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Conductance fingerprint of Majorana fermions in the topological Kondo effect
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We consider an interacting nanowire/superconductor heterostructure attached to metallic leads. The device
is described by an unusual low-energy model involving spin-1 conduction electrons coupled to a nonlocal
spin- 1

2 Kondo impurity built from Majorana fermions. The topological origin of the resulting Kondo effect is
manifest in distinctive non-Fermi-liquid (NFL) behavior, and the existence of Majorana fermions in the device is
demonstrated unambiguously by distinctive conductance line shapes. We study the physics of the model in detail,
using the numerical renormalization group, perturbative scaling, and Abelian bosonization. In particular, we
calculate the full scaling curves for the differential conductance in ac and dc fields, onto which experimental data
should collapse. Scattering t matrices and thermodynamic quantities are also calculated, recovering asymptotes
from conformal field theory. We show that the NFL physics is robust to asymmetric Majorana-lead couplings,
and here we uncover a duality between strong and weak coupling. The NFL behavior is understood physically
in terms of competing Kondo effects. The resulting frustration is relieved by inter-Majorana coupling which
generates a second crossover to a regular Fermi liquid.
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I. INTRODUCTION

Majorana fermions in superconductor heterostructures are
presently the most viable candidates for realizing non-Abelian
anyons [1–3]. These emergent objects are zero-energy modes
bound to certain point defects, fractionalizing the regular
fermionic degrees of freedom. Individual Majoranas can be far
apart from each other, so that fermionic modes reconstructed
from pairs of Majoranas can be nonlocal in character [4].
Qubits encoding the occupation of such modes are topologi-
cally protected from local perturbations, and in consequence
could find important application within fault-tolerant quantum
computation [5].

Several proposals for realizing the Majorana paradigm are
the subject of ongoing experimental study, including het-
erostructures involving semiconductor nanowires with strong
spin-orbit coupling [6–8], and those using boundary modes
of topological insulators [9,10]. Much of this experimental
work has focused on demonstrating the existence of Majoranas
by detecting the zero-bias anomaly in tunneling conductance,
predicted from theory [11]. Despite suggestive observations,
however, unambiguous experimental verification remains
elusive because zero-bias peaks can also result from non-
Majorana sources [12].

Compelling evidence for the existence of Majorana
fermions in controllable nanodevices should therefore go
beyond a direct spectral measurement, probing instead the
topological nature of nonlocal qubits. Most theoretical work in
this direction relates to phenomena in noninteracting systems
[13]. However, richer physics could be accessible in systems
which can host emergent Majorana particles in the presence
of strong interactions between the physical electrons [14–17].

One such scenario was considered recently in Ref. [14]:
Majoranas at the end of nanowires on an interacting su-
perconducting island produce several topological qubits (see
Fig. 1). A spin- 1

2 degree of freedom can be constructed from
two such, which may be regarded as a nonlocal “quantum

impurity.” Attaching metallic leads to the device allows
this state to be probed by conductance measurement and,
importantly, the spin of the nonlocal impurity is then flipped
when an electron is transferred from one lead to the other.
This gives rise to an effective exchange coupling between
the spin- 1

2 “impurity” and the conduction electrons (which
form a representation of spin-1), resulting in a “topological
Kondo effect” [14]. The low-energy physics is controlled by
renormalization group (RG) flow to an intermediate-coupling
non-Fermi-liquid (NFL) fixed point [14], itself related [18,19]
to that of the four-channel Kondo (4CK) model [20]. This
leads to distinctive signatures in physical properties, which
could be used in experiment to identify clearly the topological
Kondo effect, and hence the underlying existence of Majorana
fermions in the device.

In this paper, we examine this system in detail, going
beyond the previous analysis [14] to calculate the full
temperature/energy dependence of physical quantities using

FIG. 1. (Color online) The minimal topological Kondo setup and
the couplings incorporated in the NRG calculations. The figure
shows the sketch of a nanowire realization: the central rectangle is
a superconducting island, with two nanowires (horizontal bars). The
nanowires turn into gapped superconductors in their central segments,
the end of which hosts Majorana fermions (dots). The outer portions
of the wires are metallic and are coupled to electron reservoirs (outer
rectangles). The wire parts separating metallic and superconducting
regions have a depletion gap forming a tunnel barrier.
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the numerical renormalization group (NRG) technique [21].
We focus on the differential conductance in ac and dc fields,
relevant to experiment. The line shapes we obtain recover high-
and low-energy asymptotes from conformal field theory (CFT)
[14] but also contain new information on the entire crossover,
which fundamentally encodes the RG flow. Experimental
data collected on universal temperature/energy scales should
collapse to a part of the full scaling curves presented in this
paper, allowing experimental verification of the topological
Kondo effect. Possible experimental realizations of the system
are discussed in Sec. VII.

Our full NRG calculations also confirm a key prediction
of Ref. [14] that the NFL physics is robust to asymmetric
Majorana-lead couplings. This property has important impli-
cations for the practical viability of the setup since fine tuning
is not required.

A rather complete picture of the complex physics of this
system is obtained from analysis of its thermodynamics and
scattering t matrix. Characteristic properties of the NFL fixed
point are found at low temperatures, including an unusual
1
2 ln(3) residual entropy for the Majoranas. Such behavior
is similarly obtained at the NFL fixed point of the 4CK
model [22]; indeed, asymptotic corrections to fixed-point
thermodynamics of the form (T/TK )2/3 are common to both
models. However, the entire crossover highlights differences,
which uniquely fingerprint the topological Kondo effect. This
is most clearly seen in the experimentally relevant case of
asymmetric Majorana-lead couplings: here the flow is distinct
from that of the 4CK model. Furthermore, we uncover a duality
between strong and weak coupling, allowing the Kondo scale
at strong coupling to be obtained from simple perturbative
scaling performed at weak coupling. In all cases, the NFL
fixed point is reached at low energies, unlike the 4CK model,
which supports a quantum phase transition to an unscreened
local-moment state [23].

Finally, we consider relevant symmetry-breaking perturba-
tions which do destabilize the NFL fixed point, generating
a crossover to the conventional Fermi-liquid state. Going
beyond Ref. [14], we identify the coupling between different
Majoranas to be one such perturbation. While such a coupling
is expected to be very small (suppressed exponentially in
the inter-Majorana separation), the resulting Fermi-liquid
crossover scale T ∗

FL must in fact be much smaller than the
Kondo scale TK in order that pristine NFL physics be observed
at intermediate temperatures T ∗

FL � T � TK . In this case, we
show that two successive universal crossovers arise: one to the
NFL fixed point, and one away from it. Both crossovers are
entirely characteristic of the incipient NFL state.

Given that the Kondo temperature may also be exponen-
tially small, a real device may have competing T ∗

FL and TK

scales. Here, conductance line shapes obtained from NRG
show more complex behavior, which depends on the ratio
T ∗

FL/TK (a quantity that could be identified for a given
experiment). But, in all cases, Kondo-enhanced conductance
establishes the existence of Majorana fermions in the device.

II. DERIVATION OF THE MODEL

We begin by reviewing how the topological Kondo effect
arises [14]. The main requirement for the Kondo effect is

the coupling of conduction electrons to an impurity with a
degenerate ground state. In the topological Kondo context, the
impurity is constructed using a superconducting island with
Majorana fermions (see Fig. 1). The island is of mesoscopic
size, characterized by a charging term Ĥc = Ec(N̂ − q

e
)2,

where N̂ is the number operator for the island electrons
and Ec is the charging energy. The ground state will be
degenerate if there are at least four Majoranas. Focusing on
this minimal case (see also Fig. 1), if the Majorana wave
functions do not overlap, each state with a given N , and
thus the ground state in particular, is twofold degenerate:
the four Majoranas combine into two zero-energy fermions
with a fixed overall parity (their occupation can be changed
only by transferring Cooper pairs to/from the superconducting
condensate) [4]. It is this degeneracy that leads to an effective
spin degeneracy for our Kondo model. If one includes the
overlap of Majorana fermions γj and γk , the degeneracy is not
exact: a “Zeeman” splitting that is exponentially small in the
Majoranas’ separation arises, given by the term ĤM considered
in the following.

The topological Kondo system is obtained by coupling the
island to conduction electrons. In what follows, we focus
on the minimal setup sketched in Fig. 1: we couple three
of the four Majorana fermions to single-channel leads of
effectively spinless conduction electrons [generated in practice
by the application of a large magnetic field or spin-orbit
coupling [14] (see also Sec. VII)]. The conduction electron
spin densities, vital for any Kondo effect, will arise from
nonlocal combinations of electron operators of different
leads [14].

Working at energy scales much below the superconduct-
ing gap, and also much below the energies of any non-
Majorana subgap excitations, the physics is described by the
Hamiltonian

Ĥ = Ĥleads + Ĥisl + Ĥtun, (1)

where

Ĥisl = Ĥc + ĤM, (2)

Ĥleads =
∑
k,j

εka
†
kj akj , (3)

ĤM = hjk iγjγk, (4)

and

Ĥtun = exp(iφ̂/2)
∑
i,j

tij γi ψj + H.c. (5)

Here, Ĥleads is the Hamiltonian of conduction electrons, with
a
†
k,j creating scattering states (standing waves) of ingoing

momentum k in lead j . The term Ĥtun describes the low-energy
coupling between the leads and the island. The operators ψj

correspond to localized conduction electron orbitals at the end
of each physical wire,

ψj = N
−1/2
orb

∑
k

akj , (6)

and the phase exponential exp(±iφ̂/2) is also an operator,
ensuring charge conservation by changing N → N ± 1. To
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obtain Ĥtun, one expresses the electron operator on the island
as ψS(x) = exp(−iφ̂/2)[

∑
j ξj (x)γj + ψ>,S(x)] [where ξj (x)

are the Majorana wave functions and ψ>,S(x) is the piece of
the electron operator with positive-energy BCS excitations]
and writes the usual hopping terms ∼ψ

†
S(xj )ψj + H.c. (where

xj is the tunneling point in terms of the coordinates on the
island). Below the energy scale of the superconducting gap,
as discussed above, the ψ>,S(x) piece can be neglected, which
leads to Eq. (5) [15].

The key difference between the topological Kondo problem
of Ref. [14] and Eq. (1) is that the former includes only the
local couplings tii , while here we also consider the nonlocal
ti �=j and hjk terms. Of course, due to the well-localized nature
of the Majorana wave functions ξj (x), these are exponentially
suppressed with the inter-Majorana distance |ti �=j |,|hjk| � tii .
(We chose the phase of the electron operators so that tii >

0.) At the lowest-energy scales, as we will show, they will
nevertheless lead to interesting, qualitatively new features.

On energy scales much lower than the charging energy
Ec, if |tij | � Ec one can simplify the model by a standard
Schrieffer-Wolff transformation [24]. Here, it is convenient to
assume that the charging term of Ĥc is tuned to the middle
of a Coulomb blockade valley1 where 〈Ĥc〉 = 0 for some N ;
by considering virtual excitations to states of island charge
N ± 1, one obtains

ĤSW = Hleads + ihjkγjγk +
∑
k �=q

2t∗qptkl

Ec

γkγqψ
†
pψl (7)

in which repeated indices are summed over. (We add that
hjk-type contributions are also generated by the ti �=j couplings;
these have been absorbed into the second term.)

Using now that the Majorana bilinears γ1γ2, γ2γ3, and
γ3γ1 (the only independent ones due to the zero-mode parity
constraint) form a spin- 1

2 operator Ŝα via

Ŝ = − i

4
γ × γ , (8)

the effective model can be written in the form ĤSW = Ĥleads +
ĤK + δĤ . The conduction electron Hamiltonian Ĥleads is
given in Eq. (3), and the Kondo coupling term is [14]

ĤK =
∑

α

λααŜαÎα, (9)

where Îα is a spin-1 operator for the lead electrons

Îα = i
∑
a,b

εαbaψ
†
aψb, (10)

and the positive couplings λαα ∼ εαjktjj tkk/Ec. For δĤ = 0,
Eq. (9) can thus be viewed as an (anisotropic) Kondo model
involving a spin- 1

2 “impurity” coupled to spin-1 conduction
electrons [14,18].

1Moving away from the middle of the Coulomb blockade valley
would generate nonuniversal (but RG-marginal) potential scattering
terms in ĤSW [14]. We have checked numerically that the non-Fermi-
liquid fixed point discussed in Sec. III is robust to their inclusion; their
effect on physical properties such as the finite-T /finite-ω differential
conductance is left for future work.

Nonlocal couplings ti �=j , hjk , to leading order in exponen-
tially small quantities, generate the term

δĤ =
∑
α �=β

λαβŜαÎβ +
∑
α,β

λ′
αβŜαÎ

(2)
β + hαŜα. (11)

Here, Î
(2)
β = ∑

ab ψ
†
a [J (2)

β ]abψb are the five components of

a spin-2 density where J
(2)
β are elementary symmetric real

matrices, and the real coupling constants are λαβ ∼ λ′
αβ ∼

|ti �=j |tjj /Ec, and hα ∼ εαijhij .

A. Simplification to the axial-symmetric limit

While the full model described by Eqs. (9)–(11) can in
principle be treated by the NRG (to be described later), the
calculations are computationally rather expensive. There are
two reasons for this: only the total charge is a conserved
quantum number, and the Hamiltonian matrix has complex
elements. The model as written also contains a large number of
parameters, and one cannot hope to examine its full parameter
space exhaustively.

We therefore adopt the following simplifications. For much
of the paper, we focus on δĤ = 0 to identify and understand
the universal physics arising from the topological Kondo effect
of Eq. (9). To simplify the calculations, we now assume
t11 = t22, and imaginary t12 = −t21. This leads to a residual
“axial symmetry” around axis 3, as will be discussed in due
course, which allows the calculations to be performed with
real matrix elements and exploiting the conservation of an
additional, overall Sz quantum number.

To obtain a handle on the key effects of the perturbation
δĤ , one can focus on the nonlocal couplings arising from
the exponentially small overlap between Majoranas γ1 and γ2

alone. This simplifies the model considerably, as it can then be
shown that the first term in Eq. (11) is then absent. We leave a
study of the more general case to future work; our expectation
is that the remaining perturbations we keep in δĤ are sufficient
to understand the essential effects of nonlocal couplings
between the Majoranas, namely, that if the nonlocal couplings
are made sufficiently small, the universal non-Fermi-liquid
physics of the model persists above a low-energy crossover
scale set by the size of δĤ (see Sec. VI).

With these simplifications in place, we employ a unitary
transformation of the lead operators to a basis labeled by the
conduction electron spin projection m = −1, 0, +1, viz.,

ck,−1 = 1√
2

(ak1 + iak2), (12a)

ck,0 = ak3, (12b)

ck,+1 = 1√
2

(−ak1 + iak2). (12c)

The lead Hamiltonian then follows simply as Ĥleads =∑
k,m εkc

†
k,mck,m. Localized orbitals in the new basis are

defined as

fm = N
−1/2
orb

∑
k

ck,m, (13)
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in terms of which the spin-1 ladder operators Î± = Îx ± iÎy of
the lead electrons are

Î+ =
√

2(f †
0 f−1 + f

†
+1f0 ), (14a)

Î− =
√

2(f †
0 f+1 + f

†
−1f0 ), (14b)

Îz = f
†
+1f+1 − f

†
−1f−1. (14c)

It is then straightforward to show that under the above
transformation, the Kondo model including the perturbations
takes the form2

Ĥeff = Ĥleads + J a
⊥√
2

[S+f
†
0 f+1 + S−f

†
+1f0 ]

+ J b
⊥√
2

[S+f
†
−1f0 + S−f

†
0 f−1]

+ JzSz(f
†
+1f+1 − f

†
−1f−1) + hzŜz, (15)

with Ŝ± = Ŝx ± iŜy and Ŝz spin- 1
2 operators for the impurity

as before.
The dependence of the four coupling constants in Eq. (15)

on the original model parameters is generally nontrivial. Since
the aim of this work is to examine the universal physics of the
model and understand the basic effect of nonlocal couplings
between Majoranas, we shall treat the coupling constants of
Eq. (15) as the bare model parameters of interest. With this
in mind, we make one final simplification: we set hz = 0.
Since a Zeeman term is associated with the same effective
time-reversal symmetry breaking as setting J a

⊥ �= J b
⊥, the basic

effect of this symmetry breaking can be probed by considering
the latter alone.

To calculate thermodynamic and dynamical properties of
Eq. (15), we employ the NRG, a powerful nonperturbative
method which yields numerically exact results over a wide
range of temperature/energy scales. The general procedure for
calculating thermodynamics is explained fully in the review
of Ref. [21], to which we refer the reader for further
details.

The key approximation in NRG is a logarithmic discretiza-
tion of the conduction electron densities of states. Since we
focus on the universal physics of the model here, it suffices
to consider equivalent symmetric bands, each with constant
density of states ρ = 1/(2D) over a bandwidth 2D. These are
discretized and transformed into semi-infinite 1D tight-binding
“Wilson chains”:

Ĥ disc
leads =

∑
m

∞∑
p=0

(tpf †
m,pfm+1,p + H.c), (16)

where the impurity couples only to the “zero-orbital”
fm,0 ≡ fm, as defined in Eq. (13). The logarithmic dis-
cretization means that the Wilson chain hoppings tp decrease

2If one takes ti �=j = 0, the coupling constants in Eq. (15) are
simply related to those of Eq. (9) by J a

⊥ = J b
⊥ = λ11 = λ22, and

Jz = λ33. Nonlocal couplings ti �=j �= 0 generate the hz term and
unequal J a

⊥ �= J b
⊥, and then the relationship between the two sets

of coupling constants becomes more complicated.

exponentially down the chain, rendering the problem amenable
to an iterative solution in which high-energy states are
successively discarded as more Wilson chain orbitals are added
[21]. Dynamics are calculated within the complete Anders-
Schiller basis [25], using the “full density matrix” approach
[26]. In practice, we exploit the U(1) symmetries of Eq. (15)
(overall charge and Sz conservation). We use a discretization
parameter  = 3, and retain at most 10 000 states at each
iteration. The results of eight separate calculations with
different discretization “slide parameter” are combined to
obtain highly accurate dynamics [27].

III. FIXED POINTS AND SYMMETRIES

Before presenting numerical results, we first identify and
discuss the fixed points of the model (15) and consider the RG
flows between them. We begin with the axial symmetric limit
J a

⊥ = J b
⊥, where an intermediate coupling, non-Fermi-liquid

fixed point is stable. Further insight into this fixed point can
then be gained by considering the behavior of the model when
J a

⊥ �= J b
⊥: the intermediate coupling fixed point arises from a

competition between two Kondo effects, as explained in the
following.

At high energies, the physics of the model is controlled
by the local-moment (LM) fixed point, obtained by setting
J a

⊥ = J b
⊥ = Jz = 0 in Eq. (15). At the fixed point itself,

the spin Ŝ (the impurity) decouples from the three conduc-
tion electron channels, to give [24] an “impurity entropy”
Simp = ln 2 and Curie law magnetic susceptibility T χimp = 1

4
[we use units where kB ≡ 1 and (gμB)2 ≡ 1 throughout].
Near the fixed point, antiferromagnetic exchange coupling
is (marginally) relevant, and its effect can be understood
using Anderson’s poor man’s scaling [14,28] (i.e., perturbative
RG) to obtain flow equations for the renormalized couplings
as the effective bandwidth/energy scale is reduced. Defining
dimensionless running couplings j⊥ = ρJ a

⊥ = ρJ b
⊥, jz = ρJz,

and with D̃ the running UV cutoff, second-order poor man’s
scaling gives

dj⊥
d ln D̃

= −j⊥jz;
djz

d ln D̃
= −j 2

⊥. (17)

These equations are precisely those obtained for the spin- 1
2

anisotropic Kondo model, with a single spinful conduction
electron channel [24]. The initial RG flow is therefore similar
to that of the regular Kondo problem: weak antiferromagnetic
bare couplings begin to grow as the temperature/energy
scale is reduced, showing up in physical quantities such as
the conduction electron t matrix, and conductance as slow
inverse-logarithmic tails at high energies [24,29].

In the antiferromagnetic one-channel Kondo problem, it
is well known [24] that RG flows tend ultimately to a
stable, isotropic strong coupling (SC) fixed point, describing
the Kondo singlet at very low energies. (This conclusion is
naturally beyond the scope of the perturbative scaling analysis,
but has been established by exact methods including NRG [21]
and the Bethe ansatz [30,31].) An isotropic SC fixed point also
exists for Eq. (15), obtained by setting J a

⊥ = J b
⊥ = Jz = ∞

in Eq. (15) and t0 = 0 in Eq. (16) (which decouples the three
leads subject to a π/2 phase shift). But, in contrast to the
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conventional Kondo model, this SC fixed point is unstable.
The reason is that the decoupled subsystem comprising the
impurity and the three fm zero orbitals has degenerate ground
states with local charge nSC = ∑

m〈f †
mfm〉 = 1 and 2, which

are connected by a relevant perturbation of the form3

δĤSC =
∑
m

f
†
m,0fm,1 + H.c. (18)

In the conventional Kondo model, there is no such internal
structure at the SC fixed point: the strong coupling state is an
“inert” singlet and no such relevant perturbations around the
fixed point are possible.

With both LM and SC fixed points unstable when J a
⊥ = J b

⊥,
one anticipates the existence of a stable fixed point at
intermediate coupling. This intermediate-coupling fixed point
was shown to be stable within a form of the Toulouse limit for
a model with axial symmetry [18]. A full CFT [32] analysis of
the problem was recently performed [14], establishing that this
overscreened NFL fixed point is robust to breaking exchange
isotropy (λ11 �= λ22 �= λ33) or, equivalently, to asymmetries of
the local couplings tjj in the original model of Eq. (1).

Further insight into the model can be obtained by noting
that the spin sector of the model (15) is identical to that of
the four-channel Kondo (4CK) model [18,19,33]. The physics
near the intermediate coupling fixed point therefore has many
common features with that of the 4CK effect. The latter
has been studied using the Bethe ansatz [22] and boundary
CFT [32], which predict for example a residual impurity
entropy Simp = ln

√
3 and NFL low-temperature behavior

such as a divergent susceptibility χimp ∼ T −1/3. As these
thermodynamic quantities originate from the spin sector, the
same behavior is expected for the topological Kondo effect
studied here. But crucially, the remaining sectors of the two
models are distinct. The realization of the NFL fixed point
with a spin-1 conduction band changes certain key physical
properties, as we will illustrate through our calculation of
the scattering t matrix (see Sec. IV C). Moreover, although
the fixed points of Eq. (15) and the 4CK model are similar,
the RG flows between them are also quite different, as we shall
discuss in Sec. V.

Upon including nonlocal couplings ti �=j , we perturb the
fixed point studied in Ref. [14] in an as-yet unexplored manner.
These perturbations lead to qualitative changes: since they
introduce complex couplings in Eq. (7), they break the effective
time-reversal invariance [14] responsible for the stability of the
NFL fixed point. But, if these couplings are sufficiently small
(see Sec. VI for a precise definition of “small”), the NFL
behavior will persist down to an energy scale T ∗

FL, before the
symmetry breaking becomes important and deviations occur.

In terms of the simplified model under consideration in this
work [Eq. (15)], the nonlocal couplings manifest themselves in
two ways. As discussed in Sec. II, they introduce an effective
magnetic field hz (neglected here, as explained in Sec. II A)
and they lead to J a

⊥ �= J b
⊥. To understand the effect of the latter

3We note [44] that the same perturbation connects degenerate
charge states of the “free-orbital” fixed point in the regular Anderson
impurity model.

further, we can rewrite Eq. (15) as Ĥeff = Ĥleads + Ĥ a
K + Ĥ b

K ,
with

Ĥ a
K = J a

⊥√
2

[S+f
†
0 f+1 + S−f

†
+1f0 ] + J a

z Sz(f
†
+1f+1 − f

†
0 f0 ),

(19)

Ĥ b
K = J b

⊥√
2

[S+f
†
−1f0 + S−f

†
0 f−1] + J b

z Sz(f
†
0 f0 − f

†
−1f−1),

(20)

and J a
z = J b

z = Jz. In this form, the model has a simple
physical interpretation. The terms Ĥ a

K and Ĥ b
K each describe

a spin- 1
2 anisotropic Kondo model, with spin- 1

2 conduction
electrons. In Ĥ a

K , channels m = 0 and +1 can be thought of as
the “↑” and “↓” spins of a conventional Kondo model, while
in Ĥ b

K these roles are played by channels m = 0 and −1.
Crucially, channel m = 0 plays a different role in Ĥ a

K than it
does in Ĥ b

K : it is therefore not possible to combine channels
m = ±1 into a single ↑ channel and have channel m = 0 acting
as the ↓ spin in both terms (this is merely a statement that
Kondo models with spin- 1

2 and spin-1 conduction electrons
are inequivalent).

When J a
⊥ > Jb

⊥, then J a
⊥ grows under renormalization faster

than J b
⊥, and the system is driven to an isotropic strong coupling

fixed point. The impurity spin- 1
2 is exactly Kondo screened by

the m = 0 and +1 channels of Ĥ a
K , with J a

⊥/
√

2 = J a
z →

∞. Meanwhile, the third channel m = −1 decouples J b
⊥ =

J b
z → 0. By contrast, when J b

⊥ > Ja
⊥, the Kondo effect takes

place with the m = 0 and −1 channels, with m = +1 now
decoupling.

The critical physics of the model near J a
⊥ = J b

⊥ can thus be
understood physically in terms of competing Kondo effects in
different channels, depending on whether J a

⊥ ≶ J b
⊥. On tuning

precisely to J a
⊥ = J b

⊥ (i.e., δĤ = 0), one realizes the stable
NFL fixed point of the model: by symmetry, neither m = −1
nor m = +1 can individually decouple, with the result that
the impurity is “overscreened.” This competition between
strong coupling Kondo-screened states and the accompanying
emergence of NFL physics similarly arises in the multichannel
Kondo [20,34] and multi-impurity Kondo [34–37] problems.

The quantum phase transition arising on tuning J a
⊥/J b

⊥ is
explored further in Sec. VI.

IV. NRG RESULTS FOR THE CHANNEL-ISOTROPIC
LIMIT

We begin by examining the physics when J a
⊥ =J b

⊥ = Jz ≡J

[i.e., equal local couplings λαα = λ in Eq. (9)]. Here, the
model has full SU(2) spin symmetry, with each screening
channel coupled equivalently to the central impurity spin. As
mentioned in Sec. III, our model (15) in this limit has the same
NFL fixed point as the 4CK model, and is therefore expected to
show similar low-energy physics [18,19,33]. This is confirmed
below. We also look beyond the low-energy regime, calculating
exactly with NRG the full universal crossover behavior of the
thermodynamics and dynamics.
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FIG. 2. (Color online) Universal thermodynamics in the channel-
isotropic limit. (a) The impurity entropy Simp(T ) showing the
crossover from the local-moment fixed-point value of ln 2 when
T � TK , to the value ln

√
3 at the NFL fixed point as T → 0. (b) The

leading T dependence of Simp(T ) − Simp(0) from NRG (solid line),
compared to the asymptotic form ∼(T/TK )2/3 (dashed line). (c) The
impurity spin susceptibility T χimp(T ) showing the same crossover
as in (a). (d) The leading T dependence of T χimp(T ) from NRG
(solid line), again compared to the asymptotic form ∼(T/TK )2/3

(dashed line).

A. Thermodynamics

The RG flow associated with the isotropic model is seen
most vividly in the impurity entropy as a function of temper-
ature Simp(T ), defined as the difference in entropy between
Ĥ and Ĥleads. The Kondo temperature TK sets the scale for
universal flow from the LM fixed point to the NFL fixed
point. In practice, we define it numerically via Simp(TK ) =
1
2 (ln

√
3 + ln 2) � 0.62, suitably halfway between the limiting

fixed-point entropies. Numerical results for any choice of the
bare parameter ρJ then collapse onto a single universal scaling
curve when plotted in terms of T/TK . This scaling curve is
shown in Fig. 2(a).

The general form of the entropy scaling curve for the model
(15) in the isotropic limit is indeed as one would expect for
the 4CK model: a crossover on the scale of TK from the
LM fixed point with Simp(T ) = ln 2 to the NFL fixed point,
with residual T = 0 entropy [22,32] Simp = ln

√
3 � 0.55

(this nontrivial value is reproduced very accurately in our
NRG calculations). Behavior in the vicinity of the fixed
point is characteristic of the non-Fermi-liquid physics, with
leading corrections in the low-temperature limit (T/TK ) � 1
of Simp(T ) − Simp(0) ∼ (T/TK )2/3, as shown in Fig. 2(b) by
comparison to the dashed line. This behavior arises in the 4CK
model [22,32] due to a leading irrelevant operator of scaling
dimension 4

3 . The leading irrelevant operator at the NFL fixed
point of Eq. (9) was identified in Ref. [14], and has the same
scaling dimension.

Figure 2(c) shows a similar universal plot of the impurity
spin susceptibility T χimp(T ) versus T/TK . The low T/TK �
1 behavior [see Fig. 2(d)] is found to be T χimp ∼ (T/TK)2/3,
again entirely consistent with 4CK-like physics [22,32].

FIG. 3. (Color online) The dependence of the Kondo scale TK

on 1/(ρJ ) in the channel-isotropic limit. Circles are NRG data, the
dashed line is the form given in Eq. (21), and the blue dotted line is
the asymptotic form ln(TK/D) ∼ −1/(ρJ ) + c′.

B. Kondo temperature

Having examined the universal thermodynamics as a func-
tion of T/TK , we now consider the dependence of the Kondo
temperature TK on the coupling strength J . The asymptotic
behavior for small ρJ can be obtained by applying perturbative
scaling [28] to Eq. (15), which yields

TK/D = c(ρJ )2 exp[−1/(ρJ )] (21)

to third order. This result is tested and confirmed in Fig. 3,
where we plot ln(TK/D) versus 1/ρJ [points obtained by
NRG, dashed line is Eq. (21)]. It is worth pointing out here that
Eq. (21) is also obtained for the 4CK model from perturbative
scaling, suggesting that the RG flow from the (same) LM to
NFL fixed points in the two models are rather similar, at least
for small ρJ .

For comparison, the second-order perturbative scaling
result TK/D = c′ exp[−1/(ρJ )] is plotted as the dotted line in
Fig. 3. At this level, one does not obtain the prefactor (ρJ )2 in
front of the exponential in Eq. (21); from the figure it is clear
that this prefactor has a rather strong influence on the Kondo
scale for moderate values of ρJ .

C. Scattering t matrix

We turn now to the dynamics of the model (15), about which
far less is currently known. Asymptotic behavior near the NFL
fixed point of the 4CK model has been extracted using CFT
[32], but full crossover functions for either model have not
previously been calculated.

The scattering t matrix is a central quantity of interest,
which contains rich information about the RG flow and
underlying physics. It describes scattering between eigenstates
of the disconnected leads, induced by the impurity, and is thus
defined for a given channel m in terms of the retarded Green
function for conduction electrons in that channel,

Gkk′,m(t) = −iθ (t)〈{ckm(t),c†k′m(0)}〉. (22)
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Equations of motion [38] for the Fourier-transformed Green
function Gkk′,m(ω) then yield directly

Gkk′,m(ω) = G0
kk′,m(ω) + G0

kk,m(ω)τkk′,m(ω)G0
k′k′,m(ω), (23)

where G0
kk′,m(ω) = δkk′/(ω + i0+ − εk) is the Green’s function

of the free leads in the absence of the impurity. τkk′,m(ω)
is the t matrix, which contains information about electronic
correlations and the Kondo effect. We consider its spectrum

tm(ω) = −πρ Im
∑

k

τkk,m(ω). (24)

Note that, although tm(ω) is defined in terms of the lead
operators in the rotated basis of Eq. (15), it also describes
scattering in the physical basis of Eq. (9). This follows because
the transformation Eq. (12b) is trivial for m = 0 so that, from
Eqs. (22)–(24), the t matrix of the physical lead j = 3 is simply
given by that for channel m = 0 in the rotated basis. Then,
channel isotropy implies that the t matrices for all physical
and rotated channels are identical. In practice, we calculate
the single t matrix from tm=0(ω) with NRG. Details can be
found in Appendix A.

The universal RG flow between the LM and NFL fixed
points is naturally reflected in the T = 0 spectrum tm(ω),
the scaling curve for which we show in Fig. 4 in terms of
|ω|/TK (solid line obtained by NRG). The full crossover can be
understood in terms two asymptotic limits. The high-frequency
“tail” in tm(ω), obtained for |ω|/TK � 1, is associated with
simple perturbative scattering of conduction electrons from
the spin- 1

2 impurity local moment. The resulting behavior of
the spectrum (which is common to all problems in which
local-moment physics plays a key role), takes the form [29]

tm(ω)
|ω|�TK∼ 1

a + ln2(b|ω|/TK )
, (25)

FIG. 4. (Color online) The universal form of the scattering t

matrix tm(ω) in the channel-isotropic limit. Main figure: the solid
line shows tm(ω) calculated from NRG, as well as the low-
frequency asymptotic form ∼(|ω|/TK )1/3 (dotted-dashed line) and
high-frequency logarithmic tail (dotted line) discussed in the text.
The inset compares tm(ω)/tm(0) for the present model (solid line) to
that of the one-channel Kondo model (dashed line).

with a and b constants. A fit to this form is shown as the dotted
line in Fig. 4, which our exact numerics approach asymptot-
ically for |ω|/TK � 1. In the opposite regime |ω|/TK � 1,
the t matrix has the characteristic behavior

tm(ω) − tm(0)
|ω|�TK∼ −(|ω|/TK )1/3 + O[(|ω|/TK )2/3], (26)

with tm(0) = 1
2 . This power-law form is as predicted by CFT:

generally, one expects tm(ω) − tm(0) ∼ (|ω|/TK )x−1, with x

the scaling dimension of the leading irrelevant operator near
the stable fixed point; here, x = 4

3 [14], thus yielding Eq. (26).
Excellent agreement between Eq. (26) (dotted-dashed line in
Fig. 4) and the exact NRG result is found over a wide range of
energies.

As pointed out earlier, the t matrix exemplifies certain
key differences between the low-energy physics of the 4CK
and the present model. This is seen immediately in the
zero-frequency values: for the 4CK model, CFT predicts
[32] t4CK

α (0) = (3 − √
3)/6, while here it recovers the value

tm(0) = 1
2 observed in Fig. 4. This simply reflects the different

forms of the conduction channels of the two models (four
spin- 1

2 channels versus one spin-1 channel); indeed, the result
tm(0) = 1

2 is correctly recovered using the CFT fusion rules of
Ref. [32] with spin-1 conduction electrons.

The inset of Fig. 4 compares the universal scaling spectrum
of the t matrix for Eq. (15) (solid line) to that known for the
regular one-channel Kondo (1CK) model (dashed line), both
plotted as tm(ω)/tm(0) for ease of comparison.4 The two curves
are strikingly different: the crossover from the high-frequency
tails to the low-frequency power law is much sharper in the
1CK case than for the present model. This is consistent with
the very different leading corrections to the stable fixed points
of the two models. Fermi-liquid theory for the 1CK model
predicts [24] the ubiquitous quadratic approach to the Fermi-
level value t1CK

m (ω) − t1CK
m (0) ∼(ω/TK )2, as compared to the

slower NFL corrections of Eq. (26).

D. Linear conductance

Finally, we consider the zero-bias differential conductance,
the central quantity of experimental relevance: measuring this
simply amounts to measuring a current in one of the leads as
a response to infinitesimally small voltages.

We employ the Kubo formalism [39] to obtain an expression
amenable to treatment within NRG (see Appendix B for
details). Our focus is the conductance in an ac field. As
such, we assume that the system is in equilibrium at time
t = −∞, with all three leads at a common chemical potential
μ = 0. The chemical potential of lead β is then given a time
dependence μβ(t) = eVβ cos(ωt), switched on adiabatically
from t = −∞. Denoting the total electronic number operator
of lead α by N̂α , the current Iα(t ; ω) = e〈 d

dt
N̂α〉 flowing into

lead α has reached an oscillatory steady state by time t = 0.
The dimensionless ac conductance tensor is then defined as(

e2

h

)
Gαβ(ω; T ) = lim

Vβ→0

∂Iα(t = 0; ω)

∂Vβ

, (27)

4For the 1CK model, t1CK
m (0) = 1; and we define TK via Simp(TK ) =

1
2 ln 2.
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which holds at any temperature T . On taking the ω → 0 limit
one obtains the static conductance

Gdc
αβ(T ) = lim

ω→0
Gαβ(ω; T ), (28)

in response to a dc voltage μβ(t) = eVβ switched on adiabat-
ically from t = −∞.

In the channel-isotropic limit under consideration in this
section, the off-diagonal elements Gαβ(ω) for α �= β are
identical by symmetry. Moreover, as shown in Appendix B,
they are related to the diagonal elements by

Gαβ(ω; T ) = − 1
2Gββ(ω; T ). (29)

Physically, the minus sign reflects the fact that a positive bias
applied to lead β produces net current flow from lead β to
leads α �= β, i.e., positive current towards lead α and negative
current towards lead β. The entire conductance tensor is thus
fully determined by a single element; we calculate G10(ω; T )
explicitly in the following.

As one would expect from the preceding results, we find
from NRG that G10(ω) is a universal function of ω/TK at any
given temperature T/TK . The main panel of Fig. 5 shows the
scaling form of G10(ω) versus |ω|/TK both at zero temperature
and for a range of temperatures T/TK = 10x with integral
x = −4 → +4, increasing in the direction of the arrow.

As with the t matrix, the form of G10(ω) at T = 0
can be understood in terms of its |ω| ≶ TK asymptotes.
At high frequencies, one observes conductance signatures
characteristic of spin-flip scattering of conduction electrons

FIG. 5. (Color online) Universal linear conductance of the model
in the channel-isotropic limit. The main figure shows the ac
conductance G10(ω) for T = 0, and for a range of temperatures
T/TK = 10x with integral x = −4 → +4 (solid lines, in the direction
of the arrow). The low-frequency asymptote ∼(|ω|/TK )2/3 (red
dotted-dashed line) and the high-frequency logarithmic tail (blue
dotted line) are also shown. Inset: the temperature dependence of
the dc conductance Gdc

10(T ) (circles, solid line is a guide to the eye),
compared to the dc conductance of the one-channel Kondo model
(dashed line). Note that we have rescaled the height of the latter by a
factor of 1

3 to facilitate comparison between the curves.

from an asymptotically free impurity spin, again of the form

G10(ω; T = 0)
|ω|�TK∼ 1

a′ + ln2(b′|ω|/TK )
, (30)

as confirmed by comparison to the dotted line in the main panel
of Fig. 5. On the scale of |ω| ∼ TK , RG flow toward the NFL
fixed point results in an enhancement of the conductance. At
low frequencies |ω| � TK , corrections to the NFL fixed point
yield characteristic power-law behavior

G10(ω; T = 0) − G10(0,0)
|ω|�TK∼ −(|ω|/TK )2/3, (31)

with G10(0,0) = 2
3 . NRG results fold onto Eq. (31) for |ω| �

TK , as shown by comparison with the dotted-dashed line in
Fig. 5.5 We note that the leading correction here is of the form
(|ω|/TK )2/3, different from the (|ω|/TK )1/3 behavior observed
for the t matrix [see Eq. (26)]. This difference is understood by
a simple extension of the CFT arguments given in Ref. [14]:
perturbation theory around the NFL fixed point in the leading
irrelevant operator yields corrections to the conductance which
vanish to first order, by symmetry. The expected (|ω|/TK )1/3

behavior is thus replaced by leading second-order corrections
of the form in Eq. (31).

The same basic crossover is observed in the static dc
conductance Gdc

10(T ) as a function of temperature T/TK . This
is shown in the inset to Fig. 5 as the circle points, obtained from
the calculated6 G10(ω; T ) as ω → 0, according to Eq. (28) (the
solid line is a guide to the eye).

We find that the low-temperature behavior of Gdc
10(T ) in

the inset of Fig. 5 is consistent with the CFT prediction of
Ref. [14]:

Gdc
10(T = 0) − Gdc

10(T )
|ω|�TK∼ −(T/TK )2/3, (32)

mirroring the low-ω behavior of G10(ω,T = 0) [with
Gdc

10(0) ≡ G10(0,0) = 2
3 as before]. For comparison, we also

show the universal conductance of the 1CK model (dashed
line). As for the t matrix in Fig. 4, the crossover in the
conductance of the present model is much less rapid than
for the 1CK model, and should prove useful as a means of
identifying the topological Kondo effect experimentally.

On that note, we end this section with a further comment.
While Eqs. (30) and (31) do describe the behavior of the full
conductance crossover at high and low energies, in fact they
do so only at very high and low energies, respectively. The
power-law form of Eq. (31) is seen only when |ω|/TK � 10−2,
and the log-tails of Eq. (30) are approached only for |ω|/TK �
103. Depending on the value of the Kondo temperature

5NRG recovers the exact value G10(0,0) = 2
3 to within a few

percent (although numerical errors can in principle be systematically
reduced). In our analysis of the low-frequency power-law behavior of
G10(ω,0), we therefore treated G10(0,0) as a fitting parameter. A fit
to the form (|ω|/TK )2/3 extends to the lowest frequencies, compared
with other simple rational powers.

6We use the standard broadening scheme [21,26] for calculating
NRG spectra, which has been shown [45] to reproduce the full
frequency and temperature dependence of dynamical quantities for
other quantum impurity problems where exact results are known
(including the case |ω| < T ).
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TK in a real experiment, it seems unlikely that either or
both of these asymptotes could be robustly observed, given
experimental limitations [or the presence of nonuniversal
effects and perturbations (see also Sec. VI)]. Any positive
identification of the precise nature of the topological Kondo
effect is therefore likely to require a more detailed comparison
of the experimental conductances with the full crossover
curves from NRG. (However, its existence can be demonstrated
through the qualitative signature pointed out in Ref. [14]:
by removing any one of the three leads, all signs of the
Kondo effect, including the upturn of the conductance, should
disappear.)

V. NRG RESULTS IN THE ANISOTROPIC CASE

The above discussion has focused on the isotropic limit of
the model. In this section, we consider the effect of breaking
full SU(2) spin symmetry, introducing anisotropy of the form
J a

⊥ = J b
⊥ �= Jz in Eq. (15); this corresponds physically to

changing the Majorana-lead coupling in one of the channels.
The model still possesses an axial symmetry in this case,
although the same fundamental physics described below is
expected even when the couplings in all three channels are
distinct, as pointed out in Ref. [14]. Indeed, preliminary NRG
calculations in the case of full anisotropy do indicate that the
physics is robust.

As mentioned in Sec. III, the NFL fixed point is not
destabilized by lowering the symmetry in this way (the spin
anisotropy is RG irrelevant, meaning that the NFL fixed point
itself is isotropic) [14]. The stability of the NFL fixed point
does not itself rule out a quantum phase transition [23] on
tuning the ratio Jz/J⊥; however, as shown in the following,
we do find the low-temperature fixed point in all cases to be
the NFL fixed point and hence the physics of the model to be
robust to breaking the channel isotropy. We first address this
point in more detail, before moving on to discussing further
predictions on experimental aspects.

A. Kondo temperature

It is instructive to examine how the Kondo temperature
TK varies with the parameters of our effective model (15), in
the general axial-symmetric case. In Fig. 6, we plot TK as a
function of ρJz for various fixed ρJ⊥ > 0.

The low-ρJz (�1) behavior, seen most clearly in Fig. 6(a),
can be understood using perturbative scaling. As mentioned
in Sec. III, to second order this yields scaling equations for
Eq. (15) that are identical to the regular spin- 1

2 Kondo model
[14]. The equations can be solved [40,41] to give

TK/D
ρJz�1∼ c exp

[
− α

ρJz

]
, (33a)

where

α =
{

(tan−1 γ )/γ : Jz � J⊥,

(tanh−1 γ )/γ : Jz � J⊥
(33b)

with

γ 2 = |1 − (J⊥/Jz)
2|. (33c)

When ρJz � 1, there is excellent agreement between exact
NRG results for TK (points) and Eq. (33a) [solid lines,
Fig. 6(a)]. In each case, we have adjusted the constant c

to fit the data, implying a weak dependence on ρJ⊥ of the
preexponential factor in Eq. (33a), obtained to higher order in
perturbative scaling.

When ρJz becomes large, the perturbative treatment nat-
urally breaks down. As seen from NRG results in Fig. 6,
the Kondo temperature in fact passes through a maximum at
ρJz ∼ 1, and then decreases rapidly as ρJz is further increased.
Specifically, we find from NRG for ρJz � 1 that

TK/D
ρJz�1∼ exp[−f (ρJ⊥) × ρJz], (34)

which is plotted for comparison as the dashed lines in
Fig. 6(b). On extrapolating this result, we conclude that TK

remains finite for any ρJz (provided ρJ⊥ > 0). (We have also
performed a direct survey of the parameter space of the model
to substantiate this conclusion further.) As such, while the
Kondo temperature is very small for large ρJz, there is always
overscreening of the “impurity” for antiferromagnetic ρJz.

The latter point may not be surprising at first sight. However,
in the case of the 4CK model (with the same low-energy NFL
fixed point), the ground state is a free local-moment state for
a sufficiently large, antiferromagnetic ρJz [23]. The argument
involves a mapping between the positive and negative Jz

sectors, and hence the transition for antiferromagnetic ρJz is
effectively the same Kosterlitz-Thouless transition well known

100

10-10

10-20

10-30
10-3 10-2 10-1 100 10-1 100 101
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FIG. 6. (Color online) ρJz dependence of the Kondo temperature TK/D, in the channel-anisotropic case. (a) Log-log plot, for J⊥/D = 0.5,
0.1, 0.05, and 0.01 (crosses, diamonds, circles, and asterisks, respectively), compared to the result of perturbative scaling [solid lines, Eq. (33a)].
(b) Same data on a log-linear plot, compared with Eq. (34) (dashed lines). (c) Crossover region for small J⊥/D = 0.001, highlighting the
duality between ρJz (circles) and ξ/ρJz (stars), compared with Eq. (41) (dotted-dashed line).

045143-9



MARTIN R. GALPIN et al. PHYSICAL REVIEW B 89, 045143 (2014)

to arise in the ferromagnetic case [23]. The absence of such a
transition here reflects that, while the fixed points of the two
models are the same, the RG flows between these fixed points
are very different in the general case of exchange anisotropy
(cf. the discussion of Sec. IV B).

Further analytical insight is obtained by applying the
Abelian bosonization technique of Ref. [23] to the present
problem. We predict a duality in Eq. (15):

Ĥeff(ρJ⊥,ρJz) ↔ Ĥeff

(
ρJ⊥,

ξ

ρJz

)
, (35)

with ξ = (2/π )2 � 0.41. This result does not hold ubiqui-
tously, however, as the bosonization argument requires that
ρJ⊥ � ρJz and ρJ⊥ � ξ/(ρJz). To understand the effect of
these constraints, it is convenient to define the quantity

ν = ln(ρJz) − 1
2 ln ξ, (36)

from which it follows simply that Eq. (35) holds when

|ν| � | ln(ρJ⊥) − 1
2 ln ξ | (37)

and thus becomes most valid when |ν| → 0, i.e., ρJz ∼√
ξ � 0.64.
Equation (35) is consistent with the absence of a transition

for antiferromagnetic Jz since, in contrast to the 4CK model
[23], the duality does not change the sign of the exchange cou-
pling and therefore does not map the ferromagnetic Kosterlitz-
Thouless transition of the model onto the antiferromagnetic
side. Instead, it simply maps small Jz to large Jz; in this sense
it is similar to the duality inherent to the two-channel Kondo
(2CK) model [42].

A further consequence of Eq. (35) can be seen by writing
Eq. (35) in terms of ν as

Ĥeff(ρJ⊥,
√

ξeν) ↔ Ĥeff(ρJ⊥,
√

ξe−ν). (38)

Since the Hamiltonian is invariant to changing the sign of ν, it
follows that

TK (ν) = TK (−ν) (39)

for fixed ρJ⊥ when Eq. (37) is satisfied. On making the
ansatz that ln TK has a power-series expansion in ν, one thus
obtains

TK/D
ρJz∼

√
ξ∼ exp(−uν2) (40)

= exp{−u [ln(ρJz) − 1
2 ln(ξ )]2} (41)

with u a constant: this form agrees very well with our NRG
results when Eq. (37) is satisfied, albeit with a slightly
adjusted ξ � 0.37. A fit of Eq. (41) to NRG data for
ρJ⊥ = 0.001 is shown in Fig. 6(c) as the dotted-dashed
line.

The duality ρJz ↔ ξ/(ρJz) also sheds light on Eq. (34).
For J⊥ � Jz � 1, the perturbative scaling result of Eq. (33)
is valid, and can be expanded to give

α ∼ − ln(J⊥/Jz) + O[(J⊥/Jz) ln(J⊥/Jz)] (42)

∼ − ln(ρJ⊥) (43)

for ln(ρJ⊥) � ln(ρJz), such that

TK/D ∼ v exp[ln(ρJ⊥)/ρJz], (44)

with v a constant. But, since ln(ρJ⊥) � ln(ρJz) it follows
from Eq. (37) that the duality of Eq. (35) holds, and hence

TK/D ∼ v exp

[
1

ξ
ln(ρJ⊥)ρJz

]
(45)

for ρJz � 1. This recovers Eq. (34), with f (ρJ⊥) =
− ln(ρJ⊥)/ξ asymptotically for small ρJ⊥.

B. Physical quantities

In addition to the results above, we have calculated the t

matrices when J⊥ �= Jz. On lowering the channel symmetry,
we find as expected that t1(ω) = t−1(ω) �= t0(ω). Specifically,
the high-frequency logarithmic tails of the t matrices still
take the form of Eq. (25) but with different constants. At
frequencies |ω| � TK , however, we find that the t matrices
fall onto the same universal curve as in Fig. 4. This reflects
an emergent channel symmetry at the NFL fixed point [14].
Similar behavior is naturally found when examining the ac
conductance. We thus conclude that channel isotropy would
not be required in order to observe the non-Fermi-liquid
physics of the model described in Sec. IV.

VI. FERMI-LIQUID CROSSOVER

Finally, we consider breaking the axial symmetry of
Eq. (15) by taking J a

⊥ �= J b
⊥. As shown in Sec. II, this kind of

symmetry breaking arises due to nonlocal Majorana-Majorana,
Majorana-lead, or lead-lead couplings in the bare model
[Eq. (5)]. In Sec. III, we argued that such perturbations are
RG relevant, and drive the system to a strong coupling,
Fermi-liquid (FL) ground state. In this section, we confirm
this explicitly using NRG. Although even tiny perturbations
destabilize the NFL fixed point, NFL physics may still be
observable at finite energies/temperatures.

In Fig. 7, we show NRG results for the impurity entropy,
with J b

⊥/D = Jz/D = 0.1, J a
⊥/D = 0.1 + δ, and several dif-

ferent values of the symmetry-breaking parameter δ (solid
lines), compared with the δ = 0 case (dashed line). For all
finite |δ| > 0, the T → 0 entropy always vanishes, Simp = 0.
This is indicative of RG flow to the stable SC Fermi-liquid
fixed point. We denote the scale characterizing this flow by T ∗

FL,
defining it in practice by Simp(T ∗

FL) = 1
4 ln 3, suitably halfway

between the SC and NFL fixed-point values.
CFT allows one to identify relevant operators in the channel

sector which have the same symmetry as the δ = J a
⊥/D −

J b
⊥/D perturbation. Owing to axial symmetry, there is one

such operator at the NFL fixed point with scaling dimension
x = 1

3 . This dimension implies that the Fermi-liquid crossover
scale has a power-law dependence

T ∗
FL ∼ TK × |δ|3/2, (46)

which should apply when δ acts as a perturbation to the NFL
fixed point, i.e., when there is good scale separation T ∗

FL �
TK . Indeed, this result is confirmed in the inset to Fig. 7, by
comparison of NRG results (points) to Eq. (46) (dotted line).
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F
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FIG. 7. (Color online) Impurity entropy in the case J a
⊥ �= J b

⊥,
resulting from cross couplings in Eq. (11). The main figure shows
Simp(T ) for J a

⊥/D = 0.1 + δ, J b
⊥/D = Jz/D = 0.1, with δ = 10−2,

10−4, 10−6, and 10−8 (solid lines), together with the δ = 0 result
(dashed line). For δ �= 0, the entropy crosses over to the strong
coupling value Simp = 0 on the scale T ∗

FL. The inset shows the
dependence of T ∗

FL on δ (circle points), compared to the asymptotic
form of Eq. (46) (dotted line).

Although any nonzero δ �= 0 destabilizes the NFL fixed
point, signatures of non-Fermi-liquid physics should still be
observable in an intermediate temperature “window,” provided
the strength of perturbations is small (as might be expected
physically, see Sec. II). As seen from Fig. 7, when there is good
scale separation T ∗

FL � TK , thermodynamics at higher temper-
atures T � T ∗

FL are essentially indistinguishable from the case
δ = 0 (where the NFL fixed point is stable down to T = 0).
The topological Kondo effect could thus be identifiable in
this regime, even when symmetry-breaking perturbations act.
Indeed, at lower temperatures, the subsequent Fermi-liquid
crossover is wholly characteristic of flow from the unstable
NFL fixed point, and exhibits universal scaling in terms
of T/T ∗

FL. Thus, flow away from the NFL fixed point due
to symmetry-breaking perturbations could also be used to
identify the topological Kondo effect.

Dynamics of the model when J a
⊥ �= J b

⊥ are of particular
interest. In the top panel of Fig. 8, we show the three t matrices
tm(ω), when J a

⊥/D = 0.1 + δ and J b
⊥/D = Jz/D = 0.1, with

δ = 10−6. The corresponding t matrices for δ = 0 are shown
as the dashed line (these are identical by symmetry in this
isotropic limit). Here, T ∗

FL is sufficiently small that the NFL
fixed point strongly affects the RG flow and resulting t matrix
line shapes. When there is good scale separation, we find for
T ∗

FL � |ω| � TK the asymptotic behavior of

tm(ω) ∼
{

1
2 ± p(|ω|/T ∗

FL)−1/3 : m = ±1,

1
2 + O(|ω|/T ∗

FL)−2/3 : m = 0.
(47)

The behavior of t0(ω) is consistent with first-order correc-
tions from the relevant operator mentioned above, while
the deviations of t+1(ω) and t−1(ω) appear to arise at the
second-order level. Interestingly, in the basis of Eq. (12),
the t matrix in channel m = 0 is essentially indistinguishable
from the δ = 0 case for energies |ω| � T ∗

FL, and we find
t0(ω) = 1

2 [t−1(ω) + t+1(ω)].

FIG. 8. (Color online) Dynamics for broken J a
⊥ �= J b

⊥ symmetry,
with J a

⊥/D = 0.1 + δ, J b
⊥/D = Jz = 0.1, and δ = 10−6. The upper

panel shows the three t matrices tm(ω) (solid lines) compared with the
δ = 0 result (dashed line). The lower panel shows the ac conductance
G10(ω), for the same system.

At lower energies |ω| � T ∗
FL, the perturbation δ �= 0 grows

under RG and becomes large, causing deviation from this
behavior. Near the Fermi-liquid fixed point we instead find
for δ > 0 that

tm(ω) ∼
{

1 − qm(|ω|/T ∗
FL)2 : m = 0, +1,

0 + qm(|ω|/T ∗
FL)2 : m = −1.

(48)

This is characteristic of standard strong coupling Kondo
physics in leads m = 0 and +1, with lead m = −1 decoupling
asymptotically. The roles of m = ±1 are reversed when
δ < 0 since the Kondo effect then takes place with leads
m = 0 and −1. The t matrices thus indicate directly which
channels are participating in the Kondo effect at the SC
fixed point, and support the physical picture discussed in
Sec. III.

The low-energy crossover to the SC fixed point (and the
associated window of non-Fermi-liquid behavior) is also seen
in the ac conductance, shown in the bottom panel of Fig. 8
for the same parameters as the t matrices discussed above. We
find asymptotically that

G10(ω) ∼
{

2
3 − p′(|ω|/T ∗

FL)−4/3 : T ∗
FL � |ω| � TK,

0 + q ′(|ω|/T ∗
FL)2 : |ω| � T ∗

FL � TK.
(49)

Interestingly, G10 → 0 as |ω| → 0 here, despite the fact that
channels m = 0 and +1 form a Kondo singlet with the central
impurity spin for δ > 0 (typically the Kondo effect results
in a zero-bias enhancement of conductance). The vanishing
conductance G10(0) = 0 (between channels m = 0 and +1)
is in fact due to the decoupling of the third channel m = −1
at the strong coupling fixed point. This can be understood by
the following physical argument: an electron tunneling from
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lead m = 0 to +1 requires (by conservation of total Sz) to
flip the impurity spin from σ =↑ to ↓. Further electronic
transport is now blocked since the impurity mediates the
current between all channels, and is already in the σ =↓
configuration. Only when lead m = −1 is coupled in can a
finite conductance result: the σ =↑ impurity configuration
can be restored (thus “resetting” the system) by a tunneling
process from m = −1 to 0. The Fermi-liquid ground state
of the model (arising from any inter-Majorana coupling) thus
inevitably results in vanishing conductance, although of course
signatures of criticality and non-Fermi-liquid physics may
appear at finite temperatures. Naturally, similar results are
obtained for G00(ω) = −G10(ω) − G−10(ω).

One might ask how the results above change when the
nonlocal perturbations are larger, e.g., of order TK or more.
In this case, the NFL fixed point (characterized by fractional
power-law behavior) seen on decreasing ω or T will of course
not be directly observable. The system will flow away to the
SC fixed point on the energy scale of the perturbations, and
hence the conductance will drop to zero before the power-law
behavior is reached. But, the key signature of the topological
Kondo effect itself, the approach to the NFL fixed point,
characterized by the low-frequency/-temperature conductance
peak, could still be observable for such large perturbations.
This is aided by the fact that the approach to the NFL fixed
point is very slow [compared to that of the conventional Kondo
effect (see Fig. 5)], taking place over a very wide energy range
that starts several orders of magnitude above TK .

VII. CONCLUSION AND OUTLOOK

We have analyzed in detail the physics of the minimal
topological Kondo setup of Fig. 1, starting from its most
symmetric limit of a spin- 1

2 Kondo impurity coupled isotrop-
ically to spin-1 conduction electrons, gradually breaking its
symmetries, and then including the small nonlocal couplings
not considered in Ref. [14]. Using the NRG, we have obtained
accurate results for the model, including directly measurable
quantities such as the differential conductance, on energy
scales ranging over many orders of magnitude.

The spin-isotropic limit of the model displays a univer-
sal crossover from local moment to non-Fermi-liquid fixed
points, the latter being characterized by nontrivial power-law
corrections to the low-temperature/-frequency physics. Since
the spin sector of the present model is the same as that of
the four-channel Kondo model, many of the full crossover
curves we have calculated here tend toward known asymptotes
for the latter model. On the other hand, quantities depending
on the details of the charge and orbital sectors, such as the
scattering t matrix and differential conductance, show quite
distinct physics.

Focusing on the differential conductance, we showed that
this has characteristic logarithmic tails at high energies, which
cross over to power-law behavior with exponent 2

3 at low
energies [14], as shown in Fig. 5. The NRG results show that
the power-law scaling sets in for energy scales |ω| � 10−2 TK

and the logarithmic tails require |ω| � 103 TK . Depending
on the value of the Kondo temperature, observing either or
both of these asymptotes might be difficult in experiment. The
universal scaling curve (in terms of |ω|/TK ) obtained here by

NRG, with its far broader domain than those of the asymptotes,
is therefore indispensable for full quantitative comparisons to
experiments.

We find, as predicted in Ref. [14], that the physics of the
model is robust to exchange anisotropy (which would arise
physically due to differences between the tunnel couplings in
the device). Furthermore, we found that the small- and large-Jz

regimes are related by a duality when J⊥ is sufficiently weak.
This duality is reminiscent of that seen in the two-channel
Kondo model [42] and enables analytical weak coupling
perturbative scaling results to be carried over to the large-Jz

regime.
Including nonlocal coupling between the Majoranas breaks

the effective time-reversal symmetry of the model, causing a
crossover ultimately to the strong coupling, Fermi-liquid fixed
point. As long as the perturbations are sufficiently weak that the
energy scale T ∗

FL of the Fermi-liquid crossover is T ∗
FL � TK ,

data collapse onto the scaling curve of the unperturbed problem
for a wide range of energies |ω| > TK (see Fig. 8). In this
case, the NFL to Fermi-liquid crossover itself also has its own
universal scaling curve in terms of |ω|/T ∗

FL, providing another
signature of the NFL physics.

For larger perturbations, of order TK and above, the NFL
fixed point will not be approached so closely. But, even in this
situation, part of the slow crossover from the local moment to
NFL fixed point could potentially be observed in experiment,
thus providing a signature of the topological Kondo effect, and
hence the existence of Majorana fermions, in a real device.

From an experimental point of view, the characteristic en-
ergy scales of the device will depend strongly on the materials
used to realize it. Our theory relies only on generic features,
so various materials systems can be envisaged: essentially
any of the proposed ways to generate isolated Majorana
fermions at the ends of topological superconducting wires
[1–3] could be used. To be concrete, we focus on the system
for which the first signatures of Majorana fermions have been
reported, involving proximity-induced superconductivity in a
semiconductor nanowire with strong spin-orbit coupling [3]. In
the experimental results reported in Ref. [6], it was shown that
a superconducting gap of size � � 250 μeV can be induced
in an InAs nanowire by the proximity effect from a NbTiN
electrode. Ultimately, this energy scale sets the upper limit of
the temperatures at which the effects we predict can appear,
T� = �/kB ∼ 3 K. In view of the strong spin-orbit coupling
in InAs and the large-g factor (g � 50), the 1D subbands in
the nanowire are essentially spin polarized for temperatures
T � T� for an applied magnetic field along the 1D wire
of B � 0.15 T. In this regime, the system is expected to
host Majorana fermions at the boundaries between the region
of (proximity-induced) superconducting nanowire and the
normal (spin-polarized) nanowire. Indeed, Ref. [6] reported
the appearance of zero-bias tunneling peaks at this boundary,
consistent with the appearance of these Majorana modes.
(In current experiments, more than one subband is occupied.
Although we have assumed that the leads form single, spin-
polarized channels, this is not a crucial requirement: for
multimode wires, and even with spinful electrons, there will
still be only one linear combination of modes in each wire that
couples to the adjacent Majorana fermion.)
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For the realization of the topological Kondo effect, the
superconducting electrode should be made sufficiently small
that its charging energy Ec is large compared to achievable
temperatures. Devices with a small piece of superconductor
can be engineered to have a charging energy as large as
Ec � 500 μeV while keeping the Majoranas sufficiently far
apart (more than 1 μm) that nonlocal couplings remain small
[43]. Thus, for temperatures T � 1 K, the system can be in
the required regime where the superconducting gap, Zeeman
energy, and charging energy are all large-energy scales. The
current limitation of this particular system concerns the fact
that the induced gap appears to be soft, with a small but
nonvanishing density of states for tunneling at energies below
�. The origin of this effect, and methods to improve the gap,
are still under active investigation.
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APPENDIX A: CORRELATION FUNCTIONS
FOR SCATTERING t MATRIX

For a system described by the general Hamiltonian

Ĥ =
∑
k,m

εkc
†
kmckm + Ĥint, (A1)

in which Ĥint describes an interacting subsystem coupled to
the ckm orbitals, and m is a “flavor” index, standard equations-
of-motion techniques lead to the result

〈〈ckm; c†k′m〉〉 = δkk′

z − εk

+ 1

(z − εk)(z − εk′)

[〈{[ckm,Ĥint],c
†
k′m}〉

+ 〈〈[ckm,Ĥint]; [ck′m,Ĥint]
†}〉〉ω

]
, (A2)

where z = ω + i0+ and 〈〈Â; B̂〉〉ω denotes the Fourier trans-
form to the ω domain of the retarded correlation function
−iθ (t)〈{Â(t),B̂}〉. The term in square brackets in Eq. (A2)
describes scattering due to Ĥint and will be related to the
on-shell t matrix below.

The Hamiltonian (15) is of precisely the form of Eq. (A2),
with Hint given by the terms involving the impurity spin
operators. From Eq. (13), we obtain {ckm,f

†
m′ } = N

−1/2
orb δmm′ ,

and use the relation [Â,B̂Ĉ] = {Â,B̂}Ĉ − B̂{Â,Ĉ} to obtain

[ckm,Ĥint] = N
−1/2
orb X̂m (A3)

with

X̂1 = J a
⊥√
2
S+f3 − JzS

zf1 , (A4a)

X̂2 = J b
⊥√
2
S−f3 + JzS

zf2 , (A4b)

X̂3 = J b
⊥√
2
S+f2 + J a

⊥√
2
S−f1 . (A4c)

Defining τkk′,m(ω) as the quantity in square brackets in
Eq. (A2), it follows from Eq. (A4) that the on-shell t matrix is

given by

τm(ω) =
∑

k

τkk,m(ω) (A5)

= −Jz(δm1 − δm2)〈Sz〉 + 〈〈Xm; X†
m}〉〉ω. (A6)

Of primary interest is the spectral function of τm(ω), which we
define as the dimensionless quantity

tm(ω) = −πρ Imτm(ω). (A7)

APPENDIX B: KUBO FORMULA FOR CONDUCTANCE

The conductance tensor of the model can be calculated for
both the original basis of Eq. (9) and the transformed basis
of Eq. (15). For the most part, the derivations are essentially
identical since only number operators of the lead electrons
enter (rather than the interaction part of the Hamiltonian which
is strongly basis dependent). We therefore begin by outlining
the part of the derivation common to both bases.

Our starting point is the standard result from
Appendix B of Hewson [24]. To leading order in the per-
turbation, the change in expectation value of an operator Â

from its equilibrium value, due to an adiabatically switched-on
perturbation Ĥ ′(t) = eηt B̂F (t) (with η → 0+), is

�〈A(t)〉 = 1

i�
Tr

∫ t

−∞
eηt ′ [B̂,ρeq]Â(t − t ′)F (t ′)dt ′, (B1)

where �〈A(t)〉 = Tr[ρ(t)Â − ρeqÂ], the density matrices in
the presence (absence) of the perturbation are ρ(t) (ρeq), and

Â(t − t ′) = eiĤ (t−t ′)/�Âe−iĤ (t−t ′)/� (B2)

with Ĥ the Hamiltonian of the equilibrium system. Taking the
perturbation to be

Ĥ ′(t) = e cos(ωt)N̂βVβ (B3)

(with e the magnitude of the electron charge and ω the
frequency of the ac bias voltage), the current into lead α,

Iα(t) = e

〈
d

dt
N̂α(t)

〉
≡ e〈Ṅα(t)〉 (B4)

is given by

Iα(t ; ω) = e2Vβ

i�
Tr

∫ t

−∞
eηt ′ [N̂β,ρeq]Ṅα(t − t ′) cos(ωt ′)dt ′.

(B5)

Here, we use N̂α to denote the total number operator of lead α,
either in the original basis of Eq. (9) or the transformed basis
of Eq. (15).

The change of variable t − t ′ → t ′′ leads to

Iα(t ; ω)

= e2Vβ

i�
Tr

∫ ∞

0
e−ηt ′′ [N̂β,ρeq]Ṅα(t ′′) cos(ωt ′′ − ωt)dt ′′,

(B6)

i.e.,

Iα(t ; ω) = −e2Vβ

2
[e−iωtσαβ(ω) + eiωtσαβ(−ω)] (B7)
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with

σαβ(ω) = i

�
Tr

∫ ∞

0
ei(ω+iη)t [N̂β,ρeq]Ṅα(t)dt (B8)

as defined by Izumida et al. [39]. Following the manipulations
therein, we obtain (for ω �= 0)(

e2

h

)
Gαβ(t ; ω) = ∂Iα(t ; ω)

∂Vβ

(B9)

= −
(

e2

h

)
2π

[
cos(ωt)

�
2ImK ′′

αβ(ω)

�ω

− sin(ωt)
�

2(K ′
αβ(ω) − K ′

αβ(0))

�ω

]
, (B10)

where

Kαβ(ω) = − i

�

∫ ∞

0
ei(ω+iη)t 〈[Ṅβ,Ṅα(t)]〉dt (B11)

= K ′
αβ(ω) + iK ′′

αβ(ω). (B12)

In the ω → 0 limit, we obtain the steady-state (t-independent)
dc conductance

Gdc
αβ ≡ Gαβ(t ; ω = 0) = −2π lim

ω→0

�
2K ′′

αβ(ω)

�ω
. (B13)

At finite ω, for specificity we focus henceforth on the t = 0
value of the conductance

Gαβ(ω) ≡ Gαβ(t = 0; ω) = −2π
�

2K ′′
αβ(ω)

�ω
, (B14)

which thus probes the frequency dependence of the same
spectral function K ′′

αβ(ω), and satisfies

lim
ω→0

Gαβ(ω) = Gdc
αβ. (B15)

By Lehmann resolving Kαβ(ω) (see Ref. [39]), one obtains

sgn[K ′′
αα(ω)] = sgn(ω) (B16)

and hence, from Eq. (B14),

Gαα(ω) � 0. (B17)

To check this sign, one can examine the dc limit. Using
Eq. (B3) with ω → 0, a positive bias applied to lead α will
raise its chemical potential, such that the current into lead
α obtained from Eq. (B4) [and hence the conductance from
Eq. (B9)] should indeed be negative.

1. Symmetries of the conductance

For specificity, we focus on a particular off-diagonal
element G13(ω) of the conductance tensor. As explained in
the following, in the axial-symmetric limit of the model it
has the convenient properties of (a) being the same in both
bases, and (b) being proportional also to the diagonal element
G33(ω).

We denote by N̂α and N̂m the number operators for the
leads in the physical basis of Eq. (9) and the transformed basis

of Eq. (15), respectively. It is straightforward to show that

N̂−1 + N̂1 = N̂1 + N̂2, (B18a)

N̂0 = N̂3. (B18b)

It thus follows from Eqs. (B11) and (B14) that

G10(ω) + G−10(ω) = G13(ω) + G23(ω), (B19a)

G00(ω) = G33(ω), (B19b)

where Gαβ(ω) and Gnm(ω) denote the conductance in the
physical and transformed bases, respectively.

Two sets of further results hold in each basis: axial
symmetry implies that

G10(ω) = G−10(ω), (B20a)

G13(ω) = G23(ω), (B20b)

while current conservation means that

G−10(ω) + G00(ω) + G10(ω) = 0, (B21a)

G13(ω) + G23(ω) + G33(ω) = 0. (B21b)

Combining Eqs. (B19)–(B21), we obtain

G10(ω) = − 1
2G00(ω) = G13(ω) = − 1

2G33(ω) � 0. (B22)

[Here, the minus signs reflect that, for a particular bias applied
to lead 0, the currents flowing from the impurity to leads 1 and
0 will be in opposite directions, and the inequality is obtained
from Eq. (B17).] The single quantity G10(ω) thus provides a
useful handle on the conductance of the model in both bases.

In the fully isotropic limit of the model, Eq. (B22) can of
course be extended by symmetry: the full tensors G and G are
identical, with

Gmn(ω) = − 1
2Gmm(ω) = − 1

2Gnn(ω) (B23)

for all m �= n. In this case, therefore, the single quantity G13(ω)
represents all elements of both conductance tensors.

2. Calculation via NRG

To calculate G10(ω) by NRG, one needs the time derivatives
of the lead operators in Eq. (B11). Using

Ṅm = 1

i�
[N̂m,Ĥ ], (B24)

one obtains Ṅm = ôm/(i�) with

ô−1 = J a
⊥√
2

(S+f
†
−1f0 − S−f

†
0 f−1), (B25)

ô1 = J b
⊥√
2

(S−f
†
1 f0 − S+f

†
0 f1 ), (B26)

ô0 = −ô−1 − ô1 (B27)

(the latter equality reflecting the current conservation in the
system).

Matrix elements of these operators can be calculated
and then used to obtain the correlation function Kmn in
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Eq. (B11) by the FDM-NRG method [26]. Owing to the
discretization inherent in the NRG approach, one obtains a
discrete set of delta functions which lead to a similarly discrete

representation of Gmn(ω) when Eq. (B14) is used. We then
broaden the poles of Gmn(ω) using the standard method of
Ref. [26].
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