To obtain such an agreement, we found that high-accuracy
NRG calculations must be performed. In particular, the region
|ω| ∼ T was most problematical, with artifacts only being
removed upon averaging over several band discretizations,
and necessitating a large number of states to be kept at each
NRG iteration. The precise shape of the numerically-obtained
spectrum then still depends on how the discrete data is
smoothed. We found that the broadening scheme described in
Ref. 59 produced the best results: for z = 6 and � = 5 as used
here, a broadening parameter b = 0.25 and kernel-crossover
scale ω0 = T/1.5 were optimal.
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FIG. 10. (Color online) Spectrum tσL(ω,T )
vs ω/D for the 2CK model with νJ = 0.15
and small channel anisotropy 2ν	z = 10−6 at
various temperatures T/T ∗ = 10−1,1,10,102,
approaching tσL = 1/2 from above. Dotted lines
are results from full NRG calculations; solid
lines are exact results from Eq. (9) for the NFL
to FL crossover.

It should also be noted that if the correction factor5

A� = 1
2

�+1
�−1 ln(�) is used in the NRG calculations (in which

case Jα → JαA�), then the many-particle energies used to
calculate the density matrix must be accordingly scaled
[EN (r) → EN (r)A�] so that the results are independent of the
discretization parameter � and hence approximate accurately
the desired � = 1 limit.

VIII. OTHER EXACT CROSSOVER FUNCTIONS

As discussed in the previous sections, the Hamiltonian
controlling the NFL-FL crossover in the 2CK or 2IK models
has a free fermion structure in terms of MFs. In fact, this feature
allows calculation of various quantities along the crossover.
The difficulty of such calculations is dictated by the relation
between the physical quantity of interest to the MFs. In the
preceding sections, we concentrated on the two-point function
of the electron field (the Green function), related31 here to the
one-point function of the magnetization operator in the Ising
model (which is in turn related nonlocally to the Ising MFs62).
More generally, 2p-point functions of the electron field are
related31 to p-point functions of the magnetization operator.
Multielectron correlators can thus, in principle, be calculated
in this way, but require knowledge of the corresponding
multipoint correlation functions of the Ising magnetization
operator.

A. Impurity entropy

Since thermodynamic quantities are local in the MFs, their
calculation is rather straightforward. Here, we will focus on
the NFL-FL crossover of the impurity entropy, following
closely the earlier calculations for the 2CK27,28 and the 2IK17

models, performed in the Toulouse limit. The Toulouse limit
corresponds here to maximal spin anisotropy in the exchange
couplings, and as such breaks the overall SU(2) spin symmetry
of the models. Although the high-energy (∼TK ) crossover
to the NFL fixed point is strongly affected by large spin

anisotropy, we stress that for low energies �TK (and given a
clear scale separation T ∗ � TK ), the results become formally
exact, and are universally applicable to the SU(2) symmetric
case of interest.

The key point is that the spin-anisotropy perturbation is RG
irrelevant at the NFL fixed point. In particular, the effective
theory obtained in the Toulouse limit describing the NFL-
FL crossover due to relevant perturbations such as channel
anisotropy or magnetic field in the 2CK model28 or detuning
K − Kc, staggered magnetic field, or left-right tunneling in the
2IK model,17 act exactly as in Eq. (85). A detailed discussion
for the 2IK model can be found in Ref. 52.

Turning now to the crossover in the impurity entropy, one
finds28 that

S(T ) = 1

2
ln(2) + S̄

(
T

T̃ ∗

)
, (101)

in terms of the universal function

S̄(t) = 1

t

[
ψ

(
1

2
+ 1

t

)
− 1

]
− ln

[
1√
π

�

(
1

2
+ 1

t

)]
,

(102)

defined in Ref. 28 for the limit TK → ∞. Here, ψ(z) is the
psi (digamma) function and T̃ ∗ is a particular definition of
the NFL-FL crossover scale (proportional to our definition,
Eq. (9), such that T̃ ∗ = y × T ∗ with y ≈ 4.6). Two regimes
can thus be distinguished. In the FL regime, obtained for
T � T ∗, the impurity is always completely screened: S ∼
1

12 ( T

T̃ ∗ ). By contrast, in the NFL regime, T ∗ � T � TK ,
the impurity entropy is close to 1

2 ln(2). Interestingly, we
find that independently of the relevant perturbations which
act, the entropy crossover is always given by the universal
function Eq. (101) in the limit T ∗ � TK , in both 2CK and 2IK
models. This is, of course, not the case for the Green function,
because the FL scattering S matrix is affected differently
by different perturbations [see Eqs. (9)–(12) and Figs. 3
and 5].
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FIG. 11. (Color online) Impurity contribution to entropy Simp(T ) vs T/T̃ ∗ for the 2CK model (upper panels) and the 2IK model (lower panels)
in the presence of various perturbations. Entire temperature-dependence calculated by NRG for the full models (black lines); low-temperature
T � TK behavior in each case compared with the single exact NFL–FL crossover function Eq. (101) (red circles). All results presented for
νJ = 0.25. Left: effect of channel asymmetry 4ν	z = ±10−5 (2CK) or deviation from critical coupling (Kc − K)/D = ±10−5 (2IK). Center:
effect of including also finite left/right tunneling, 2ν	x = ±10−5 (2CK) or 2νVLR = ±10−4 (2IK), with 4ν	z = (Kc − K)/D = ±10−5 as
before. Right: effect of including finite magnetic field, Bz/D = ±10−9/2 (2CK) or Bz

s /D = ±10−9/2 (2IK), again with 4ν	z = (Kc − K)/D =
±10−5. Parameters chosen to allow direct comparison to Fig. 1 of Ref. 26.

The 2CK model has also been solved exactly using the
Bethe ansatz,7 yielding the full evolution of thermodynamics
in any parameter regime. However, it cannot be seen directly
from the Bethe ansatz equations that there is an emergent
SO(8) symmetry at the NFL fixed point, or that this leads to a
single NFL-FL crossover function for the entropy, Eq. (101),
regardless of the perturbation causing the crossover. Indeed,
the fact that the same crossover occurs in the 2IK model cannot
be extracted using Bethe ansatz since the 2IK model is not
integrable.

In Fig. 11, we present numerically exact NRG results for
the temperature-dependence of the entropy due to various
perturbations in the 2CK and 2IK models to confirm the
validity of the field theoretic description. As in Fig. 10, we
exploit all model symmetries to obtain high-quality numerics,
discretizing flat conduction bands of width 2D logarithmically,
using � = 3 here, and retaining 8000 states per iteration in a
single NRG calculation.5 At low temperatures T � TK (and
since T ∗ � TK ), we obtain an essentially perfect agreement
between the exact result Eq. (101) (points) and NRG data
(solid line).

B. Nonequilibrium transport in two lead devices

It was shown in Refs. 52,53 and 63 that the effective free-
fermion theory of the 2IK model allows to calculate certain
nonequilibrium quantities. Finite conductance was found to
arise in the weak-coupling limit of 2IK systems close to the
critical point T ∗ � TK at low energies �T ∗. This result was
understood in terms of the growth under RG of the left-right
tunneling perturbation VLR . Here, we generalize these results

to the 2CK model, which has the same effective free-fermion
description. Related multichannel setups have been considered
in Refs. 64 and 65.

We consider a finite source-drain voltage V across left and
right metallic leads, which are exchange coupled to a single
impurity spin. To this system we add a small but finite channel
anisotropy perturbation, corresponding left/right tunneling
mediated via the impurity spin. The setup is illustrated in
Fig. 12. The corresponding Hamiltonian is given by Eqs. (1)
and (3), with finite 	x and possibly magnetic field 
B, but now
with left/right lead chemical potentials at ±V/2.

The applicability of our exact solution is in the parameter
regime 	x � J , so that the system is close to the NFL
critical point. This situation is not in practice obtained in
standard quantum dot devices, although more sophisticated
experimental techniques such as those employed in Ref. 24,
do allow suppression of cotunneling perturbations such as 	x .

As per Eq. (8), the crossover energy scale is T ∗ =
(c1ν	x)2TK + |cBB|2/TK . In the limit where ν	x is initially
very small, we thus have T ∗ � TK . At higher energies �TK ,
we then expect conductance to be very small ∝(ν	x)2,

FIG. 12. (Color online) Schematic illustration of a nonequilib-
rium 2CK setup. We consider the case of 	x � J .
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FIG. 13. (Color online) Scaling function for the nonlinear con-
ductance of a 2CK device with small 	x . From top to bottom at the
peak: T/T ∗ = 0,0.25,0.5,1.

corresponding to the weak coupling limit. However, upon
reducing the energy scale E = max{eV,T } below TK , the
conductance starts to increase since 	x switches on a relevant
operator with scaling dimension 1/2 near the NFL FP.
Below T ∗, a characteristic peak in the conductance is thus
expected, signaling growth of the relevant operator to order
one.

The exact lineshape of the nonequilibrium conductance
peak can be calculated from the fixed point Hamiltonian,
Eq. (82) [including the correction due to relevant perturbations
given by Eq. (85)]. The dependence on the ratio between
the magnetic field and the tunneling perturbations is obtained
using the SO(8) rotation outlined in Sec. VI. The method of
calculation, and the result for the universal lineshape of the
peak, was obtained for the spin-exchange anisotropic version
of the model by Schiller and Hershfield in Ref. 66. As argued
in the previous section, we can borrow those Toulouse-limit
results if we restrict attention to the low-energy crossover. The
final result for the nonlinear conductance is thus

G = G0F

[
T

T ∗ ,
eV

T ∗

]
,

F [t,v] = 1

4πt
Reψ1

(
1

2
+ 1

4πt
+ iv

2πt

)
, (103)

with G0 = 2e2

h

λ2
2+λ2

3
λ2 and ψ1 the trigamma function. Note that

the definition of T ∗ here is as in Ref. 52. At T = 0, one
obtains G/G0 = [1 + (2eV/T ∗)2]−1, while at zero bias V =
0 and low temperatures T � T ∗, the asymptotic conductance
is G/G0 → 1 − (2πT/

√
3T ∗)2. The full bias dependence of

conductance for various temperatures is shown in Fig. 13.

IX. CONCLUSIONS

In this paper, we present a rare example of an exact
nonperturbative result for the finite-temperature dynamics of
a strongly correlated quantum many-body system. We focus
on the two-channel Kondo and two-impurity Kondo models;
although the same low-energy physics characterizes a wide
class of quantum impurity problems in which competition
between two conduction channels causes a frustration of
screening. The unusual non-Fermi liquid critical points of
these systems are destabilized by various symmetry-breaking
perturbations, naturally present in experiment. In consequence,
a crossover to regular Fermi liquid behavior always occurs

on the lowest energy scales. Exploiting the connection23

to an exactly-solved classical boundary Ising model,33,34

we calculated the exact finite-temperature crossover Green
function. In quantum dot systems that could access this
crossover, the relevant experimental quantity is conductance,
which we extract from the exact Green function.

Remarkably, we show that due to the free-fermion structure
of the effective low-energy theory in terms of Majorana
fermions and a large emergent SO(8) symmetry, a single uni-
versal function pertains for any combination of perturbations
in either model. This single crossover is also starkly manifest
in the behavior of thermodynamic quantities such as entropy,
as confirmed directly by NRG.

The method developed in this paper goes beyond the
impurity models we considered explicitly, and finds powerful
application to a wider family of systems. At heart, our solution
relies upon a formal separation of the theory into a sector
containing all the universal crossover physics, and a sector
acting as a spectator along this crossover. Importantly, the
crossover is confined to a sector that can be identified with
Ising degrees of freedom, described by a minimal conformal
field theory with central charge c = 1/2. For example, in the
two-channel Kondo models studied here, the full set of degrees
of freedom consist of a c = 4 CFT, but a large c = 7/2 sector of
the theory plays no role in the crossover from non-Fermi-liquid
to Fermi-liquid physics.

Interestingly, there exist other models (whose full set
of degrees of freedom are not necessarily described by a
c = 4 CFT) that undergo precisely the same crossover due
to their underlying c = 1/2 Ising sector. Those include certain
Luttinger liquids containing an impurity,34 and coupled bulk
and edge states in certain non-Abelian fractional quantum Hall
states67,68 (see also Ref. 69).

There are further interesting generalizations and questions
arising from this work. For example, the two-channel Kondo
effect evolves continuously as interactions are switched on in
the leads, as was shown in the case of Luttinger liquid70,71 and
helical liquid72–74 leads. It is an open question as to whether the
low-temperature crossovers in the presence of such interacting
leads are described by the same boundary Ising model, or, e.g.,
by coupled boundary Ising models. It would also be interesting
to use the present formulation of the crossover in terms of a
minimal Ising theory to study time-dependent phenomena,
quench dynamics, and other nonequilibrium physics.
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APPENDIX A: PERTURBATION THEORY AROUND THE
FL FIXED POINT

In this appendix we consider the 2IK model for K < Kc,
and its FL fixed point describing the ground state where
each impurity forms a Kondo singlet with its attached lead.
In particular, we calculate the t matrix for ω,T � T ∗ as a
stringent consistency check of our full crossover t matrix,
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Eq. (9). Indeed, we also see that the multiplicative function
f (βh2) that we included in Eq. (54) is precisely needed to
reproduce the correct FL limit.

We use here the Fermi liquid theory of Nozières,42 applied
to the 2IK model. Naturally, our derivation of the t matrix in
the vicinity of the FL fixed point follows closely the analogous
calculation for the simpler single channel Kondo (1CK) model.
Thus we first recap some of the basic concepts and results for
the 1CK model.22,42,54

The irrelevant operator in the effective Nozières
Hamiltonian42 for the FL fixed point of the 1CK problem
may be written in CFT language as22

δH1CK = − 1

TK


J (0) · 
J (0)

= − 3

2TK

(ψ ′†
σ i∂xψ

′
σ − ψ ′†

↑ψ ′
↑ψ ′†

↓ψ ′
↓)x=0, (A1)

where 
J (x) = ψ ′†
σ (x) 
σσσ ′

2 ψ ′
σ ′(x) is the spin current for a

single channel of conduction electrons (implicit summation
over repeated indices is implied). The first term of the
second line may be interpreted as an elastic single particle
scattering, and the second term can be interpreted as a
residual electron-electron interaction giving rise to inelastic
scattering. Accordingly, one can separate the contributions to
the t matrix T1CK(w,t) = Tel(w,t) + Tin(w,t) into elastic and
inelastic contributions, respectively, and where22,54

−πνTel (w,t) = i − w − iw2,
(A2)

−πνTin (w,t) = − i

2
[w2 + π2t2].

[For simplicity, we omit spin indices; T1CKσσ ′(w,t) =
δσσT1CK (w,t)]. Here, w = ω/T ′

K , t = T/T ′
K , and T ′

K is a par-
ticular definition of the Kondo temperature.22 The fermionic
diagram yielding the inelastic contribution is shown in Fig. 14.

The imaginary part of the t matrix in the 1CK model can
thus be expanded as

ImT1CK (w,t) = ImT1CK (0,0) + aw2 + bt2, (A3)

where from Eq. (A2) one obtains

a/b|1CK = 3/π2 � 0.3039. (A4)

Similar to the Nozières Fermi liquid theory for the 1CK
model, an effective Fermi liquid Hamiltonian was constructed
using CFT methods based on the emergent SO(7) symmetry

A A A

B

B

FIG. 14. Diagram for the inelastic contribution to the t matrix. It
describes interaction between two fermionic species A �= B. In the
1CK model, A,B ∈ {↑ , ↓}, in two-channel Kondo models A,B ∈
{↑ L, ↓ L, ↑ R, ↓ R}.

of the crossover for the 2IK model.63,75 The leading irrelevant
operator takes the form63

δHFL = 1

T ∗
( 
J 2

L + 
J 2
R − 6 
JL


JR

)
x=0, (A5)

where 
Jα(x) = ψ ′†
ασ (x) 
σσσ ′

2 ψ ′
ασ ′(x), ψ ′ is a scattering

state incorporating the π/2 Kondo phase shift, ψ ′
ασ (x) =

sign(x)ψασ (x), and T ∗ is a particular definition of the low-
energy crossover scale.63 We now calculate the t matrix
resulting from this Hamiltonian in the FL regime ω,T � T ∗.
In the following, we suppress the indices σ,α, and note that
the t matrix is proportional to δσσ ′δαα′ in the present situation.

Comparison of the irrelevant operators in the 1CK and
2IK models, Eqs. (A1) and (A5), shows that the first two
terms in Eq. (A5) are identical to the Nozières irrelevant
operator (up to the exchange of energy scales T ∗ ↔ TK ). In
consequence, the elastic and inelastic scattering contributions
within each channel of the 2IK model are the same as
those arising in the 1CK model. Indeed, from the diagram
Fig. 14 we see that to second order they do not yield
any mixed terms. Thus T2IK (w,t) = T1CK (w,t) + TLR (w,t),
where TLR (w,t) originates from the third term in Eq. (A5),
representing interaction between channels. We separate the
latter into 
JL · 
JR =∑a=x,y,z J a

LJ a
R and note that the second

order a = x,y,z contributions are equal, since the quantity of
interest is invariant under spin rotations, and the Hamiltonian
is also SU(2) spin symmetric. The latter can be written in terms
of fermion fields as

− 6

T ∗ J z
LJ z

R = − 3

2T ∗ (ψ ′†
σLσ z

σσψ ′
σL)(ψ ′†

σRσ z
σσψ ′

σR). (A6)

Considering now the t matrix for a single electronic
species with quantum numbers A = σ,α, Eq. (A6) describes
the interaction with a second species of either B = σ,α or
σ̄ ,α, and thus contributes a term proportional to the inelastic
contribution Tin (w,t). In fact, the amplitude for this interaction
is ± 3

2T ∗ , identical in absolute value to the intralead interaction
amplitude between up and down electrons [the second term
of the second line in Eq. (A1)]. But since the contributions to
inelastic scattering are of second order (see Fig. 14), the sign
of the scattering amplitude is unimportant in calculation of the
t matrix. Summing over the second species B yields an extra
factor of 2, yielding TLR (w,t) = 3T z

LR = 6Tin (w,t). Putting
all the contributions together, we have

T2IK (w,t) = Tel (w,t) + 7Tin (w,t) . (A7)

As a result, one again obtains ImT2IK (w,t) = ImT2IK (0,0) +
aw2 + bt2, but with

a/b|2IK = (1 + 2/7)/π2 � 0.13027. (A8)

This result is in perfect agreement with a numerical evaluation
of our full finite-temperature crossover t matrix (9) in the limit
T ,ω � T ∗; as demonstrated in Fig. 4. This calculation also
confirms the need for the function f (βh2) used in Eq. (54).
The asymptotic result Eq. (A8) also follows from renormalized
perturbation theory calculations presented recently in Ref. 76
for a related 2IK model.
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APPENDIX B: PERTURBATION THEORY AROUND THE
NFL FIXED POINT

1. General structure

In Sec. III D, we used the analyticity of the Green function
and the locality of the t matrix to argue that Gσα,σ ′α′ (z1 − z2)
depends only on the difference (z1 − z2). This result should
hold to all orders in perturbation theory, as shown explicitly in
this appendix.

Our starting point here is the NFL FP Green function for
the 2IK model, Eq. (41), written as

GNFL
σα,σ ′α′ (z1,z2)=δσσ ′δαα′

{
1

2π
π
β

sin
[

π
β

(z1 − z2)
]
} 7

8

〈σL(z1)σL(z2)〉,

(B1)

whose factorized form originates from the Bose-Ising decom-
position of the 2IK model into spin, isospin and Ising symmetry
sectors.23 Seven of the eight MFs (those corresponding to the
part of the fermion field carrying spin and isospin quantum
numbers) remain free at the NFL FP, and thus give rise to
the first factor [see Eq. (28)]. The second correlator involves
the chiral part σL(z) of the Ising magnetization operator
σ (z) = σL(z)σL(z∗), due to the remaining MF in the Ising
sector (see Fig. 9).

When the detuning perturbation λ1 ∝ (K − Kc) acts, the
NFL FP is destabilized. The perturbation appears as a
correction to the action,77

δS = λ1

∫
dτε(0,τ ). (B2)

where ε is the CFT d = 1/2 boundary operator from the
Ising sector interpreted as a boundary magnetic field.23

The resulting corrections to the Green function can then
be calculated within perturbation theory. The full crossover
Green function is then GNFL-FL

σα,σ ′α′ (z1,z2) = GNFL
σα,σ ′α′(z1 − z2) +∑∞

N=1 δNGσα,σ ′α′(z1,z2), where the N th order correction is
given by (suppressing spin and channel indices)

δNG(z1,z2) ∝ λN
1

{
1

2π
π
β

sin
[

π
β

(z1 − z2)
]
} 7

8

×
∫ β

0

N∏
i=1

dτi〈σL(z1)σL(z2)
N∏

j=1

ε(0,τj )〉. (B3)

Generically, correlation functions up to three-point func-
tions are determined by CFT. However, the Ising CFT is
special because essentially all correlation functions are known
exactly. In particular, Ardonne and Sierra obtained explicit
expressions78 for the correlators appearing in Eq. (B3). In the
case of even N , their result reads78

〈σL(z1)σL(z2)
N∏

j=1

ε(0,τj )〉 ∝ (z1 − z2)−1/8

×
√√√√∑

I

2|I |
(

Hfi,j∈I

1

(τi − τj )2

)
(z1 − z2)|Ĩ |∏

j∈Ĩ (z1 − τj )(z2 − τj )
,

(B4)

where the sum is over all subsets of {1,2, . . . ,N}, containing
an even number of elements |I |. Hf(M) denotes the Haffnian
of a symmetric N × N matrix and is given by Hf(M) =

1
2N/2(N/2)!

∑
σ∈SN

∏N/2
i=1 Mσ (2i−1),σ (2i), with σ a permutation.

The set Ĩ (containing |Ĩ | elements) is equal to {1,2, . . . ,N} \ I .
Using the conformal mapping Eq. (59) from the plane to
the cylinder, each coordinate difference z − z′ in Eq. (B4)
is replaced by β

π
sin[ π

β
(z − z′)]. The dependence on z1 and z2

is through factors that explicitly depend on z1 − z2, and terms
inside the square root of the form

1∏
j∈Ĩ sin

[
π
β

(z1 − τj )
]

sin
[

π
β

(z2 − τj )
] . (B5)

With the aid of the trigonometric identity,

2 sin

[
π

β
(z1 − τ )

]
sin

[
π

β
(z2 − τ )

]

= cos

[
π

β
(z1 − z2)

]
− cos

[
π

β
(z1 + z2 − 2τ )

]
, (B6)

and by shifting all τj integration variables by (z1 + z2)/2 into
the complex plane (which can be done without encountering
any singularities), the resulting integral in Eq. (B3) then
depends only on z1 − z2. The same conclusion is reached for
odd N by a similar calculation.

Thus δNGσα,σ ′α′ (z1,z2) ≡ δNGσα,σ ′α′(z1 − z2) for all N ,
and hence the full crossover Green function depends
only on (z1 − z2). The analyticity of the Green function
〈ψασ (x)ψ†

α′σ ′(−x)〉 ≡ Gσα,σ ′α′ (x) thus allows determination
of 〈ψασ (z1)ψ†

α′σ ′(z2)〉 ≡ Gσα,σ ′α′( z1−z2
2i

) in terms of general
coordinates z1 and z2 by analytic continuation.

2. Leading order perturbation theory

Here, we derive the NFL coefficients β ′,δ and β ′′ of the
asymptotic t matrix discussed in Sec. II B. Since the Green
function vanishes at the NFL fixed point, the leading correction
arises to first order. We now use the first-order result for 〈σ (x)〉
derived in Ref. 43,

〈σ (x)〉(1)
β = h

√
2πβ

(
4π
β

sinh 2πx
β

)1/8

×2F1

(
1

2
,
1

2
; 1,

1 − coth 2πx
β

2

)
+ O(h2). (B7)

Note that 2F1
(

1
2 , 1

2 ; 1,z
) = 2K[z]

π
with K the complete elliptic

integral of the first kind. We will also use the short distance
x → 0 limit of this formula,

〈σ (x)〉h,β = −213/8hx3/8[ln(x) + O(1)], (B8)

valid for x � β,h−2. Equation (44) and (B8) give

G(x → 0) = − h

π
√

2i

1√
x

[ln(x) + O(1)]. (B9)

To obtain the expansion of the t matrix at T = 0 at large ω,
we use G(x → 0) in Eq. (74). Recalling that T ∗ = 4πh2, and
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writing ln x = ln(ωx) − ln ω and y = ωx, Eq. (74) becomes

t = 1

2
+

√
T ∗/ω

(2π )3/2
Im
∫ ∞

−∞
dye2iy ln y − ln ω√

y
. (B10)

Note that the y integral should be made symmetrically around
the branch cut, as described in Sec. IV B. One then obtains
Eq. (17a) with

β ′ = − 1 + π√
2π3/2

∫ ∞

0
dy

sin(2y) ln y√
y

,

δ = − 1√
2π3/2

∫ ∞

0
dy

sin(2y)√
y

, (B11)

with the numerical values of these integrals announced below
Eq. (17a). At finite temperature and ω = 0, we use Eq. (B7)
in Eq. (44). Taking the limit ω → 0 of Eq. (74) and defining
y = x/β, we obtain Eq. (17b) with

β ′′ = 4
√

2

π

∫ ∞

−∞
dy

yK
[ 1−coth(2πy)

2

]
sinh(2πy)

. (B12)

APPENDIX C: LINEAR RELATIONS BETWEEN
QUADRATIC FORMS FOR ORIGINAL FERMIONS AND

MAJORANA FERMIONS

There are 8 × 7 = 28 independent quadratic forms involv-
ing ψ†

σα and ψσ ′α′ , which together comprise the generators
of the SO(8) symmetry group. These generators are linearly
related to the 28 quadratic forms of the MFs χA

j . In this
appendix, we gather and rederive some of these relations,
which can also be found in, e.g., Ref. 47.

First, we define a convention relating the Klein factors FA

for the new fermions ψA, to the Klein factors Fσα for the
original fermions ψσα . The relations are fully determined by48

F
†
XF †

s = F
†
↑LF↓L, FXF †

s = F
†
↑RF↓R, F

†
XF

†
f = F

†
↑LF↑R,

(C1)

and by the anticommutation relations48 {FA,FB} = 2δAB ,
FAF

†
A = F

†
AFA = 1.

We now consider the instructive example of the operator
iχ

f

1 χX
1 , and use Eqs. (37) and (38) to relate it to a quadratic

term involving the original fermions:

iχ
f

1 χX
1 = i

2
(ψ†

f + ψf )(ψ†
X + ψX) = i

2
(ψ†

f + ψf )ψ†
X + H.c.

= i

2
F

†
f F

†
Xeiφf +iφX + i

2
Ff F

†
Xe−iφf +iφX + H.c. (C2)

Using Eqs. (C1) and (36), we obtain

iχ
f

1 χX
1 = − i

2
F

†
↑LF↑Reiφ↑L−iφ↑R − i

2
F

†
↓RF↓Leiφ↓R−iφ↓L +H.c.

Finally, using the bosonization formula Eq. (35), we have

iχ
f

1 χX
1 = − i

2
ψ

†
↑Lψ↑R − i

2
ψ

†
↓Rψ↓L + H.c. = ψ† τ

2σ 3

2
ψ.

In a similar fashion, all of the relations between quadratic
forms can be determined. Conserved currents in the 2CK
and 2IK models can be expressed in terms of the original
fermions or the MFs, and the relations between them are
needed for our generalization of the crossover t matrix to
arbitrary perturbation, as considered in Sec. VI. The conserved
currents of the 2CK model are

charge : J = 1
2ψ†ψ = iχc

2χc
1 ,

spin : 
Js = 1
2ψ† 
σψ = −i

(
χs

2χX
1 ,χX

1 χs
1 ,χs

1χs
2

)
,

flavor : 
Jf = 1
2ψ†
τψ = (− iχ

f

1 χX
2 ,iχX

2 χ
f

2 ,iχ
f

2 χ
f

1

)
.

Equivalently, one can define a three-component spin vector

χs = (χs

1 ,χs
2 ,χX

1 ) and flavor vector 
χf = (χf

2 , − χ
f

1 , − χX
2 )

such that


Js = −i

2

χs × 
χs, 
Jf = −i

2

χf × 
χf . (C3)

Furthermore, the nine spin-flavor current components can be
expressed as

1

2
ψ†σaτ bψ = i( 
χs)

a( 
χf )b (a,b = x,y,z). (C4)

Thus the decomposition of the 2CK model into U (1) ×
SU(2)2 × SU(2)2 charge, spin, and flavor sectors can be
understood also in terms of MFs.

In the 2IK model, there is no flavor SU(2) symmetry since
each channel couples to a different impurity. However, one can
make use of the SU(2) total spin current 
Js as well as SU(2)
isospin currents for each channel 
IL and 
IR , where

I z
α = 1

2

∑
σ

ψ†
σαψσα, I−

α = ψ↑αψ↓α. (C5)

In terms of MFs, we have

I z
L + I z

R = J = iχc
2χc

1 ,
(C6)

I z
L − I z

R = J z
f = iχ

f

2 χ
f

1 ,

and

I x
L + I x

R = iχ
f

1 χc
2 ,

(C7)
I x
L − I x

R = iχ
f

2 χc
1 .

Hence one can understand the conformal embedding of the 2IK
model as a SU(2)2 × SU(2)1 × SU(2)1 × Ising decomposition
into total spin, left/right channel isospin and Ising sectors. three
of the eight MFs represent the total spin sector: four represent
the isospin symmetry sectors (the charge and flavor MFs) and
the remaining MF, χX

2 , is associated with the Ising model (and
restores the total central charge c = 4).
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10A. I. Tóth and G. Zaránd, Phys. Rev. B 78, 165130 (2008).
11A. K. Mitchell and D. E. Logan, Phys. Rev. B 81, 075126 (2010).
12A. K. Mitchell, D. E. Logan, and H. R. Krishnamurthy, Phys. Rev.

B 84, 035119 (2011).
13K. A. Matveev, Zh. Eksp. Teor. Fiz. 99, 1598 (1991) [Sov. Phys.

JETP 72, 892 (1991)].
14K. Le Hur and G. Seelig, Phys. Rev. B 65, 165338 (2002).
15E. Lebanon, A. Schiller, and F. B. Anders, Phys. Rev. B 68, 155301

(2003).
16P. Kakashvili and H. Johannesson, Europhys. Lett. 79, 47004

(2007).
17J. Gan, Phys. Rev. Lett. 74, 2583 (1995); Phys. Rev. B 51, 8287

(1995).
18G. Zaránd, C.-H. Chung, P. Simon, and M. Vojta, Phys. Rev. Lett.

97, 166802 (2006).
19A. K. Mitchell, E. Sela, and D. E. Logan, Phys. Rev. Lett. 108,

086405 (2012).
20B. A. Jones, C. M. Varma, and J. W. Wilkins, Phys. Rev. Lett. 61,

125 (1988); B. A. Jones, Physica B (Amsterdam) 171, 53 (1991).
21D. F. Mross and H. Johannesson, Phys. Rev. B 78, 035449 (2008).
22I. Affleck and A. W. W. Ludwig, Phys. Rev. B 48, 7297 (1993).
23I. Affleck and A. W. W. Ludwig, Phys. Rev. Lett. 68, 1046 (1992);

I. Affleck, A. W. W. Ludwig, and B. A. Jones, Phys. Rev. B 52,
9528 (1995).

24R. M. Potok, I. G. H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon,
Nature (London) 446, 167 (2007).

25D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-
Magder, U. Meirav, and M. A. Kastner, Nature (London) 391,
156 (1998); S. M. Cronenwett, T. H. Oosterkamp, and L. P.
Kouwenhoven, Science 281, 540 (1998).

26E. Sela, A. K. Mitchell, and L. Fritz, Phys. Rev. Lett. 106, 147202
(2011).

27V. J. Emery and S. Kivelson, Phys. Rev. B 46, 10812 (1992).
28M. Fabrizio, A. O. Gogolin, and P. Nozieres, Phys. Rev. B 51, 16088

(1995).
29Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).
30M. Pustilnik and L. I. Glazman, J. Phys.: Condens. Matter 16, R513

(2004); arXiv:cond-mat/0501007.
31J. L. Cardy, Nucl. Phys. B 324, 581 (1989).
32J. L. Cardy and D. Lewellen, Phys. Lett. B 259, 274 (1991).
33R. Chatterjee and A. Zamolodchikov, Mod. Phys. Lett. A 9, 2227

(1994).
34A. Leclair, F. Lesage, and H. Saleur, Phys. Rev. B 54, 13597 (1996).
35A. K. Mitchell, M. Becker, and R. Bulla, Phys. Rev. B 84, 115120

(2011).
36F. W. Jayatilaka, M. R. Galpin, and D. E. Logan, Phys. Rev. B 84,

115111 (2011).
37J. Malecki, E. Sela, and I. Affleck, Phys. Rev. B 84, 159907(E)

(2011).
38G. Zaránd, L. Borda, J. von Delft and N. Andrei, Phys. Rev. Lett.

93, 107204 (2004); L. Borda, L. Fritz, N. Andrei, and G. Zaránd,
Phys. Rev. B 75, 235112 (2007).

39A different convention is employed in Ref. 26, which corresponds
to a trivial relabelling of the undetermined constants c1 → √

cT ,
cV → √

cT cV , and cB → −√
cT cB .

40M. Fabrizio, A. F. Ho, L. De Leo, and G. E. Santoro, Phys. Rev.
Lett. 91, 246402 (2003).

41Handbook of Mathematical Functions, edited by M. Abramowitz
and I. A. Stegun (Dover, New York, 1964).

42P. Nozières, J. Low Temp. Phys. 17, 31 (1974); P. Nozières,
in Proceedings of the 14th International Conference on Low
Temperature Physics, edited by M. Krusius and M. Vuorio (North
Holland, Amsterdam, 1974), Vol. 5, p. 339.

43E. Sela and A. K. Mitchell, J. Phys. Stat. Mech. (2012) P04006.
44N. Andrei and A. Jerez, Phys. Rev. Lett. 74, 4507 (1995).
45I. Affleck, Acta Phys. Pol. B 26, 1869 (1995).
46J. von. Delft and H. Scholler, Annalen Phys. 7, 225 (1998).
47J. M. Maldacena and A. W. W. Ludwig, Nucl. Phys. B 506, 565

(1997).
48G. Zaránd and J. von Delft, Phys. Rev. B 61, 6918 (2000).
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