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Quantum phase transitions and thermodynamics of the power-law Kondo model
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We revisit the physics of a Kondo impurity coupled to a fermionic host with a diverging power-law density
of states near the Fermi level, ρ(ω) ∼ |ω|r , with exponent −1 < r < 0. Using the analytical understanding of
several fixed points, based partially on powerful mappings between models with bath exponents r and (−r),
combined with accurate numerical renormalization group calculations, we determine thermodynamic quantities
within the stable phases and also near the various quantum phase transitions. Antiferromagnetic Kondo coupling
leads to strong screening with a negative zero-temperature impurity entropy, while ferromagnetic Kondo coupling
can induce a stable fractional spin moment. We formulate the quantum field theories for all critical fixed points
of the problem, which are fermionic in nature and allow for a perturbative renormalization-group treatment.
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I. INTRODUCTION

Impurities can act as probes for host materials. The Kondo
effect,1 which describes the screening of a single magnetic
impurity embedded in a metal at low temperatures, is a striking
example: Screening occurs (and can be probed locally) only
when low-energy conduction electron-hole pairs are available.
Numerous generalizations of the Kondo effect have been
discussed over the last two decades, involving host systems
such as superconductors,2–5 Luttinger liquids,6,7 boundary
states of topological insulators,8–11 and spin liquids.12–15 In
many of these cases, the interactions between the impurity
moment and the host excitations are nontrivial and lead to
zero-temperature phase transitions16,17 which can be tuned by
varying impurity or host parameters.

A prominent and rich example is given by the so-called
pseudogap Kondo problem, describing a magnetic moment
embedded in a system of weakly interacting fermions with a
power-law vanishing density of states (DOS) ρ(ω) ∼ |ω|r with
r > 0. Originally discussed in the context of unconventional
superconductors,4,5 where p- and d-wave pairing symmetries
yield r = 2 and 1, respectively, the problem has continued to
attract much attention, for example, due to its realization in
semimetals like graphene.18–23 The pseudogap Kondo model
displays various phases and quantum phase transitions (QPTs)
which have been studied extensively using both numerical
and analytical techniques.4,5,17,24–33 In particular, fermionic
quantum field theories have been introduced and employed
to calculate perturbatively critical properties in the vicinity of
certain critical “dimensions,” i.e., special values of the bath
exponent r .4,31,32

The problem of a magnetic impurity coupled to fermions
with a diverging DOS, ρ(ω) ∼ |ω|r with −1 < r < 0 (here-
after referred to as the “power-law Kondo model”) can also be
realized: A band edge in one space dimension leads to a DOS
with r = − 1

2 , disordered two-dimensional Dirac fermions can
display a diverging DOS with varying exponent,34,35 and a
diverging DOS might also appear at critical points within
extensions36 of dynamical mean-field theory.37 The power-law
Kondo model was investigated previously in Ref. 38 using Wil-
son’s numerical renormalization group (NRG) technique,39,40

with particular emphasis on the structure of the phase diagram
and the occurrence of a fractional-spin phase. Moreover, a
Kondo model with r = −1+, i.e., a DOS of the limiting
form ρ(ω) ∼ 1/(|ω| ln2 |ω|), has been proposed for vacancy-
induced moments in graphene,41 and properties of this model
have recently been investigated in detail using a combination
of NRG and analytics in Ref. 42.

In this paper, we revisit the rich physics of the power-law
Kondo model over the entire bath exponent range −1 < r < 0
for two reasons: (i) While the initial study38 was based
mainly on NRG results, subsequent work on the positive-r
case31,32,43 has lead to substantial analytical insight into the
structure of both the stable and quantum critical fixed points
of the Kondo model with |ω|r bath DOS. Here we extend
and apply these analytical concepts to the negative-r case.
(ii) The physical observables obtained in Ref. 38 were rather
limited, and the limiting low-temperature properties were
not correctly obtained.44 Here we present highly-accurate
numerical results for the full temperature dependence of the
impurity entropy and susceptibility as well as for critical
exponents, complemented and confirmed by analytical results,
over the entire range −1 < r < 0.

As the main result, we are able to provide and analyze the
critical field theories for all four intermediate-coupling fixed
points of the problem. As in earlier work on related models,
these field theories are not of Landau-Ginzburg-Wilson type,
but instead are fermionic in nature. Using epsilon-expansion
techniques, we calculate critical properties which we find in
perfect agreement with numerical results.

The body of the paper is organized as follows: In Sec. II
we specify the power-law Kondo model and introduce the
observables to be discussed throughout the paper. The phase
diagram of the model is reviewed in Sec. III, supported
and justified by numerical results. Section IV is devoted
to a discussion of the “trivial” (weak-coupling and strong-
coupling) fixed points of the model. Due to the power-law host
DOS, most of these fixed points nevertheless display somewhat
nontrivial thermodynamic properties, which we analyze using
suitable effective models and mappings. These are the basis
for the construction of critical field theories for the various
intermediate-coupling fixed points, which are the subject of
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Sec. V. We sketch the renormalization group (RG) treatment of
the field theories and calculate critical properties. Throughout
the paper, analytical results are compared with highly accurate
numerical results obtained by NRG. A brief discussion will
close the paper.

II. MODEL AND OBSERVABLES

A. Power-law Kondo model

The Kondo Hamiltonian for a spin- 1
2 impurity can be

written as H = Hb + HK, with the impurity part

HK = J �S · �s0 + V
∑

σ

c
†
0σ c0σ (1)

and the noninteracting conduction band described by Hb =∑
�kα ε�kc

†
�kα

c�kα
. Here �S denotes a spin- 1

2 operator for the impu-

rity, and �s0 = ∑
αβ c

†
0α �σαβc0β is the conduction electron spin

density at the impurity site �r0 = 0, with c0σ = N
−1/2
orb

∑
�k c�kσ

and Norb → ∞.
For most of the discussion, we employ a conduction band

with a symmetric density of states and pure power law
behavior,

ρ(ω) = ρ0

∣∣∣∣ ω

D

∣∣∣∣
r

for |ω| < D = 1, (2)

where ρ0 = (1 + r)/(2D). Particle-hole (p-h) asymmetry is
introduced via a potential scattering term V �= 0 in Eq. (1), see
also Sec. II B below. Importantly, many properties discussed
in this paper, such as critical exponents and fixed-point
observables, display universality in the sense that they are only
determined by the behavior of ρ(ω) at low energies (assumed to
be of the quoted power-law form) and the presence or absence
of p-h symmetry.

B. Particle-hole asymmetry

As p-h asymmetry plays a singular role for the power-law
Kondo model at weak coupling, it is worth reviewing some of
its properties. In a fermionic quantum impurity model, there
are various sources of p-h asymmetry: (i) The conduction
band DOS can be asymmetric, ρ(ω) �= ρ(−ω). Here we
shall only consider a high-energy asymmetry, such that the
low-energy DOS is symmetric: lim|ω|→0 ρ(ω) = a±|ω/D|r for
ω ≷ 0 with a+ = a−. This is the case relevant for graphene,
unconventional superconductors, etc. (ii) The impurity can
induce potential scattering at the local bath site to which it
is coupled. In Eq. (1), this corresponds to V �= 0. (iii) The
impurity orbital itself can be p-h asymmetric, if described by
an Anderson impurity model1 (such asymmetry is obviously
absent by construction in a Kondo model).

These sources of p-h asymmetry are usually considered to
be qualitatively equivalent for the low-energy behavior, since
they all influence the real part of the free bath Green function
at the impurity site. Explicit links can be made as follows:

First, the equivalence of (iii) and (ii) can be established
in the singly-occupied Kondo limit of an Anderson impurity
model via the Schrieffer-Wolff transformation.1 We note that
this requires finite Coulomb interaction in the Anderson model,
and does not hold for a noninteracting resonant level model.

Second, the equivalence of (i) and (iii) can be directly seen
for an Anderson model, where a real part of the bath Green
function simply renormalizes the impurity level position.

Third, the equivalence of (i) and (ii) follows in the
framework of RG for a Kondo model:45 Integrating out
the p-h asymmetric part of the bath generates a potential
scatterer. This is seen most clearly in the case of a maximally
asymmetric bath, ρ(ω > 0) = ρ0|ω/D|r and ρ(ω < 0) = 0.
Then the weak-coupling beta functions for the dimensionless
running couplings j = ρ0J and v = ρ0V read46,47

dj

d ln �
= rj − j 2

2
+ 2vj ,

dv

d ln �
= rv + 3j 2

16
+ v2 (3)

to second order, with � being the running UV cutoff. The j 2

term in the second equation is responsible for generating a
finite v as soon as j is nonzero.

These arguments do not depend on the value of the DOS
exponent r , and so the different sources of p-h asymmetry
remain equivalent for r < 0. In this paper we thus employ
a p-h symmetric bath, Eq. (2), using the potential scattering
V �= 0 to tune p-h asymmetry.

We note, however, that the exchange coupling J and
potential scattering V are not independent parameters in
the effective Kondo model if derived from an underlying
Anderson model. As discussed in Ref. 42, the various phases
of the Kondo model in its most general form might not be
accessible in the parent Andersonian system.

C. Observables

To pave the way for the discussion of the various phases
of the power-law Kondo model, we introduce relevant observ-
ables to characterize the impurity behavior.

1. Susceptibilities

Magnetic susceptibilities are obtained by coupling an
external magnetic field �Hu to the bulk electronic degrees of
freedom in Hb,

− �Hu ·
∑
�k,αβ

c
†
�kα

�σαβc�kβ
, (4)

and coupling �Himp to the impurity spin in HK via

− �Himp · �S . (5)

With these definitions, a spatially-uniform field applied to
the whole system corresponds to �Hu = �Himp ≡ �H . Response
functions can be defined from second derivatives of the ther-
modynamic potential, 	 = −T ln Z, in the standard way:48

χu,u measures the bulk response to a field applied to the
bulk, χimp,imp is the impurity response to a field applied to
the impurity, and χu,imp is the cross response of the bulk to an
impurity field.

The impurity contribution to the total susceptibility is
defined as

χimp(T ) = χimp,imp + 2χu,imp + (
χu,u − χbulk

u,u

)
, (6)

where χbulk
u,u is the susceptibility of the bulk system in the

absence of the impurity. For a free unscreened impurity with
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spin S = 1
2 , one of course expects χimp(T → 0) = S(S +

1)/(3T ) = 1/(4T ) in the low-temperature limit. At critical
points χimp does not acquire an anomalous dimension49 (in
contrast to χloc below), because it is a response function
associated with the conserved total spin. Thus one generically
expects a Curie law susceptibility,

lim
T →0

χimp(T ) = Cimp

T
, (7)

but with an effective Curie constant Cimp that can in general
take a nontrivial universal value different from S(S + 1)/3.
Apparently, Eq. (7) can be interpreted as the Curie response of
a fractional effective spin.48 In the power-law Kondo model
Eq. (1), such a response is in fact realized in a stable phase;
another example of such a critical phase in a single-impurity
model is in the two-bath spin-boson (or XY-symmetric Bose-
Kondo) model studied in Refs. 50 and 51.

The local impurity susceptibility is given by

χloc(T ) = χimp,imp . (8)

In terms of the impurity spin autocorrelation function
〈〈�S; �S〉〉ω,T ≡ χ ′

loc(ω,T ) + iχ ′′
loc(ω,T ), the local impurity sus-

ceptibility is obtained as the zero-frequency value, χloc(T ) =
χ ′

loc(ω → 0,T ). At criticality, χloc typically follows a
power law,

lim
T →0

χloc(T ) ∝ T −1+ηχ . (9)

which defines the anomalous susceptibility exponent ηχ . For
fixed points with hyperscaling properties—this applies to all
intermediate-coupling fixed points of the power-law Kondo
problem with r < 0—the same power-law behavior is realized
as a function of frequency at zero temperature, χ ′

loc(ω →
0,T = 0) ∝ ω−1+ηχ , describing as such critical local-moment
fluctuations.

2. Impurity entropy

The impurity contribution to the entropy is defined as

Simp(T ) = S − Sbulk, (10)

where Sbulk is the entropy of the system without the impurity.
For most phases of quantum impurity models, the residual
impurity entropy, Simp(T = 0), is a finite universal number
of order unity, for example Simp = ln 2 for a free unscreened
impurity spin- 1

2 .

D. NRG calculation of observables

To obtain accurate numerical results for the Kondo model
Eq. (1), we employ Wilson’s NRG,39 generalized40 to deal with
the power-law conduction electron DOS, Eq. (2). Impurity
contributions to thermodynamic quantities, like T χimp or
Simp, are obtained from 〈	̂〉imp = 〈	̂〉tot − 〈	̂〉0, with 〈	̂〉tot

the thermal average of the full impurity-coupled system,
and 〈	̂〉0 that of the free (“bath only”) system. The full
temperature dependence is built up from information extracted
from each iteration of the calculation. Further details of the
NRG algorithm can be found in Ref. 40. Throughout we use
a discretization parameter � = 2, and Ns = 4000 states are
retained at each iteration.

TSC

0−∞

SSCFS

j

|v|

∞
LM

ALM

j

|v|

∞
LMTSC
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|v|
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−∞
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∞0

ALM
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(b)
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∞

∞

∞

FIG. 1. (Color online) Schematic RG flows for the power-law
Kondo model with r < 0, as deduced from NRG calculations. The
horizontal axis denotes the (running) Kondo coupling j while the
vertical axis denotes the (running) potential scattering v. (a) r̄∗ <

r < 0, (b) r̄max < r < r̄∗, (c) −1 < r < r̄max, with NRG estimates of
r̄∗ = −0.245 ± 0.005, r̄max = −0.264 ± 0.001. The solid dots denote
infrared stable fixed points; the open dots are critical fixed points
(labeled as in the text). FS denotes the infrared stable intermediate-
coupling fixed point with fractional spin.

III. PHASE DIAGRAM AND RG FLOW

We now summarize our results for the phase diagram and
RG flow of the power-law Kondo model with DOS exponent
−1 < r < 0; qualitative aspects of these were initially dis-
cussed in Ref. 38. As for the pseudogap Kondo model with
r > 0, the fate of the impurity strongly depends on the presence
or absence of p-h symmetry. The qualitative behavior for ferro-
magnetic coupling, J < 0, moreover depends on the value of r:
see Fig. 1. Therefore, we distinguish three intervals, bounded
by r̄∗ = −0.245 ± 0.005 and r̄max = −0.264 ± 0.001, whose
values have been obtained numerically by NRG (see also
Sec. V E).

A. RG flow and fixed points

1. J > 0

For antiferromagnetic Kondo coupling, we observe screen-
ing in the p-h symmetric case—controlled by the singlet
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strong-coupling (SSC) fixed point—for any value of J > 0.
Kondo screening is of course well known to arise already in the
standard metallic case, r = 0, and so screening is also naturally
expected in the power-law case. The enhanced DOS near the
Fermi level should give rise to a larger Kondo temperature,
which can itself be identified by integrating the weak coupling
RG flow [see Eq. (18) of Sec. V]. The Kondo strong coupling
behavior is associated with a divergence of the renormalized
coupling, which arises on the scale,

TK ∼ D

(
1 − r

ρ0J

)1/r

. (11)

In the limit r → 0, one thus recovers the standard result,1

TK
r→0∼ D exp(−1/ρ0J ) , (12)

while the diverging power-law DOS with −1 < r < 0 yields
instead an enhanced power-law dependence of the Kondo
scale,

TK
ρJ|r|∼ D

(
ρ0J

−r

)α

, (13)

with leading-order exponent α = −1/r . For larger values of
ρ0J , one observes deviations consistent with Eq. (11). These
results are confirmed numerically in Fig. 2.

For finite p-h asymmetry, the Kondo-screened state com-
petes with a maximally p-h asymmetric unscreened state,
controlled by the asymmetric local-moment (ALM) fixed
point. As a consequence, no screening occurs for small J and
large V —see Fig. 1. At ALM, the impurity is asymptotically
decoupled from the bath, and the conduction electron site
localized at the impurity position is either doubly occupied
or empty (depending on the sign of the bare V ). The transition
between SSC and ALM is controlled by an antiferromagnetic
critical (AF-CR) fixed point, as shown in Fig. 3. A quantitative
ground-state phase diagram obtained using NRG is presented

FIG. 2. (Color online) NRG results for the Kondo temperature,
defined by Simp(TK) = (ln 2)/2, as a function of the Kondo coupling
J for a pure power-law bath DOS with different exponents r =
0, −0.1, −0.2, . . . ,−0.9 decreasing in the direction of the arrow. The
dashed lines show the weak-coupling power law of Eq. (13) [dotted
line is the standard result, Eq. (12), for the metallic case r = 0].

FIG. 3. (Color online) Impurity susceptibility T χimp(T ) vs T/D

across the QPT separating SSC and ALM phases, for antiferromag-
netic Kondo coupling J = 0.01 and r = −0.6. The AF-CR critical
point (red dotted line) is attained at Vc � 0.010 25 . . .. The transition
is approached progressively from the SSC phase (solid lines, V < Vc)
or the ALM phase (dashed lines, V > Vc) with V = Vc ± δV and
δV = 10−3,10−4,10−5,10−6,10−7. For comparison, circles are for the
direct crossover with J = 0.01 and V = 0, while diamonds are for
J = 0 but V = 0.01. Arrows indicate the fixed point values.

in Fig. 4, showing the phase boundary between SSC and ALM
for different values of r < 0.

2. J < 0, r̄∗ < r < 0

In the p-h symmetric case, small ferromagnetic Kondo
coupling flows to a finite intermediate value, realizing the
fractional-spin (FS) phase advertised in Ref. 38. However, for
larger (−J ), one obtains a stable phase where the impurity
spin- 1

2 and the bath site to which it is coupled lock together
in a triplet configuration. This state is described by the triplet
strong-coupling (TSC) fixed point. FS and TSC are themselves
separated by a QPT controlled by a p-h symmetric critical
(SCR) fixed point.

With p-h asymmetry, FS becomes unstable, generating a
flow to ALM. However, SCR is stable for r̄∗ < r < 0: As
a result, the transition between TSC and ALM, accessed on

FIG. 4. (Color online) Exact phase boundary between SSC and
ALM phases of the Kondo model with pure power-law DOS Eq. (2)
and antiferromagnetic Kondo coupling, obtained using NRG.
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FIG. 5. (Color online) Exact phase boundaries between TSC and
ALM phases of the Kondo model with pure power-law DOS Eq. (2)
and ferromagnetic Kondo coupling, obtained using NRG. Shown
for bath exponents r = −0.1, −0.25, and −0.4 (black stars, red
crosses, and blue plusses, respectively), characteristic of the three
distinct regimes. Open circles represent the SCR fixed point [at
(J,V ) � (−15.0,0) and (−2.8,0) for r = −0.1 and −0.25], filled
circles correspond to the FS fixed point [at (J,V ) � (−0.2,0) and
(−1,0) for r = −0.1 and −0.25], and squares are for the ACR
fixed point [at (J,V ) � (−3.5,0.3) and (−6,1.35) for r = −0.25 and
−0.4].

tuning potential scattering V for large ferromagnetic J , is
also controlled by SCR, which is therefore multicritical in
nature—see Fig. 1(a) for the qualitative RG flow, and star
points of Fig. 5 for the exact phase boundary obtained by
NRG.

3. J < 0, r̄max < r < r̄∗

Upon decreasing r below r̄∗, a new p-h asymmetric critical
(ACR) fixed point splits off from SCR. The transition between
TSC and ALM, accessed on tuning V , is now controlled by
ACR. However, in the p-h symmetric case V = 0, the transition
between TSC and FS, accessed on tuning J , remains controlled
by SCR. See Fig. 1(b) and cross points in Fig. 5.

4. J < 0, −1 < r < r̄max

For r → r̄+
max, the p-h symmetric fixed points FS and SCR

merge and annihilate, such that for r < r̄max any ferromagnetic
Kondo coupling flows to large values and produces the
triplet state described by TSC. See Figs. 1(c) and 5. The
transition between TSC and ALM remains controlled by ACR,
as demonstrated by the evolution of thermodynamics near
criticality in Fig. 6.

B. Mappings to positive-r models

In the course of the paper we establish and exploit various
mappings between (a certain parameter regime of) the power-
law Kondo model with negative r and variants of the pseu-
dogap Kondo model with positive DOS exponent r ′ = −r . A
comprehensive analytical understanding of these pseudogap
Kondo models has been achieved in Refs. 29, 31, 32, 43,
and 52, and we will make use of the corresponding results.

FIG. 6. (Color online) T χimp(T ) vs T/D as in Fig. 3, but now
across the QPT separating TSC and ALM phases, for ferromagnetic
Kondo coupling J = −0.01 and r = −0.5. The ACR critical point
(red dotted line) is attained at Vc � 0.001106 . . .. The transition is
approached progressively from the TSC phase (solid lines, V < Vc)
or the ALM phase (dashed lines, V > Vc) with V = Vc ± δV and
δV = 10−4,10−5,10−6,10−7. For comparison, circles are for the direct
crossover with J = −0.01 and V = 0, while diamonds are for J = 0
but V = 0.01.

As previous papers27,29,31,32,43 label positive-r phases and
fixed points using acronyms similar to the ones employed here
for the negative-r case, in the following we distinguish them by
using primed labels for fixed points of the positive-r effective
models, e.g., LM′, SSC′, etc.

IV. TRIVIAL FIXED POINTS

As can be seen from Fig. 1, the power-law Kondo problem
displays a number of stable phases, controlled by fixed points
where the renormalized couplings |j | and |v| have flowed
to either zero or infinity. These fixed points can be fully
understood analytically, as explained below, with important
thermodynamic properties summarized in Table I.

A. Resonant-level models and chain representation

An effective model which plays a central role in the
following analysis is the noninteracting resonant-level model
(RLM), described by the Hamiltonian HRLM = Hb + Hl with

Hl = V0

∑
σ

(f †
σ c0σ + H.c.), (14)

TABLE I. Exact thermodynamic properties of the trivial fixed
points of the power-law Kondo model.

Fixed point Entropy, Simp Curie constant, Cimp

Local Moment (LM) ln 2 1
4

Symmetric Strong 2r ln 2 r

8
Coupling (SSC)

Asymmetric Local ln 2 + 2r ln 2 1
4 + r

8
Moment (ALM)

Triplet Strong ln 3 + 2r ln 2 2
3 + r

8
Coupling (TSC)
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where Hb is the p-h symmetric conduction electron Hamil-
tonian, with power-law DOS given by Eq. (2), and fσ is
an operator for the additional resonant level. This model
is of course exactly solvable and has been analyzed before
in Refs. 27, 28, and 32. For r < 1 it displays remarkable
thermodynamic properties, which can be calculated directly
from the f -electron propagator in the low-energy limit,

Gf (iωn)−1 = iωn − iA0 sgn(ωn) |ωn|r − A1iωn, (15)

where A0 = (πρ0V
2

0 )/[Dr cos(πr/2)] and A1 =
(2ρ0V

2
0 )/[D(1 − r)]. The low-energy behavior can also

be understood more physically in terms of the RG flow to an
intermediate-coupling fixed point.32 In particular, the impurity
entropy associated with the resonant level is SRLM

imp = 2r ln 2
and the susceptibility is T χRLM

imp = r/8—these equations were
originally derived27,28,32 for 0 � r < 1, but in fact continue to
hold for −1 < r < 0.

Interestingly, both the entropy and Curie constant are neg-
ative for the r < 0 situation considered here; this reflects the
fact that coupling the resonant-level impurity to the bath with
divergent DOS removes low-energy states from the system.
We stress that since Simp is defined as the difference in entropy
of two thermodynamically-large systems, a negative Simp does
not contradict any fundamental laws of thermodynamics.

An intuitive understanding of various fixed points can be
achieved using a representation of the bath in terms of a semi-
infinite p-h symmetric tight-binding chain, Fig. 7(a). The first
site of the chain is precisely the bath site localized at the
impurity, �r0 = 0 [the c0σ orbital of Eq. (1)]. Starting from
this site, the rest of the bath is tridiagonalized to yield the
1d chain representation (similarly, a discretized version of the
model yields the “Wilson chain” representation exploited in
NRG).39,40

The resonant-level model, Eq. (14), then simply corre-
sponds to a chain with one additional site, Fig. 7(b). From
Eq. (15) it follows that the local DOS of the resonant level

(a) bath

(b) RLM

(d) SSC

(c) LM

(e) ALM

(f) TSC

FIG. 7. (Color online) Chain representation of the trivial fixed
points of the power-law Kondo model. Circles denote fermion sites;
the dashed line separates the bath sites (right) from the impurity (left).
Full (open) circles denote sites with (without) p-h symmetry; the
ellipses indicate strong-coupling singlet or triplet states. For details
see text.

(now the leading site of the extended chain) has a form
∝|ω|−r at low energies. Indeed, by obvious extension, adding
additional sites leads to an alternation of the low-energy
behavior, such that a chain with an even (odd) number n of extra
sites displays a |ω|r (|ω|−r ) low-energy DOS. This argument
similarly holds for negative n (removed sites). The implication
for thermodynamic quantities is that as T → 0, removing one
site from the bath yields the same excess entropy, 2r ln 2, as
adding one site. This can be understood as follows: A shortened
chain with n = −1 has local DOS of the terminal site with
|ω|−r behavior. Adding an extra site (restoring the original
chain, n = 0) gives an additional entropy of (−2r ln 2). The
entropy of the full chain is larger by (−2r ln 2) as compared
with the chain with a site removed. The chain representation
is exploited below to study the various trivial fixed points of
the problem.

B. LM

The p-h symmetric local-moment fixed point at j = v =
0 corresponds to a decoupled spin- 1

2 impurity, Fig. 7(c).
Consequently, we have SLM

imp = ln 2 and T χLM
imp = 1/4.

C. SSC

The p-h symmetric singlet strong-coupling fixed point
describes a Kondo-screened impurity, with j = +∞. In
the chain representation, this corresponds to a local singlet
(formed between the impurity spin and the singly-occupied
local bath site to which it is coupled), disconnected from
a free chain with one site removed, Fig. 7(d). As argued
above, a chain with one site removed is thermodynamically
equivalent to a chain with one site added. Since the singlet is
inert, this establishes the equivalence of the SSC fixed point
with the resonant-level model (of course, this equivalence
is also well known in the context of the standard metallic
Kondo problem1). As a result, we have SSSC

imp = 2r ln 2 and
T χSSC

imp = r/8, as derived before27,28,32 for positive r .
Figure 8 shows numerical results, obtained using NRG, for

both Simp and T χimp for the finite-temperature crossover from
LM to SSC, which correspond to the RG flow along the p-h
symmetric positive j axis in Fig. 1. The T → 0 values of
Simp and T χimp are in perfect agreement with the analytical
predictions for SSC.

D. ALM

The p-h asymmetric local-moment fixed point corresponds
to a decoupled spin- 1

2 impurity, j = 0, supplemented by
a divergent potential scattering term, |v| = ∞. The latter
effectively eliminates the site �r = 0 from the bath, Fig. 7(e).
Consequently, the thermodynamic properties are that of a free
spin plus a resonant level model, SALM

imp = (1 + 2r) ln 2 and
T χALM

imp = (2 + r)/8.
When potential scattering of strength V is applied to the

last site of the chain (�r0 = 0), the problem is exactly solved
using the T matrix formalism.1 We have

G(�r = 0,ωn) = G0 + G0V (1 − G0V )−1G0, (16)

where G0 = G0(�r = 0,ωn) is the local �r = 0 Green function
without potential scattering. Using the DOS in Eq. (2) with
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FIG. 8. (Color online) Universal scaling curves for impurity entropy Simp(T ) and impurity susceptibility T χimp(T ) in the case of
antiferromagnetic Kondo coupling J > 0 (but V = 0) for various bath exponents r = 0, −0.1, −0.2, . . . , −0.9 (following the arrow). The
temperature is plotted as T/TK, with the Kondo temperature TK defined via Simp(TK) = (ln 2)/2. In the limit T → 0, we have Simp = 2r ln 2
and T χimp = r/8 at the SSC fixed point.

negative r yields

G(�r = 0,ωn) = − 1

V
− iB0sgn(ωn)|ωn|−r + O

(
ω−2r

n

)
(17)

with B0 = Dr cos(πr/2)/(V 2ρ0π ). Thus V �= 0 has the sin-
gular effect of converting the bath DOS from |ω|r to |ω|−r

at low energies. This results in an instability of LM toward
finite potential scattering, and thereby the flow to |v| = ∞
corresponding to ALM, Fig. 1.

E. TSC

The p-h symmetric triplet strong-coupling fixed point
describes a spin-1 object, formed due to strong ferromagnetic
coupling j = −∞ between the spin- 1

2 impurity and the singly-
occupied bath site to which it is coupled. At the TSC fixed
point, this local triplet is disconnected from a chain with
one site removed, Fig. 7(f). Therefore, one naturally gets
contributions from both the spin-1 and the resonant level,
STSC

imp = ln 3 + 2r ln 2 and T χTSC
imp = 2/3 + r/8.

V. INTERMEDIATE-COUPLING FIXED POINTS AND RG

We now turn our attention to the intermediate-coupling
fixed points of the power-law Kondo model. These include
the critical fixed points SCR, ACR, and AF-CR as well as the
stable fixed point FS, controlling the fractional spin phase.

In the following, we employ RG techniques to calculate
perturbatively critical properties. Specifically, we exploit a

double expansion in a coupling constant and the deviation from
a critical “dimension,” which here corresponds to a special
value of the bath exponent r . A summary of thermodynamic
results is presented in Table II.

A. FS: Kondo expansion in J

The FS fixed point, which exists for r̄max < r < 0, can be
accessed in an expansion in the Kondo coupling J around the
LM fixed point. This is equivalent to Anderson’s poor man’s
scaling45 adapted to the power-law Kondo model.4 Expressed
in β functions for the dimensionless running couplings j =
ρ0J and v = ρ0V we have

dj

d ln �
= j (r − j ) + O(j 3),

dv

d ln �
= rv. (18)

For r < 0, small |j | grows for both antiferromagnetic j > 0
and ferromagnetic j < 0 Kondo coupling. In particular, the
RG equations predict (to second order) an infrared stable fixed
point at v = 0 and j ∗ = −|r| on the ferromagnetic side—this
is the FS fixed point.

Its properties are perturbatively accessible in a double
expansion in j and r (around j = 0 and r = 0). The calculation
parallels that for the critical fixed point in the r > 0 case,32,52

and so we only quote the results here. The residual entropy is

SFS
imp = ln 2 + O(r3); (19)

TABLE II. Thermodynamic properties of the intermediate-coupling fixed points of the power-law Kondo model, obtained by perturbative
RG methods.

Fixed point Entropy, Simp Curie constant, Cimp

Fractional Spin (FS) ln 2 + O(r3) 1−r

4 + O(r2)

Asymmetric-Critical (ACR) ln 5 + 2r ln 2 − 24 ln 2
25 (1 + r) + O((1 + r)2) 4+r

8 − 0.032 27(1 + r) + O((1 + r)2)

Symmetric-Critical (SCR) ln 3 + 2r ln 2 + O(r3) 16+19r

24 + O(r2)

Antiferromagnetic-Critical r∗ < r < 0 ln 2 + 2r ln 2 + O(r3) 2+3r

8 + O(r2)

(AF-CR) −1 < r < r∗ ln 3 + 2r ln 2 − 8 ln 2
9 (1 + r) + O((1 + r)2) 4+3r

24 − 0.029 88(1 + r) + O((1 + r)2)
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(a)

(b)

(c)

FIG. 9. (Color online) Universal T → 0 values of (a) impurity
magnetic moment T χimp and (b) impurity entropy Simp as function of
the bath exponent r for the fractional-spin fixed point (FS) and the
symmetric critical fixed point (SCR), obtained from NRG. Both FS
and SCR exist for r̄max < r < 0 with r̄max = −0.0264 ± 0.001. The
dashed lines show the perturbative results in Eqs. (19) and (20) for FS;
while dotted lines are Eqs. (21) and (22) for SCR. (c) Critical coupling
ρ0Jc, for the TSC–FS transition controlled by SCR and renormalized
intermediate coupling at the FS fixed point ρ0J

∗, determined from a
stationarity condition of the initial NRG flow.

the perturbative correction ∝r3 was calculated in Ref. 52 but
turned out to be unobservable numerically in the positive-r
case. The impurity susceptibility follows

T χFS
imp = 1 − r

4
+ O(r2). (20)

The predictions of Eqs. (19) and (20) are compared to NRG
data in Figs. 9(a) and 9(b) as the dashed lines, and agree
essentially perfectly for small r . The anomalous exponent of
the local susceptibility evaluates to ηFS

χ = r2 + O(r3). FS is
unstable with respect to finite p-h asymmetry, with the scaling
dimension being dim[v] = −r (positive scaling dimensions
correspond to relevant operators).

B. SCR: Mapping to positive-r spin-1 model
and Kondo expansion in 1/J

The p-h symmetric critical (SCR) fixed point, controlling
the transition between TSC and FS, exists in the exponent
range r̄max < r < 0. Numerical results [see also Fig. 9(c)]
suggest that at SCR, the critical coupling Jc → −∞ diverges

as r → 0−. This implies that SCR approaches TSC in this
limit, so that an expansion around TSC can be used to access
SCR physics.

Indeed, such an expansion can be constructed using the
insights gained in Sec. IV A: TSC, corresponding to J = −∞,
can be understood as a spin-1 impurity, decoupled from a chain
with |ω|−r DOS, Fig. 7(f). Departing from J = −∞ allows
(virtual) hopping processes between the first and second sites
of the original chain, which generate an effective exchange
coupling between the spin-1 object and the remainder of the
chain. Importantly, the effective coupling is antiferromagnetic,
and scales as t2

12/|J | (where t12 is the hopping matrix element
connecting the first and second chain sites, and is on the
order of the conduction bandwidth D). Thus, for large
ferromagnetic |J |, the negative-r spin- 1

2 Kondo model maps
onto an underscreened53 spin-1 Kondo model — but now with
positive bath exponent r ′ = −r and a small antiferromagnetic
coupling J ′ ∼ t2

12/|J |.
The QPT of this p-h symmetric spin-1 pseudogap model

is amenable to a perturbative treatment, which was worked
out in Ref. 43. A double expansion in r ′ and J ′ yields
the following critical-point properties: Simp = ln 3 + O(r ′3)
and T χimp = 2/3 − 2r ′/3 + O(r ′2)—these are the thermody-
namic contributions of the spin-1 impurity relative to the |ω|−r

bath. Note that r = r ′ = 0 plays the role of a lower critical
dimension.

To obtain the properties of SCR itself, we need to take into
account the effect of the altered chain length, which again
leads to additional contributions corresponding to a resonant
level. Using r ′ = −r , we finally obtain the following results
for SCR:

SSCR
imp = ln 3 + 2r ln 2 + O(r3) , (21)

T χSCR
imp = 2

3
+ r

8
+ 2r

3
+ O(r2) . (22)

These predictions are compared to NRG results as the dotted
lines in Figs. 9(a) and 9(b), and agree essentially perfectly at
small r . The correlation length exponent of SCR is43 1/νSCR =
|r| + O(r2). Although the anomalous susceptibility exponent
was not previously calculated, it can be obtained using the RG
procedure of Ref. 43. We find it to be ηSCR

χ = r2 + O(r3).

C. AF-CR: Mapping to positive-r spin- 1
2 model

and two expansions

As we show below, the power-law Kondo model near
its antiferromagnetic critical (AF-CR) fixed point can be
mapped onto an effective spin- 1

2 p-h asymmetric pseudogap
Kondo model with bath exponent r ′ = −r . Since much of
the relevant physics of the power-law Kondo model in this
regime can therefore be understood in terms of known results
for the pseudogap model, we review the latter here. Extensive
discussions have appeared elsewhere.17,23,27,29,32

1. Review: RG flow of the pseudogap Kondo model

As with the power-law Kondo model for r < 0, the
pseudogap Kondo model with r ′ > 0 features three intervals
of the bath exponent, characterized by qualitatively different
RG flow, see Fig. 10. We restrict the following discussion to
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(a)

(b)

(c)

0
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j

v

∞
LM’

j

v

∞
LM’

0

SSC’

ASC’

j

v

SSC’
∞0

ACR’

ACR’

SCR’

LM’

∞

∞

SCR’

∞

ASC’

ASC’

FIG. 10. (Color online) Schematic RG flow for the pseudogap
Kondo model with DOS exponent r ′ > 0 in the regimes (a) 0 < r ′ <

r∗, (b) r∗ < r ′ < rmax, (c) r ′ > rmax, with r∗ = 0.375 ± 0.002 and
rmax = 1

2 . As in Fig. 1, the axes represent the renormalized Kondo
coupling j and potential scattering strength v. For details of the fixed
points, see text.

the relevant case of antiferromagnetic Kondo coupling, and as
before use primed labels for fixed points of the pseudogap
model, to distinguish them from the fixed points of the
power-law Kondo model in Fig. 1.

The flow diagram for 0 < r ′ < r∗ (with r∗ ≈ 0.375), is
presented in Fig. 10(a). It contains two stable and two unstable
fixed points: LM′ corresponds to a free local moment and is
equivalent to LM in Sec. IV B. ASC′ denotes a p-h asymmetric
strong-coupling fixed point with fully screened impurity,
SASC′

imp = 0 and T χASC′
imp = 0. SSC′ is equivalent to SSC in

Sec. IV C, and features a positive residual entropy of 2r ′ ln 2.
SSC′ is unstable towards ASC′ on breaking p-h symmetry. A

single (multi)critical p-h symmetric fixed point SCR′ separates
LM′ from SSC′/ASC′.

For bath exponents r∗ < r ′ < rmax = 1
2 , the flow diagram

changes to that in Fig. 10(b). Here, a p-h asymmetric critical
(ACR′) fixed point splits off from SCR′. The transition between
LM′ and SSC′ tuned by J at V = 0 is still controlled by
SCR′; but the transition between LM′ and ASC′ driven by p-h
asymmetry is now controlled by ACR′.

Finally for r ′ > rmax, Fig. 10(c), SCR′ merges with SSC′.
Thus, no Kondo screening can arise at p-h symmetry in this
exponent range: The flow along the p-h symmetric axis is
towards LM′ only. The transition between LM′ and ASC′ on
breaking p-h symmetry remains controlled by ACR′.

2. AF-CR mapping

Effective theories for AF-CR can be derived by noting that
it approaches ALM in the limit r → 0−, see Fig. 4. Hence,
an expansion around ALM, which itself is characterized
by |V | = ∞, appears appropriate. Departing from |V | = ∞,
(virtual) hopping processes between the first and second bath
chain sites generate an effective exchange coupling between
the impurity and the second chain site. This effective Kondo
coupling, mediated by the (nearly) empty or doubly-occupied
first chain site, is antiferromagnetic, scaling as J ′ ∼ J t2

12/V 2

(t12 is again the tunneling matrix element between first and
second chain sites). Since the DOS at the second chain site
is ρ(ω) ∝ |ω|r ′

(with r ′ = −r , see Sec. IV A), we obtain
an effective p-h asymmetric pseudogap Kondo model. The
transition between ALM and SSC is therefore equivalent to
the transition between LM′ and ASC′ in the pseudogap model
with bath exponent r ′ = −r . This transition is controlled
by different fixed points depending on whether r ′ ≷ r∗, see
Fig. 10.

An alternative approach is to treat finite V at AF-CR exactly
according to Eq. (17). On the lowest energy scales, this has
the effect that the DOS at the first chain site is converted
from ρ(ω) ∝ |ω|r to ρ(ω) ∝ |ω|−r (and with additional p-h
asymmetry). Again, a p-h asymmetric pseudogap Kondo
model emerges.

3. Kondo expansion

For exponents 0 < r ′ < r∗ we know from Fig. 10 that the
LM′-ASC′ transition is controlled by SCR′. Its properties can
be analyzed in a weak-coupling expansion in the variables
of the (effective) pseudogap Kondo problem, with coupling
constants J ′ and V ′, the latter parametrizing p-h asymmetry.
To lowest order, the flow of the dimensionless couplings j ′
and v′ reads

dj ′

d ln �
= j ′(r ′ − j ′) + O(j ′3) ,

dv′

d ln �
= r ′v′ , (23)

with an unstable fixed point predicted at j ′∗ � r ′—this is
SCR′. Observables have been calculated, e.g., in Ref. 52; to
convert them into observables at AF-CR we again need to
account for the altered chain length in the original power-law
Kondo model. This is achieved simply by adding the constant
offset between ALM and LM′, itself equivalent to an additional
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FIG. 11. (Color online) Universal T → 0 values of (a) impurity
magnetic moment T χimp and (b) impurity entropy Simp as a function
of the bath exponent r for the critical fixed points ACR and AF-CR,
obtained using NRG (points and solid lines). The dotted lines show
the perturbative results for ACR, Eqs. (29) and (30); while the dashed
and dot-dashed lines are for AF-CR, Eqs. (24), (25), (27), and (28).
The properties of AF-CR display a pronounced change at r ≈ −0.4,
in agreement with the prediction that AF-CR is equivalent to SCR′

for r ′ = −r < r∗, but to ACR′ for r ′ = −r > r∗ (with r∗ = 0.375).

resonant level. Taken together we find

SAF-CR
imp = ln 2 + 2r ln 2 + O(r3), (24)

T χAF-CR
imp = 1

4
+ 3r

8
+ O(r2). (25)

These perturbative results are compared with exact results from
NRG as the dashed lines in Fig. 11, and agree essentially
perfectly for r � −r∗ (< 0). The correlation length exponent
follows as 1/νAF-CR = |r| + O(r2), and the anomalous sus-
ceptibility exponent is found to be ηAF-CR

χ = r2 + O(r3).
The mapping sketched above, together with a knowledge

of the location of SCR′ at weak coupling, allows us to infer the
location of AF-CR. As discussed above, the potential scatterer
can be incorporated into the bath part exactly, with the result
that the DOS at the terminal chain site crosses over from |ω|r
to |ω|r ′

behavior. The energy scale at which this happens is
roughly set by D′ = ( V πρ0

Dr cos(πr/2) )
−1/r = ( V πρ0

Dr cos(πr/2) )
1/r ′

. The

running coupling at this scale is set by j = ρ0J
D′r
Dr , which

should be the critical coupling at AF-CR, j ∗. From the (lowest
order) RG scaling equation, Eq. (23), we anticipate that AF-
CR arises at j ∗ � r ′, which yields a criterion for the phase
boundary (Jc,Vc) between ALM and SSC,

Vc � Jc/π

−r
, (26)

which should be valid for small r . This result is consistent with
NRG data, see Fig. 4.

4. Level-crossing expansion

For exponents r ′ > r∗, the LM′-ASC′ transition of the
pseudogap Kondo model is controlled by ACR′. It was
realized in Ref. 31 that the properties of ACR′ can be
captured in an expansion around the valence-fluctuation fixed
point of a maximally p-h asymmetric Anderson model, with
the expansion being controlled in r̄ = 1 − r ′. The resulting
observables were calculated in Refs. 31 and 32. Taking into
account the offset corresponding to the altered chain length in
the original r < 0 model, we obtain

SAF-CR
imp = ln 3 − 8 ln 2

9
(1 + r) + 2r ln 2 + O[(1 + r)2],

(27)

T χAF-CR
imp = 1

6
−

(
1

18
− ln 2

27

)
(1 + r) + r

8
+ O[(1 + r)2].

(28)

Equations (27) and (28) are compared with exact results from
NRG as the dot-dashed lines in Fig. 11, and again agree
excellently for r  −r∗ (> −1). In particular, we note that the
change in the character of AF-CR at r ′ = −r � r∗ predicted
by perturbative RG is nicely reflected in the numerical data.
The correlation length exponent is32 1/νAF-CR = |r| + O[(1 +
r)2], and the anomalous susceptibility exponent follows as
ηAF-CR

χ = 2(1 + r)/3 + O[(1 + r)2].

D. ACR: Mapping to positive-r spin-1 model
and level-crossing expansion

The p-h asymmetric critical ACR fixed point controls the
transition between TSC and ALM in the power-law Kondo
model. Remarkably, it is amenable to an expansion in a
generalized Anderson model, in analogy to the level-crossing
expansions of Refs. 31, 32, and 43.

The effective theory can be constructed by noting that
(i) TSC and ALM represent triplet and doublet spin states,
respectively, and (ii) both TSC and ALM involve, in the chain
representation of Sec. IV A, a bath chain with one site removed.
This suggests that the physics of ACR is captured by a minimal
theory involving the crossing of a doublet and a triplet of
levels, coupled to conduction electrons with DOS ∝ |ω|r ′

(and
r ′ = −r).

Such a fermionic field theory can be understood as a
generalized infinite-U Anderson model, with maximal p-h
asymmetry. This was considered first in Ref. 43 as a critical
theory for the p-h asymmetric underscreened spin-1 pseudogap
Kondo model. As with the standard Anderson model,31,32 the
hybridization term is a marginal perturbation to the valence-
fluctuation fixed point at r ′ = 1, which can thus be identified
as an upper critical dimension.31 This observation enables
a perturbative treatment, technically performed as a double
expansion in r̄ = 1 − r ′ and the hybridization strength.
Quoting the results from Ref. 43, we have Simp = ln 5 −
24r̄ ln 2/25 + O(r̄2) and T χimp = 1/2 − (3 − 2 ln 2)r̄/50 +
O(r̄2). We note that the leading terms in Simp and T χimp simply
correspond to the combined response of a spin-1 triplet and a
spin- 1

2 doublet.
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The properties of ACR are now obtained by adding the
resonant-level contribution as before, which yield

SACR
imp = ln 5 + 2r ln 2 − 24 ln 2

25
(1 + r) + O[(1 + r)2] ,

(29)

T χACR
imp = 1

2
+ r

8
− 3 − 2 ln 2

50
(1 + r) + O[(1 + r)2] .

(30)

A comparison to exact NRG results is given in Fig. 11 as
the dotted lines, and agrees extremely well over the entire
exponent range.

The correlation length exponent of ACR is43 1/νACR =
|r| + O[(1 + r)2]. Along the lines of Ref. 43, one can also
obtain the anomalous susceptibility exponent, with the result
ηSCR

χ = 2(1 + r)/5 + O((1 + r)2).

E. r̄∗ and r̄max from perturbation theory

The mappings of Secs. V A, V B, and V D allow one to
infer the separate existence of the fixed points FS, SCR (both
for small negative r), and ACR (for r � −1). Remarkably,
the RG analysis can even be used to predict the emergence of
the special exponent values r̄∗ and r̄max where the RG flow
qualitatively changes, Fig. 1. The basis for this is the fact
that the impurity entropy changes monotonically along the
flow between two fixed points; this is a milder version of the
so-called g theorem54 which states that the entropy should
decrease under RG flow (which strictly applies only to models
with short-ranged interactions).

Applied to the pair of fixed points SCR and FS, with the
flow topology as in Fig. 1(a), this implies that both fixed points
have to meet and disappear once SSCR

imp (r) = SFS
imp(r). Using the

one-loop expressions in Eqs. (19) and (21) we find the estimate
r̄max ≈ −0.292, which is to be compared with the exact value
r̄max = −0.264 ± 0.001.

Similarly, the entropy matching condition for SCR and ACR
using Eqs. (21) and (29) yields the estimate r̄∗ ≈ −0.232,

which is again close to the exact value r̄∗ = −0.245 ± 0.005.
Interestingly, in the range r̄max < r < r̄∗, we have SACR

imp >

SSCR
imp , such that the g theorem is violated. This is analogous

to the situation for the positive-r (pseudogap) Kondo model,32

itself related to the long-ranged effective interactions in these
models.

VI. SUMMARY

In this paper we revisited the rich physics of a Kondo
impurity immersed in a fermionic host with diverging
power-law density of states near the Fermi level, ρ(ω) ∼ |ω|r ,
with exponent r < 0. This power-law model displays
a number of stable phases and in total four nontrivial
intermediate-coupling fixed points, which we successfully
described using different fermionic critical field theories. We
exploited various mappings to effective models with positive
bath exponent (−r), which allowed us to make use of existing
field-theoretic results for variants of the pseudogap Kondo
model. Altogether, this demonstrates the remarkable versatility
of the methods originally developed in Refs. 31 and 32.

Our analytic results are in excellent agreement with exact
numerical results obtained from NRG: We conclude that the
convergence radius of the epsilon expansion is sizable here,
but in all cases restricted to ε < 1 (where ε is the deviation
of the DOS exponent from the critical “dimension” set by
r = 0 or r = 1). A detailed discussion of crossover functions,
in particular in dynamical observables such as the local spin
susceptibility and the conduction-electron T matrix, is left for
future work.
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