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We investigate the scattering off dilute magnetic impurities placed on the surface of three-dimensional
topological insulators. In the low-temperature limit, the impurity moments are Kondo-screened by the
surface-state electrons, despite their exotic locking of spin and momentum. We determine signatures of the Kondo
effect appearing in quasiparticle interference (QPI) patterns as recorded by scanning tunneling spectroscopy,
taking into account the full energy dependence of the T matrix as well as the hexagonal warping of the
surface Dirac cones. We identify a universal energy dependence of the QPI signal at low scanning energies
as the fingerprint of Kondo physics, markedly different from the signal due to nonmagnetic or static magnetic
impurities. Finally, we discuss our results in the context of recent experimental data.
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I. INTRODUCTION

Topological insulators (TIs) in both two and three spatial
dimensions constitute an active topic of current condensed-
matter research.'~” The nontrivial bulk band topology of three-
dimensional (3D) strong TIs causes the crossing of surface
states at time-reversal invariant points in the surface Brillouin
zone and gives rise to a 2D surface metal. In the vicinity of
such crossing points, the effective surface theory takes the
form of a Dirac equation of massless fermions, where spin and
momentum are locked together.

A fundamental property of this “helical” surface metal
is a suppression of backscattering: Electrons with opposite
momenta have orthogonal spin projections, such that impurity
scattering k< —k is impossible without a spin flip. As a
result, the metallic state is protected from the influence of non-
magnetic disorder, and weak localization is replaced by weak
antilocalization.®° This scenario of forbidden backscattering
has been tested in recent experiments'*~'7 utilizing powerful
Fourier-transform scanning tunneling spectroscopy'®!® (FT-
STS). In this technique, energy-dependent spatial variations
of the local density of states (LDOS) are analyzed in terms of
quasiparticle interference (QPI), i.e., quasiparticle scattering
processes due to impurities. The QPI results obtained on 3D
TTIs such as Bi;_, Sb, and Bi,Te; were found to be consistent
with a heuristic picture of electron scattering in a helical liquid,
with backscattering being suppressed.

These results prompt the question as to how scattering
from magnetic impurities on the surface of TIs is manifest
in observables such as the QPI patterns obtained by FTSTS.
In fact, recent experiments'® on Bi,Te; doped with dilute
magnetic Fe atoms purport to demonstrate from the QPI pattern
signatures of time-reversal symmetry breaking. However, one
must be careful to distinguish a fluctuating magnetic moment
from one which is static on the large time scale of the
STS experiment. The latter situation implies magnetic long-
range order, whose existence requires a sufficient density of
magnetic moments and low temperature. Then, every impurity
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moment is polarized, and time-reversal symmetry is broken.?’
Interestingly, it has been shown theoretically that such static
magnetic impurities do not lead to backscattering being visible
in QPI; within lowest-order Born approximation, a static local
field is entirely invisible in QPL.>!?2

In this paper, we focus instead on the case of fluctuating
magnetic impurities, relevant to the dilute limit. The interaction
between the impurity moment and the electrons of the surface
metal leads to mutual spin flips, such that backscattering
could be allowed although time-reversal symmetry remains
unbroken. It is such spin-flip processes which lead to Kondo
screening of the impurity moment in standard metals.?
Therefore, the key question, also relevant to the experiments
of Ref. 13, pertains to the signatures in QPI of the Kondo
interaction between the helical metal and the impurity. To
answer this, we solve the problem of a single Kondo impurity
on the surface of a 3D TI numerically exactly and calculate the
induced QPI pattern which, of course, now includes inelastic
scattering off of the magnetic moment.

Our main findings are as follows. (i) The magnetic impurity
is described by a standard SU(2)-symmetric impurity model,
despite spin-momentum locking and hexagonal warping ef-
fects of the surface states of a real TI. As a result, the impurity
moment is always Kondo screened in the low-temperature
limit, unless the chemical potential is tuned exactly to the Dirac
point. (ii) While scattering off a Kondo impurity does not open
new scattering channels in momentum space as compared to a
nonmagnetic impurity, it leads to a distinct energy dependence
of the QPI pattern, which moreover exhibits universal scaling
in terms of both scanning energy and temperature. A strong
enhancement of the QPI intensity near the Fermi level is
therefore a signature of scattering caused by fluctuating
magnetic impurities.

The body of the paper is organized as follows. We
start by introducing the model and methods in Sec. IIL
The Kondo effect on the surface of 3D TIs is dis-
cussed in Sec. III. Section IV is then devoted to the
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QPI patterns from Kondo impurities, with an emphasis
placed on universal features. The QPI signal from nonmag-
netic impurities is shown for comparison in Appendix C,
while we briefly discuss a static magnetic impurity in
Appendix D. The implications of our results for experimental
data are discussed in the concluding section, Sec. V.

We note that the Kondo effect on the surface of 3D TIs
was discussed before in Refs. 24 and 25, but without taking
into account hexagonal warping and without a discussion of
QPIL. For a discussion of the Kondo effect in the bulk of a TI,
see Ref. 26. QPI patterns for surfaces of 3D TIs have been
calculated for different types of impurities in Refs. 10,13,21,
22,27, but no link to Kondo physics was made. Very recently,
inelastic scattering from excited states of magnetic impurities
was discussed in Ref. 28, leading to features at elevated energy
in tunneling spectra.

II. MODEL AND METHODS

A. Effective surface metal

Surface states of 3D TIs are described by an effective Dirac
theory. However, such a linearized model applies only in the
immediate vicinity of the crossing point of the surface bands,
while lattice effects must be taken into account at higher
energies. For Bi, Te; this results in a breaking of the continuous
rotation symmetry around the Dirac point down to C3,, leading
to so-called hexagonal warping of the isoenergy contours,?’ as
is seen experimentally,!0:13-3031

The free Hamiltonian of the surface metal reads?’2°
newt wi oy [ Vet
HO = d k("ka 7\ykl)Hk s (1)
\I/k i

where
Fy = hopl(k x o) e, + A%k cosBp)o ]l — . (2)

Here o is a vector of the Pauli matrices, k = |k| is the
magnitude of the momentum vector relative to the Dirac point,
and ¢ = tan"(ky /ky) is its azimuthal angle measured with
respect to the X axis. The I'-K direction thus corresponds
to ¢x = 0, while I'-M corresponds to ¢ = /6, following
Ref. 27. The cubic term xA? accounts for hexagonal warping,
and u denotes the chemical potential.

The spectrum of the above Hamiltonian (with i =1
hereafter) is given by

E+(k) = £vpy/k2 + [A2%K3 cos(Bi)I” — . 3

The free Green’s function, GO(k,w) = [w + i0 — Fi] ™",
takes a diagonal form in the quasiparticle basis, Qsz)(k,w) =
Sap/lw +i0"T — E,(K)], a,b = £. The density of states (DOS)
follows from

1 N
p V(@) = ——ImTrG O (k,w), )
aN

where the trace accounts for the sum over £ as well as Kk,
and N is a suitable normalization factor (equal to the number
of k points).*> p©@(w) is linear in |w| at low energies around
w = — [, characteristic of massless Dirac fermions.

In the following we employ parameters vg/ag=
0.73 eV (ap = 1 is a lattice constant acting) as our energy
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unit, and A% =2.23 to make contact with experiments.'?
For convenience we use vp/ap as high-energy cutoff for
the conduction band, p@(w) = p@(w)8(vr — |w + p|)—this
is mainly needed to generate an input for the numerical
treatment of the impurity problem in Sec. III. (For a 3D TI, a
natural cutoff is set by the size of the bulk gap.) Generically,
the Fermi level is not at the Dirac point; for example, in Ref. 13
the chemical potential is /vy = 0.137 = 100 meV. Below we
consider this case explicitly, and also the special case where
w = 0, which is potentially attainable, since surfaces of TIs
can be individually gated.

The local Green’s function on the surface of the TI has a
matrix structure in spin space which turns out to be diagonal:

GO =0,0) =1 fu, u, (5)
in terms of Matsubara frequency w,. Here

£ = / iw, + 1
T e G+ )P — vk — v A% cos(Behy)?

(6)

@k such that p©@(w) = —2Im fou/m. As

@y’
shown in Appendix A, the off-diagonal elements of GO (r =
0) vanish on angular integration.

where [, =

B. Impurities and QPI

The FTSTS technique exploits scattering of charge carriers
from impurities in an otherwise translationally invariant
system.'®!1% To this end, a real-space map of the tunneling
conductance is recorded at fixed energy. The Fourier transform
of this map to momentum space reveals characteristic wave
vectors of LDOS inhomogeneities which can be understood as
energy-dependent Friedel oscillations (or QPI). In the simplest
approximation, these wave vectors correspond to scattering
processes of quasiparticles between different points of the
dispersion isoenergy contour at the scanning energy.’?

If scattering centers are dilute, it is sufficient to consider a
single impurity. Its effect is described by the T matrix, Tk, k(w),
such that the full electronic Green’s function reads

Gk K ,w) = GOK,w)8 i
+ GOK,0) Ty (@0)GOK ), 7

which remains energy-diagonal in equilibrium/linear response.
The real-space LDOS is

1 . N
or,w) = ——Im/e‘cl "TrG(k.k — q,w), )
T
q

where the trace again accounts for the sum over k as well as
the spin components. For isotropic scattering and an inversion-
symmetric host, the Fourier transform p(q,®) is real, and its
impurity-induced piece is related to the T matrix via

1 . R .
Ap(q,0) = —;ImTrG“D(k,w)Tk,k_q(w)G@(k —q.w). 9)

If the T matrix is diagonal in spin space (see below),
decomposition using the Pauli matrices gives
Tiw (@) = T @) + T (w)o, (10)

with Ty (@) = [Ti k.1 (@) % Ty k., (@)]/2. For TI surfaces in
the absence of hexagonal warping it was shown in Ref. 22
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FIG. 1. (Color online) (a) Density of states, p©@(w), for the effective surface theory, Eq. (2) in the absence of impurities, for A> = 2.23.
At energies around w = —u one obtains linear pseudogap behavior, which is modified at higher energies due to hexagonal warping. (b) QPI
pattern Ap(q,) for a TI with p©@(w) as in (a), using T°(w) = 1 appropriate for a potential scatterer in Born approximation. Plotted for

w/vep = 0.137 = 100 meV and scanning energy w = 200 meV.

that only the part proportional to I leads to a modulation
of the spin-integrated LDOS in Egs. (8) and (9). (The part
proportional to o, causes opposite modulations for both spin
directions.) Using symmetry properties, we have verified that
this still holds for the full model including hexagonal warping:
The argument parallels that given in Appendix A.

Specializing further to a pointlike impurity with T () =
f‘(w)/N, we have

A ——11 T%>)TrG Ok, w)G Ok — 11
p(q,0) = —Im (@)TrGY(k,w)GV(k — q,w), (11)

such that the momentum dependence of the QPI signal at fixed
w is completely determined by G©. A sample QPI image is
displayed in Fig. 1; this is similar to published results.>! One
clearly observes a breaking of the circular symmetry due to
hexagonal warping of the isoenergy contour at this energy.

As we show below, a (local) Kondo impurity does not
modify the overall momentum dependence of the QPI pattern,
but will lead to a nontrivial energy dependence.

C. Anderson impurity model

To describe a dynamic magnetic scatterer, we consider
Anderson’s model for a pointlike correlated impurity,>* H =
Ho + Himp + Hyyp, with

Himp = €a(A{ + ) + Un{A{,

(12)
Higp = ¢ ngxyg(r =0)+ H.c.

Here W, (r=0) = Y, Wi, /v/N, #i¢ = dfd , and ¢; < 0 and
U > —¢, are the local level energy and Coulomb repulsion,
respectively.

Considering the spin-momentum locking and the hexagonal
warping of the TI surface electrons in Hy, one might have
expected an unconventional impurity problem. However, a
standard SU(2) spin-symmetric impurity problem is obtained,
with the complexity of the helical surface metal entering only
through the unusual DOS [Eq. (4)]. The derivation of such a
pseudogap Anderson (or Kondo) model has been established
before for impurities in d-wave superconductors,>* as well

as for TIs with a perfect Dirac structure,”*** and we give

here an efficient proof which also covers hexagonal warping.
Rather than using a decomposition into angular modes as in
Refs. 24 and 25, a more direct way is to use the path-integral
formulation. Since the conduction-electron bath is Gaussian,
we integrate it out exactly>* to derive a local retarded impurity
problem. The local noninteracting part of the action for the d
levels in Matsubara formalism reads

So=-TY 4 [§26O = 0,iw,) — L(eq — iw)ld,  (13)

wp

with GO(r = 0,iw,) given in Eq. (5) and d = (d;,d}). The
resulting local model is equivalent to the standard Anderson
model because GO (r = 0,iw,) is diagonal. The hybridization
function characterizing this impurity problem is
bid
A@) = ~Img* fou = 58°p (). (14)
Importantly, the impurity Green’s function G¥(w) is diag-
onal due to the absence of off-diagonal terms in the quadratic
action of the d levels [Eq. (13)]. In the absence of a magnetic
field, we thus have

. 1
Glw) = I

. 15
o+i0t — e — 82 fuo — ZUw) as)

Here X%(w) is the interaction part of the impurity self-energy.
The corresponding T matrix is then 7}y (w) = g2G%(w)/N o
I. This can be used to calculate the real-space LDOS via
Eq. (8)® and will result in a nontrivial response in QPI
according to Eq. (11).

III. KONDO EFFECT

The Anderson impurity model [Eq. (12)] can describe
both the formation and the subsequent screening of local
magnetic moments. Charge fluctuations induce two broadened
peaks (“Hubbard satellites™) in the impurity spectral function
at €4 and (U + €;4). The physics at energies smaller than
min(—e4,U + €4) is dominated by spin-flip processes leading
to Kondo screening below a temperature 7Tx, a phenomenon
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FIG. 2. (Color online) Impurity spectral function vrA(w) vs energy w/vp at T = 0 for U/vp = 0.3, €¢;/vr = —0.1, and g/vr = 0.168.
(a) Deep in the local moment phase for « = 0. (Inset) A closeup in the vicinity of the Fermi level, with the linear soft gap in the free DOS
showing up at low energies [red dotted line is vF A(w) ~ |w|]. (b) Deep in the Kondo screened phase, u = 100 meV. Inset shows a closeup of

the Kondo resonance. See also, Appendix B.

which is sensitive to the conduction-band DOS near the Fermi
level.23 Given the unusual DOS of the TI's surface metal,
which vanishes linearly at w = —u, the Kondo effect should
be discussed separately in the two cases: (A) the chemical
potential is tuned to the Dirac point, . = 0; (B) finite chemical
potential, u # 0.

We obtain numerical results for the Anderson impurity
model using Wilson’s numerical renormalization group (NRG)
technique.® In the following, the hybridization function
[Eq. (14)] is discretized logarithmically using A = 3, and
~3000 states are retained at each step of the iterative diag-
onalization. The results of z = 3 interleaved calculations’” are
then combined for optimal results. The full density matrix>%-°
is calculated, and from it the impurity spectral function is
determined numerically® as a full function of energy, w, at
arbitrary temperature, T. The real part of G¢ is obtained using
Kramers-Kronig relations. NRG results have been shown to
recover exact results where these are known.***! The T matrix
and hence QPI can then be calculated via Eq. (11).

We note that the full DOS at the surface of a 3D TI will
also have higher-energy contributions from bulk states, not
captured by our modeling. Consequently, our calculation
cannot establish a quantitative link between the parameters
of the Anderson model and Tx. At present, there is no
experimental information available on the actual values of Tk
for concrete TI materials and impurities. Therefore, we choose
parameters of Eq. (12) such that Tk attains values of order 1 K.
For most calculations, we employ parameters U/vp = 0.3,
€4/vrp = —0.1, and g/vr = 0.168 (chosen to match some
elevated-energy features of the data in Ref. 13), corresponding
to a moderately correlated impurity. The evolution of the un-
derlying impurity physics on varying the Coulomb interaction
U and the level energy €, in this 3D TI system is explored in
Appendix B. Results are shown for 7 = 0 unless otherwise
noted.

A. Chemical potential at the Dirac point

For ;v = 0, the DOS at low energies is p(w) o |w|", with
r = 1. The low-energy physics is thus that of the pseudogap
Kondo model.**#¢ For the case of particle-hole symmetry

in both the impurity (e, = —U/2) and the bath, screening
is absent for all parameters, i.e., Tx = 0, and the impurity
moment remains free down to the lowest energy/temperature
scales. In contrast, if particle-hole symmetry is broken,
a quantum phase transition occurs, separating the local-
moment and Kondo screened phases. However, the latter
requires strong particle-hole asymmetry and impurity-host
coupling, such that screening is less likely to occur at the
Dirac point.

A typical impurity spectral function A(w) = —ImG%(w)/7
for 4 = 0 in the local-moment phase at 7 = 0 is shown in
Fig. 2(a). At high energies (w/vr ~ —0.1 and w/vp ~ 0.2)
clear signatures of the Hubbard satellites are observed. At low
energies (see inset) spectral weight is suppressed due to the
pseudogapped free DOS.*+7

B. Chemical potential away from the Dirac point

For finite chemical potential, u # 0, there is a finite
DOS at the Fermi level. The impurity is always screened
by the Kondo effect on the lowest energy scales (although
the Kondo temperature, Tk, itself might be very small).
Screening is reflected in the impurity spectral function by a
narrow resonance around the Fermi level. Together with the
high-energy Hubbard satellites, this three-peak structure is the
classic hallmark of the Kondo effect.

In Fig. 2(b) we plot the spectral function for an impurity
with for the same parameters as in panel (a), but with u =
100 meV. The inset shows a closeup of the Kondo resonance,
of width Tx ~ 10~*vr ~ 1 K [we define Tk via A(w = Tx) =
1A =0)].

For p values closer to the Dirac point, the impurity model
will display nontrivial crossover phenomena,*® different from
those of the standard Kondo problem,23 due to the nonconstant
DOS and the proximity to the 4 = 0 quantum phase transition.
Such crossovers can be expected when u < T and are not
present in Fig. 2(b).

IV. QPI FROM DYNAMIC MAGNETIC IMPURITIES

We now calculate the QPI pattern, Ap(q,®), induced by a
dynamic magnetic impurity on the surface of a 3D TI, first for

075430-4



KONDO EFFECT ON THE SURFACE OF THREE- . ..

200 meV

o BN

P,

PHYSICAL REVIEW B 87, 075430 (2013)

220 meV

WL

a() qx

FIG. 3. (Color online) QPI patterns Ap(q,w) at different energies w for a dynamic magnetic impurity, with parameters A% = 2.23,

1 =100 meV, U/vy = 0.3, €s/vr = —0.1, and g/vy = 0.168.

the generic situation of finite chemical potential and then for
the special case where the chemical potential is tuned to the
Dirac point. We recall that Ap(q,w) is real for our case of a sin-
gle impurity; experiments typically extract its absolute value.

A. Kondo phase

A finite chemical potential implies Kondo screening at
lowest temperatures. We divide our analysis into the regimes
of elevated and low energies.

1. Elevated energies, ® > Tx

The QPI pattern obtained at high energies 200-360 meV for
@ = 100 meV is shown in Fig. 3. Upon increasing the scanning
energy, the high-intensity peaks move outwards and become
more pronounced. This is to be expected from the increasing
diameter of the Fermi surface and the increasing importance
of hexagonal warping, which is due to the underlying lattice
structure and gives rise to the sixfold symmetry. We recall that
our modeling neglects bulk bands which will contribute to the
signal at energies beyond the bulk gap.'3*°

Cuts through the QPI along the I'-K and I'-M directions
shown in Fig. 4 allow a more detailed analysis of the high-

energy behavior. One observes that the shape of the Hubbard
satellites is manifest as a nonmonotonic intensity variation
of the QPI peaks with energy, in contrast to what would be
observed for nonmagnetic impurities (see Appendix C). Such
afeature is reminiscent of the experimental findings in Ref. 13.
We note that, in a more complete modeling of the impurity,
nonmonotonic behavior could also arise from excited crystal-
field states of the magnetic impurity.

2. Universal Kondo regime, o ~ Tx

The pronounced buildup of impurity spectral intensity in a
very narrow energy window O(7k) around the Fermi level is
the characteristic signature of the Kondo effect [see Fig. 2(b)].
This results in a similarly characteristic evolution of the QPI
pattern at low energies.

For the parameters used in Fig. 3, the Kondo scale is Tx ~
10~*v, and so we probe the system around these energies in
Fig. 5. The intensity of the QPI peaks indeed grows rapidly in
this regime due to the Kondo effect. This is further highlighted
in Fig. 6, where cuts through the QPI pattern are shown. (We
note the different scales in Figs. 3 and 5 as well as Figs. 4 and
6, respectively.)
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FIG. 4. Cuts through the QPI signal for a dynamic magnetic impurity along (a) the I'-K direction and (b) the I'-M direction, for a system
with the same parameters as in Fig. 3. Energies shown are from 160 to 360 meV in steps of 20 meV in order of increasing peak position.

At low energies in the Kondo regime, there is a universal
scaling collapse of the impurity Green’s function in terms of
w/Tg and T/ Tx. As in this regime (and in the scaling limit) the
free Green’s function G©(k,w) is essentially independent of
energy (and strictly independent of temperature) one naturally
expects universality and scaling of the entire QPI pattern. As
we show in Fig. 7, this is indeed the case.

The T = 0 peak intensity for different choices of the system
parameters, and thus the Kondo temperature, is shown in
Fig. 7(a). At low energies the data are well described by

p(qpava =0) _

1 <‘” )2 T
- —a\=), oLlk,
)O(qp) TK

with  4(q,) = p(q,.0 = 0.T =0),

(16)

3x 107y

g\ y (O e B B B B ’
(=
3 . u @

where q, denotes the scattering vector of the peak. The
quadratic behavior reflects the Fermi liquid nature of the
Kondo ground state. Similarly, at elevated energies the asymp-
tote is given by

papo.T=0 1
A(a) In@|w] /T2’

corresponding to spin-scattering processes in the vicinity of
the local-moment fixed point. These forms reflect universality
in the scaling limit (7x — 0) of the Kondo impurity, with
universal coefficients a,a’ = O(1). Corrections arise from two
sources: There is a leading linear-in-w term in Eq. (16) because
the QPI pattern involves both real and imaginary parts of
G%(w), and the real part of the self-energy is generically
nonzero. The linear energy variation of p© contributes to this

Tx <o <Lvp, (17)

107 vp 3107w

aO Qx

FIG. 5. (Color online) QPI patterns | Ap(q,w)| for a dynamic magnetic impurity in the low-energy Kondo regime, with the same parameters
as Fig. 3, but now with scanning energies very close to the Fermi level. Note the different scale as compared with Fig. 3; also, Ap(q,®) has

sign changes (see Fig. 6).
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FIG. 6. Cuts through the QPI signal for a dynamic magnetic impurity in the low-energy Kondo regime along (a) the I'-K direction and (b)
the I'-M direction for a system with the same parameters as in Fig. 3. Energies shown are w/vy =3 x 1073, 1073, 3 x 107,107, 3 x 1073,

107, 3 x 1075, 107° in order of increasing peak intensity.

linear term as well (this is where an explicit u dependence
enters), and it also causes deviations in Eq. (17). These
corrections are suppressed by the factor @/min(|u|,vF) and
are small for the data shown in Fig. 7(a).

The temperature scaling of the w = 0 peak intensity is
shown in Fig. 7(b). In the low-temperature limit one finds

=0,T T
le_b<

2
. ~ ), T«Tk, (8)
5(q,) TK) K

characteristic of Fermi-liquid behavior. Indeed, we find that
the Fermi liquid relation a/b = 3/n? is well satisfied from
our numerical calculations. Similarly to Eq. (17) the spin-flip
scattering processes in the vicinity of the local-moment fixed
point led to the temperature dependence

po(qp,0 =0,T) 1
~ , T T < v, (19
pay  mer/ngr << < @)
1-7'76"4;“ T T LA
M@H% (a)
5 *6*
=Y VL
= N
=) Lo
0.5t e 1
~ b
3 S
1S "‘6.‘
< "
5%
0 = il > el : il 5 el ??fi;ﬁ ;&H?m 3
107 10 100 10 10 10 10
w/Tk

where b,b’ = O(1) are again universal. Deviations from
universality arise as above; they are visible for the highest
Tk data in Fig. 7(b).

The characteristic feature of the Kondo effect is thus the
rapid increase of QPI peak intensity as the scanning energy
approaches the Fermi level, together with the (approximate)
scaling collapse in w/Tx and T/ Tx. These features should be
readily observable provided that experiments are performed at
temperatures of order T or lower.

Finally, we comment briefly on the case where a (small)
magnetic field acts on the dynamic magnetic impurity. Since
T]?, (@) and the impurity model in the absence of a field is
SU(2) symmetric, it is sufficient to discuss the spin-summed
impurity spectral function. For small fields O(Tx), this is
known to develop a split Kondo resonance,” signatures of
which should show up in QPI. For larger fields >> Tk, the Kondo
effect is destroyed entirely, and only the high-energy Hubbard
satellites remain, thus leading to a behavior qualitatively
similar to that shown depicted in Fig. 3.
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FIG. 7. (Color online) (a) Scaling collapse of the T = 0 QPI peak intensity at low energies for different bare parameters and hence different
Kondo temperatures, Tx. The peak position at q = q, is essentially pinned at low energies (see Fig. 6) as w/vp = 0.1 is kept fixed. Circles,
(U/vp,€q/vr,g/vr) = (0.2, —0.1,0.126), Tx ~ 1072 K; squares, (0.2, — 0.1,0.168), Tx =~ 2 K; diamonds, (0.3, — 0.15,0.126), Tx ~ 6 x
1073 K; crosses, 0.3, — 0.15,0.168), Tx ~ 0.1 K. For illustration we have also plotted (green stars) the peak intensity for (U /vp,eq/vr,g/VF) =
(0.2, — 0.1,0.175) and a different u/vr = 0.137, yielding Tx =~ 20 K. Red dashed line, low-energy asymptote Eq. (16); blue dotted line,
high-energy asymptote Eq. (17). (b) Scaling collapse of the w = 0 peak intensity at low temperatures for the same systems as in (a). Red dashed
line, low-temperature asymptote Eq. (18); blue dotted line, high-temperature asymptote Eq. (19). Deviations from scaling at higher 7' become

apparent for the 7x = 20 K data.
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B. Local-moment phase

In the local-moment regime, realized if the chemical
potential is tuned to the Dirac point . = O (unless the Kondo
coupling and asymmetry is very strong), there is no low-energy
Kondo resonance in the impurity spectral function, although
the Hubbard satellites remain [see Fig. 2(a)].

As a result, the high-energy features of the QPI pattern are
essentially the same as those in Figs. 3 and 4, but there is
no buildup of QPI peak intensity in the vicinity of the Fermi
level. The same applies to the situation with nonzero w but
temperatures T > Tx.

V. CONCLUSIONS

In this work we have studied modulations in the LDOS
caused by dilute magnetic impurities on the surface of 3D TIs.
Despite the coupling of orbital and spin degrees of freedom
in the helical surface metal and hexagonal warping due to the
underlying TI lattice structure, the quantum impurity problem
itself is of conventional type, such that Kondo screening is
generically present in the low-temperature limit (unless the
chemical potential is tuned to the Dirac point).

We identified the energy dependence of the QPI peak
intensity as the fingerprint of dynamic magnetic impurities
(as opposed to nonmagnetic or spin-polarized impurites; see
Appendices C and D). At elevated energies, nonmonotonic
QPI peak intensity for scanning energies is observed due to
Hubbard satellites in the impurity spectral function. At low
scanning energies, Kondo screening of the impurity produces
a strong buildup of QPI peak intensity, whose energy and
temperature dependence are universal functions of w/Tx and
T/Tx.

However, the momentum dependence of the QPI signal (at
fixed energy) is identical for the different types of impurities,
due to the fact that only the spin-diagonal part of the T
matrix produces modulations in the charge channel.?> This
casts doubts on the interpretation of the experimental data
given in Ref. 13, where the magnetic character of dilute Fe
impurities was made responsible for the appearance of new
QPI wave vectors. At present, the source of this QPI signal is
unclear, and more systematic studies are called for.
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APPENDIX A: LOCAL GREEN’S FUNCTION
AND SYMMETRIES

Here we consider the form of the local free Green’s
function, and show explicitly that its off-diagonal components
vanish. The inverse Green’s function for Matsubara frequen-

PHYSICAL REVIEW B 87, 075430 (2013)

cies in spin space reads
G liwy k)™

iwp + o — A%k> cos 3¢y
( —vp(ky —iky)

_UF(ky + lkx)
iw, + 1+ A%k3 cos 3¢y

(AD)
where the local Green’s function assumes the form

G liw,,r =0)

/ kdk / 1
27 (iw, + 1) — vi(k2 + A%k® cos? 3¢)

« iw, + @ — A’k cos3¢  vp(ksing + ik cos p)
vp(ksing —ikcos¢) iw, +u+ A’k cos3¢ )

(A2)

The off-diagonal terms do not survive the angular integration,
such that the remaining diagonal components simplify to

G (iw,,r =0)
iw, + 1

/ kdk / j
27 (iwy + 1)? — vi(k2 +

This immediately allows one to read off the energy eigenvalues
in Eq. (3).

+ A%k® cos? 3¢)
(A3)

APPENDIX B: EVOLUTION OF RESPONSE WITH
IMPURITY PARAMETERS

As indicated by Eq. (8), the QPI response at a given
scanning energy, , is controlled by the scattering T matrix. For
a single local Anderson impurity, the T matrix is proportional
to the full (interacting) impurity Green’s function, Gg(a)),
which itself depends on the self-energy X (w) via Eq. (15).

Here we consider briefly the behavior of the impurity
spectral function A(w) and the imaginary part of the corre-
sponding self-energy X(w) for impurities embedded on the
3D TI surface, with DOS given by Eq. (4).

In Fig. 8, we examine the case = 0, where the chemical
potential is tuned exactly to the Dirac point. Kondo screening
here is precluded unless potential scattering is very strong,
implying stability of the local-moment phase with Tx =
0.84759 In consequence, there is no Kondo resonance at
low energies; instead the low-energy asymptotic form of
the spectrum and the self-energy in the generic particle-hole
asymmetric case is*’-°

vrA(w) ~
—ImX(w)/vp ~

(Bla)
(B1b)

lw/vFl,
lw/vF|.

In the special case of particle-hole symmetry [see dotted

lines, panels (c¢) and (d)], at low energies one obtains
instead*’>°

vrA) ~ lw/vp|(a+bln® lw/vp]),  (B2a)

—ImE(@)/vF ~ 1/(jo/ve|I0* [o/vE)). (B2b)

Note in particular the diverging self-energy in this case.

The behavior at higher energies can be simply understood
in terms of atomic-limit peaks near w = €; and w = U + ¢4,
lifetime-broadened due to hybridization with the TI surface
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FIG. 8. Impurity spectral functions vy A(w) [panels (a), (c)] and corresponding self-energies —ImX(w)/vr [panels (b), (d)] vs w/vr for
impurities in the local-moment phase with . = 0. (a), (b) Evolution with varying U /vy = 0.1,0.2,0.3, 0.4, and 0.5 [dotted, dashed, dot-dashed,
double-dot-dashed, and solid lines] for €, = U/3 and g/vr = 0.168. (¢),(d) Evolution with varying €, /vr = 0.05, 0.1, and 0.15 [solid, dashed,
and dotted lines] for fixed U /vr = 0.3 and g/vr = 0.168. Insets show a closeup of the low-energy behavior. Asymptotes are discussed in the text.

metal states.>? Panels (a) and (b) show the characteristic evo- The high-energy physics in the case of finite chemical
lution of these features upon varying the Hubbard (Coulomb) ~ potential, u # 0, is rather similar (see Fig. 9). However, the
interaction, U, while panels (c) and (d) show the evolution as low-energy behavior is totally different, since the finite density
a function of varying level energy, €. of states at the Fermi level guarantees here a Kondo-screened

0.01

0.75

0 i
-0.5 -0.25

W/UF. 2 : w/@F. 3
FIG. 9. As Fig. 8, but with i/vp = 0.137. All systems are thus in the Kondo-screened phase.
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FIG. 10. Cuts through the QPI signal for a scalar impurity along (a) the I'-K direction and (b) the I'-M direction, for a system with u =
100 meV and a potential scattering strength V /vr = 0.1. Energies shown are from 0-360 meV in steps of 20 meV in order of increasing peak

position (20 meV =~ 0.027vg).

Fermi-liquid phase,”® which results in the imaginary part of
the self-energy vanishing quadratically at low energies. The
impurity spectral density is enhanced at low energies due to
the Kondo effect, with the Fermi-level value being pinned by
the Friedel-Luttinger sum rule.?

APPENDIX C: QPI FROM NONMAGNETIC IMPURITIES

For completeness, we show here the QPI signal of non-
magnetic impurities, which has largely been calculated and
discussed in Refs. 10,13,21,22,27.

1. Scattering potential

The TI surface metal with a nonmagnetic scalar impurity
or potential scatterer is described by H = Hy + Hy, with

Hy =V Y Wi =0V, =0). (Cl)
The exact T matrix is
. 1 \% 1
Tk =—— T=—T%w)I, C2
@) = gyl = 3T (€2)
2 T
| @ I-K |

with f, , given in Eq. (6), while lowest-order Born approxi-
mation (valid for small V) corresponds to T°(w) = V, which
is real and constant. The QPI pattern in this approximation is
displayed in Fig. 1(b).

Since impurities are often not weak, the Born approxima-
tion may be insufficient. Results using the full T matrix, which
now includes a small imaginary part, are plotted in Fig. 10
for V/vp = 0.1. We observe that the intensity of the peak
along the I'-K direction simply increases monotonically as
the scanning energy |w| increases (for both w > 0 and w < 0).

2. Resonant level

A so-called resonant level impurity is obtained by setting
U = 0in Eq. (12), physically corresponding to a mixed-valent
impurity atom. Then, the impurity spectral function consists
of a single peak centered around w = €,. In contrast to the
scalar impurity discussed above the T matrix of the resonant
level possesses an appreciable imaginary part [see Eq. (15)
with £¢ = 0].

Cuts through the QPI pattern along the I'-K and I'-M
directions at different scanning energies are plotted in Fig. 11
for w = 100 meV, ¢;/vrp = —0.1, and g/vr = 0.168. For this
resonant level, the intensity of the peak is reminiscent of the

L (b) r-M

FIG. 11. Cuts through the QPI signal for a resonant level along (a) the I'-K direction and (b) the I'-M direction, for a system with p© =
100 meV, U =0, ¢;/vr = —0.1, and g/vr = 0.168. Energies shown are from 0-360 meV in steps of 20 meV in order of increasing peak

position.
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high-energy response produced by a Kondo impurity obtained
for U > 0O (simple charge fluctuations are responsible for the
evolution of the QPI signal at high energies in both cases).
However, crucially there is no buildup of QPI intensity at
low energies, since there is no Kondo effect (see, by contrast,
Fig. 6).

APPENDIX D: QPI FROM STATIC MAGNETIC
IMPURITIES

The simplest model for a static, i.e., polarized, magnetic
impurity is a local magnetic field, corresponds to a spin-

PHYSICAL REVIEW B 87, 075430 (2013)

dependent version of the potential scattering case considered
above. Thus, we have H = Hy + H;, with

H, =hz\y;(r = 0)o. ¥, (r = 0). (D1)
Within the Born approximation, the T matrix is then
T ~ 0, (D2)

i.e., T'(w) = h, such that there is no response in QPI due
to Eq. (11). Beyond the lowest-order Born approximation,
a (weak) response similar to that of a potential scatterer is
induced (see Refs. 20-22).
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