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Generalized Wilson chain for solving multichannel quantum impurity problems
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The numerical renormalization group is used to solve quantum impurity problems, which describe magnetic
impurities in metals, nanodevices, and correlated materials within dynamical mean field theory. Here we present
a simple generalization of the Wilson chain, which improves the scaling of computational cost with the number
of conduction bands, bringing more complex problems within reach. The method is applied to calculate the t

matrix of the three-channel Kondo model at T = 0, which shows universal crossovers near non-Fermi-liquid
critical points. A nonintegrable three-impurity problem with three bands is also studied, revealing a rich phase
diagram and novel screening and overscreening mechanisms.
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Wilson’s numerical renormalization group (NRG) has been
widely used over the past 40 years to study systems where
local interacting degrees of freedom are coupled to bands
(or channels) of noninteracting conduction electrons [1–3].
Such “quantum impurity problems” are classic paradigms
for strong electron correlations in condensed matter. They
appear in diverse contexts, being fundamental to the theo-
retical description of both nanostructures [4–8] and correlated
materials [1,9,10].

NRG calculations have so far been largely restricted to
problems involving one or two conduction bands [3]. Although
more complicated systems sometimes reduce to an effective
single-channel description [1–5], many real systems of interest
involve three or more bands. For example, transition metal ox-
ides such as LaTiO3, SrVO3, and SrRuO3 are described by the
“Hubbard-Kanamori” model of interacting t2g orbitals [11,12],
which maps onto an effective three-band problem involving
three orbitals within dynamical mean field theory (DMFT)
[13]. Likewise, treatment of two-dimensional systems such as
the cuprates within cluster DMFT necessitates the solution of
multichannel coupled impurity models [14]. Indeed, interest
in quantum impurities was originally stimulated by the Kondo
effect due to iron impurities in gold, described quantitatively
by a spin- 3

2 impurity, exactly screened by three conduction
bands [15].

The major advantage of NRG over other numerically
controlled “impurity solvers,” such as exact diagonalization
[16] and continuous-time quantum Monte Carlo [17], is that it
yields highly accurate results on essentially all energy and tem-
perature scales [18], for very general impurity problems with
arbitrary interactions. However, a serious limitation of NRG
is that calculational cost scales exponentially with the number
of channels. In practice, this has largely limited application of
NRG to two-channel problems [3] and special high-symmetry
systems [19].

In this Rapid Communication we develop a generalized
Wilson chain, which significantly reduces the computational
cost of solving multichannel models with NRG. The effective
single-channel formulation brings a range of more complex
multichannel problems within reach of NRG. The generic
class of Hamiltonian considered is H = H 0 + ∑Nc

α=1 Hα
CB,

with each of the Nc conduction bands described by

Hα
CB =

∑
k,σ

εαkc
†
αkσ cαkσ , (1)

and H 0 describing the interacting “impurity” subsystem,
coupled locally to these bands. The technique is general,
exemplified here by the multichannel Kondo (MCK) [20] and
multi-impurity Kondo (MIK) [21] models,

H 0
MCK =

∑
α

JαŜ1 · ŝα, (2)

H 0
MIK =

∑
α

JαŜα · ŝα + K
∑
α<α′

Ŝα · Ŝα′ , (3)

where ŝα = ∑
σ,σ ′

1
2f

†
α0σ �σσ,σ ′fα0σ ′ is the electronic spin

density in channel α (here fα0σ = N
−1/2
orb

∑
k cαkσ , and

Norb → ∞), and Ŝi are impurity spin- 1
2 operators.

(a)

(b)

FIG. 1. NRG for a two-channel model. The impurity subsystem
and Wilson chain orbitals are denoted by the circle and squares,
respectively. Solid lines represent chain couplings; dashed boxes
represent diagonalization and truncation. The energy scale decreases
in the direction of the arrows. (a) Standard formulation: Channel or-
bitals are added symmetrically. (b) Interleaved formulation: Channel
orbitals are added sequentially.
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We focus on Nc = 3 band problems, calculating previously
inaccessible dynamics of the three-channel Kondo (3CK)
model at T = 0. The universal crossover to the non-Fermi-
liquid 3CK quantum critical point (QCP) is extracted, as are
subsequent nontrivial crossovers to 2CK or Fermi-liquid states
induced by a single detuning perturbation. The nonintegrable
three-impurity Kondo (3IK) model is also studied, with a rich
range of physics associated with simpler 2CK, 3CK, and 2IK
models clearly manifest in thermodynamic quantities.

Numerical renormalization group. The key approximation
of NRG is a logarithmic discretization of the conduction
electron densities of states ρα(E), which captures low-energy
excitations around the Fermi level crucial to Kondo physics
[2,3]. For simplicity, we take standard symmetric bands
defined between E = ±Dα , with constant density of states
ρα = 1/(2Dα). Discretization points for each band at E =
±xn are given by

xn =
{
Dα, n = 0,

Dα�−n−zα , n = 1,2,3, . . . ,
(4)

with � > 1 and zα � 0 [2,3,22]. Retaining only the symmetric
linear combinations of states in each interval of a given
conduction channel allows its Hamiltonian to be written in
the form of a “Wilson chain”:

H
α,disc
CB =

∑
σ

∞∑
n=0

(tαnf
†
αnσ fα(n+1)σ + H.c.), (5)

with hopping matrix elements tαn [2,3]. The (discretized) MCK
or MIK Hamiltonian is then built up iteratively, as shown
in Fig. 1(a) for Nc = 2. The first step (innermost gray box)
corresponds to the impurity-fα0σ subsystem, given by H 0

[Eqs. (2) or (3)]. A complete “shell” of Nc Wilson chain sites
is then added symmetrically [23] at each iteration using the
recursion relation [2,3]

HN+1 = HN +
∑
α,σ

(tαNf
†
αNσ fα(N+1)σ + H.c.), (6)

with HN+1 rediagonalized after each shell is added, and the
full Hamiltonian recovered as H disc = limN→∞ HN .

The dimension of the Hilbert space thus grows by a
factor of 4Nc at each iteration. In practice, the calculation
is made tractable by retaining a large but fixed number
Ns of the lowest-energy states at each iteration. This is
justified by a special property of the Wilson chain hoppings,
which decrease exponentially down each chain due to the
logarithmic discretization [2,3,22]. After a few iterations (such
that �−n/2 � 1),

tαn ∼ Dα�−zα × �−n/2. (7)

This leads to an energy-scale separation from one iteration
to the next. The high-energy eigenstates of HN can thus be
discarded without affecting the low-energy states of HN+1,
and numerically exact results are obtained [2].

But at each iteration, after adding Nc new Wilson chain
orbitals, a Hilbert space of total dimension Nt = Ns × 4Nc

must still be diagonalized: This is the computational bottleneck
[24]. Although symmetries may be exploited to reduce the total
cost [2,3,19], this exponential scaling of Nt with the number

of channels currently prevents standard NRG from being used
to calculate dynamics for generic models with Nc > 2.

Interleaved Wilson chains. Here we show that the scaling
of standard NRG with the number of channels can be
significantly improved upon by introducing additional energy-
scale separations between channels. All Nc Wilson chains are
then interleaved to form a single generalized Wilson chain,
depicted in Fig. 1(b). Importantly, the Hilbert space can then
be truncated after each orbital is added in sequence. Although
this procedure requires Nc more matrix diagonalizations,
the Hilbert space at any given step is much smaller than
in standard NRG (Nt = Ns × 4 rather than Ns × 4Nc ). This
effective single-channel formulation significantly reduces the
overall cost of the calculation [24]. Denoting by HN+1

M the
Hamiltonian in which M of the Nc orbitals in shell N + 1
have been added, the recursion relation Eq. (6) generalizes to

HN+1
M = HN+1

M−1 +
∑

σ

(tMNf
†
MNσ fM(N+1)σ + H.c.) (8)

(where HN+1
0 = HN

Nc
≡ HN ). Each HN+1

M is diagonalized and
the Hilbert space truncated down to Ns states before moving to
HN+1

M+1. Truncation is possible if an energy-scale separation ex-
ists between each step M → M + 1. This arises automatically
if the channel bandwidths satisfy DM+1/DM = g = �−1/(2Nc).
It can also be introduced artificially at the discretization step
by choosing slide parameters zM+1 − zM = 1/2Nc. In each
case it then follows from Eq. (7) that t(M+1)N/tMN = g. We
present results using both methods below.

Note that in standard NRG the energy scale decreases by
�−1/2 at each iteration, while the factor is g = �−1/(2Nc) for the
interleaved method. A larger � is therefore needed for Nc > 1
to justify truncation. This also has the effect of amplifying
discretization artifacts [2], but these can be diminished
[18] by averaging over band discretizations using the slide
parameter zα .

By complete analogy to standard NRG, thermodynamics at
an effective temperature T ∼ tMN can be calculated at each
step from the eigenstates of HN

M [2], and dynamics can be
calculated from the full density matrix [25] in the Anders-
Schiller basis [26,27].

Multichannel Kondo. We present results for the 3CK
model [Eqs. (1) and (2) with Nc = 3], a stringent test of our
method since the critical physics is destabilized by various
symmetry-breaking perturbations [20,28–32]. The interleaved
NRG method provides access to dynamical quantities not
previously calculable within standard NRG. We focus on
the T = 0 scattering t-matrix T k,k′

α (ω) for channel α = 1,2,3
[1,33].

The model is taken with the common bandwidth ratio
D2/D1 = D3/D2 = g, where g = �−1/6 as above (and zi ≡ z

identical for all channels). We use � = 10, and average
the results of three NRG runs with z = 1

6 , 1
2 , 5

6 . Although
Ns = 20 000 is required here, intermediate truncations within
interleaved NRG mean that each run can be performed on a
standard desktop computer in a few hours (a factor of ∼600
faster than standard NRG [24]).

The MCK critical physics occurs at the point of frustration
where all channels couple equally to the impurity and no
single channel can completely screen it. For wide flat bands
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(a) (b) (c)

FIG. 2. (Color online) Scaling spectra tα(ω) for channel α = 1,2,3 at T = 0 for the 3CK model, obtained using the interleaved NRG
method. For parameters, see text. The t matrices for equivalent channels have been averaged [24]. (a) vs ω/T 3CK

K , tuned to the critical point with
ρ1J

c
1 = 0.05, ρ2J

c
2 	 0.050 88 . . . , ρ3J

c
3 	 0.051 80 . . . such that T 3CK

K ≈ 10−10D1. The dotted-dashed line is for the 2CK model, with points
obtained using standard NRG for equal bandwidths (g = 1). (b) Crossover to FL fixed points due to perturbation J3 = J c

3 + 0.01 × T 3CK
K . The

impurity flows to strong coupling [FL (SC)] with channel 3, while channels 1 and 2 decouple [FL (DC)]. (c) Crossover to the 2CK fixed point
due to perturbation J3 = J c

3 − 0.01 × T 3CK
K . Channel 3 decouples, while the impurity is overscreened by channels 1 and 2. Asymptotes for

(a)–(c) are given by Eqs. (9)–(11), and discussed further in the text.

Dα → ∞ (with finite g), the coupling of each channel to the
impurity is characterized by the dimensionless quantity ραJα ,
and criticality arises when J2/J1 = J3/J2 = g. The same
critical physics arises for finite bandwidths, with the position
of the critical point itself naturally shifted slightly [24].
Discretization and asymmetric truncation in NRG produces
a further tiny deviation in the critical ratios Jα/Jβ [24,34].

As exemplified by Fig. 2(a), the scaling spectrum of
the t matrix, tα(ω) = −Norbπρα Im T k,k′

α (ω), is captured by
interleaved NRG at criticality [plotted versus ω/T 3CK

K (solid
line), with T 3CK

K the 3CK Kondo scale]. In the universal
regime |ω| � Dα , tα(ω) is identical for all three channels [24],
establishing the emergent channel symmetry. For |ω| � T 3CK

K

(dotted line) the physics is controlled by spin-flip scattering
near the local moment (LM) fixed point—behavior common
to all quantum impurity models where local moment physics
plays a key role [35]. By contrast, for |ω| � T 3CK

K (dashed
line), the physics is controlled by corrections to the 3CK fixed
point. We find

tα(ω) =
{

a/
[
b + c ln2

(|ω|/T 3CK
K

)]
, |ω| � T 3CK

K ,

γ − d
(|ω|/T 3CK

K

)2/5
, |ω| � T 3CK

K ,
(9)

where the 2/5 power arises from the scaling dimension of
the leading irrelevant operator at the 3CK fixed point and
γ = cos(2π/5) 	 0.31 [29]. The result using interleaved NRG
for the 2CK model is shown as the dotted-dashed line for
comparison [and agrees perfectly with standard NRG for the
equal bandwidth case g = 1 (circles)].

Figure 2(b) shows the scaling spectra tα(ω) vs ω/T ∗
FL when

(J3 − J c
3 ) > 0 (� T 3CK

K ). We find this generates a universal
crossover from the 3CK fixed point to a Fermi-liquid (FL)
fixed point on the scale of T ∗

FL ∝ T 3CK
K |ρ3J3 − ρ3J

c
3 |5/2. The

t matrix for channel 3 shows a Kondo resonance, with
t3(0) = 1 signaling single-channel strong coupling physics,
while channels 1 and 2 decouple asymptotically, yielding
t1,2(0) = 0. We find the asymptotic behavior to be

tα(ω) =
{

γ + eα(|ω|/T ∗
FL)−2/5, |ω| � T ∗

FL,

ξα − fα(|ω|/T ∗
FL)2, |ω| � T ∗

FL,
(10)

where ξα = tα(0) = 0 or 1 characteristic of the FL fixed point
as above, and eα , fα > 0 for channel α = 3 and < 0 for
α = 1,2. Strikingly, when the sign of the perturbation is simply
reversed, (J3 − J c

3 ) < 0, channel 3 decouples [yielding the
same scaling curve as t1,2(ω) in Fig. 2(b)], but the impurity
spin is overscreened on the scale of T ∗

2CK ∝ T 3CK
K |ρ3J3 −

ρ3J
c
3 |5/2 by channels 1 and 2, producing stable 2CK physics

characterized by

t1,2(ω) =
{

γ + g(|ω|/T ∗
2CK)−2/5, |ω| � T ∗

2CK,

1
2 − h(|ω|/T ∗

2CK)1/2, |ω| � T ∗
2CK.

(11)

Equations (9)–(11) are consistent with conformal field theory
results [36], and all coefficients {a, . . . ,h} = O(1).

Multi-impurity Kondo. The 2IK model [Eqs. (1) and (3)
with Nc = 2] describes two exchange-coupled impurities,
each coupled also to its own conduction band. It has a
non-Fermi-liquid QCP separating local-singlet and Kondo-
screened phases [21,32,37,38]. Here we consider the Nc = 3
(3IK) generalization, focusing on the parity-symmetric case,
J1,2 ≡ J and J3 ≡ J ′, with common bandwidths Dα ≡ D.
To achieve energy-scale separation between channels we use
� = 5 with z1 = z2 = 0 and z3 = 1

4 , retaining Ns = 10 000
states after chain orbitals of channels 2 and 3 have been added,
but keeping all states after adding an orbital to channel 1. This
hybrid method has the advantage that exact parity symmetry
is preserved in the calculation, so tuning is not required to
enforce this symmetry [39].

We show results for two cases, J > J ′ and J < J ′. In
each case, a quantum phase transition arises at a critical
interimpurity coupling K = Kc. These transitions are distinct
[40] and described separately below.

In Fig. 3 (upper panel) we take J/J ′ = 2 and show the
impurity contribution to the entropy Simp(T ), versus T/D.
The circle points are for K = 0: Here each impurity is clearly
Kondo screened by its own channel [illustrated in Fig. 3(b)],
appearing overall as a two-stage process since J �= J ′. On
initially increasing K (solid lines, following the arrow), the
NRG flows approach progressively more closely the QCP,
before ultimately crossing over to the fully Kondo-screened
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FIG. 3. (Color online) Impurity contribution to entropy Simp(T )
vs T/D for the 3IK model. Upper panel: J/D = 0.2, J ′/D = 0.1,
tuning K = Kc ± λT c

K to approach the 3CK QCP (dotted line) from
the 2CK phase (K > Kc, dashed lines) and from the Kondo-screened
FL phase (K < Kc, solid lines). At the QCP, Kc 	 7 × 10−6D and
T c

K ≈ 10−10D. Plotted for λ = 104,103,102,10,1 in the direction of
the arrow. Circle points for K = 0. Lower panel: Analogous plot
for J/D = 0.1, J ′/D = 0.2. The 2IK QCP with Kc 	 10−9D, T c

K ≈
10−9D separates local-singlet and Kondo-screened phases. Plotted
for λ = 1,10−1,10−2,10−3,10−4 in the direction of the arrow. (a)–
(d) illustrate the ground states on each side of the transition (see
text), using solid ellipses for Kondo singlets, dashed ellipse for 2CK
overscreening, and a dotted ellipse for the local singlet.

ground state, with Simp(0) = 0. At K = Kc (dotted line) the
crossover scale vanishes and the QCP is stable. On further
increasing K (dashed lines, against the direction of the arrow),
impurity 3 feels an effective coupling to the remaining Fermi-
liquid bath degrees of freedom in channels 1 and 2, mediated
via the preformed Kondo singlets [33,38,41]. This effective
coupling becomes stronger than the coupling of impurity 3 to

its own channel for K > Kc, resulting in its 2CK overscreening
by symmetric coupling to channels 1 and 2 [illustrated in
Fig. 3(a)], generating the residual 2CK entropy 1

2 ln(2) [30,42].
The QCP itself can be understood as the point of frustration
where the effective coupling to all three channels is equal,
resulting in 3CK physics, with entropy ln(φ) [30] [and φ =
1
2 (1 + √

5) the golden ratio].
Figure 3 (lower panel) shows the behavior for J/J ′ =

1
2 when K is similarly increased. For small interimpurity
coupling K < Kc, the Kondo-screened phase again arises
[see Fig. 3(d)]. But for K > Kc, while channel 3 again
screens its own impurity first, the other two impurities now
form a “local” singlet, with overall Simp(0) = 0 [illustrated
in Fig. 3(c)]. The competition between Kondo-screened and
local-singlet states is the origin of criticality in the 2IK
model [21,37,38]—and similarly here the QCP is of 2IK type,
with characteristic residual entropy Simp(0) = 1

2 ln(2) (dotted
line). Dynamics provide more detailed information about the
screening and overscreening mechanisms, and confirm this
physical picture. We conjecture that MIK models support
all (N � M)-channel Kondo critical points, by analogous
mechanisms.

Conclusion. We have described a conceptually and tech-
nically simple method which significantly reduces the cost
of studying multichannel models by NRG. An energy-scale
separation between channels is introduced, justifying addi-
tional Hilbert space truncation. The usual scaling of standard
NRG with the number of channels is thereby drastically
improved. The scale separation appears automatically when
conduction electron channels have different bandwidths, or
can be introduced at the discretization step by exploiting the
“z trick” [22].

The interleaved method allows previously inaccessible cal-
culations to be performed with NRG. This was demonstrated
by application to the three-channel and three-impurity Kondo
models near their non-Fermi-liquid QCPs, for which nontrivial
new results were presented. Further applications may include
multichannel quantum impurity problems that appear as
effective models within DMFT for multiband correlated lattice
problems.
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Formulating multichannel quantum impurity problems
in terms of a single interleaved Wilson chain allows the
solution by NRG to be achieved with a significant reduc-
tion in computational cost, as compared with standard
NRG. This stems from the fact that the size of the Hilbert
space can be truncated at intermediate stages in the cal-
culation. The computational bottleneck within standard
NRG — the need to diagonalize large matrices — is thus
substantially alleviated.

Solving a particular multichannel problem using the
new method requires less computer memory and less
CPU time compared to standard NRG. Details of the
gain in efficiency are presented in Sec. I, below. Using
present computational resources, accurate solution of a
new range of three-channel problems is now possible (as
demonstrated for 3CK and 3IK models in the main pa-
per). Indeed, such calculations can be performed on a
standard desktop computer in a few hours.

As shown in Sec. II, adding the complete Wilson ‘shell’
of Nc orbitals simultaneously is not necessary: the even-
tual error introduced by intermediate truncation is small
and does not affect calculated physical properties. In
particular, the universal physics is fully captured by the
interleaved method due to an emergent channel symme-
try, as discussed in Sec. III.

I. EFFICIENCY OF THE INTERLEAVED
METHOD

We consider here as a concrete non-trivial example the
spin- 1

2 multichannel Kondo (MCK) model, with Nc =
1, 2, 3 and 4 channels. For generality, we use here a basis
of U(1) conserved charge in each channel Qα, and overall
conserved spin projection Sztot. (In the absence of poten-
tial scattering or magnetic field, SU(2) spin and isospin
symmetries can instead be exploited to block diagonalize
NRG Hamiltonians in multiplet space.)

In standard NRG, the computational complexity of di-
agonalizing the MCK model increases with the number
of channels. This is due to a proliferation of low-energy
states, corresponding to combinations of low-energy exci-
tations in each of the channels. Since the method works
by discarding only the high-energy states at each itera-
tion, the total number of states, Ns, which one needs to
keep at each iteration to obtain results of similar accu-
racy thus increases with the number of channels.

FIG. 1: Distribution of subspace block-diagonalization times,
ti (in arbitrary units), comparing standard NRG (red bars)
to interleaved NRG (blue bars) for MCK models. The to-
tal diagonalization time for a single NRG iteration is the
sum of subspace times. The interleaved method avoids di-
agonalization of very large subspaces encountered in stan-
dard NRG (see shaded regions). Parameters used: (Λ, Ns) =
(2.5, 2000), (5, 5000), (10, 20000), (20, 100000) for 1CK, 2CK,
3CK and 4CK. Data collected at the MCK fixed point.
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TABLE I:
Diagonalization time
and memory require-
ments per iteration of the
MCK problem, compared
with reference 1CK cal-
culation of comparable
accuracy. Parameters as
in Fig. 1.

For a given number of channels, one can reduce the
required Ns to some extent by working with a larger dis-
cretization parameter, Λ, since this increases the energy-
scale separation down the Wilson chain (at the expense
of introducing larger discretization artifacts). To obtain
accurate results for dynamics here, we have therefore
used, for both standard and interleaved NRG calcula-
tions, (Λ, Ns) = (2.5, 2000) for 1CK, (5, 5000) for 2CK,
and (10, 20000) for 3CK. We find that (20, 100000) yields
accurate results within interleaved NRG for 4CK (see also
Sec. II below).

A. Block diagonalization

To examine precisely how the computational cost de-
pends on these values of Ns, one must take into account
the block-diagonalization of the Hamiltonian. Using the
U(1) symmetries of the model, the Ns retained states of
each iteration are distributed amongst Nb blocks. For the
parameters above, we find that the maximum number of
states in any single block is ' 300 (independent of the
number of channels), while Nb increases with the number
of channels.

These Nb blocks are then used to construct new
blocks at the next iteration. In standard NRG, this is
done by adding an entire ‘shell’ of Wilson chain orbitals
simultaneously (one for each of the Nc channels).
The size of the new blocks generated in this process
increases rapidly with the number of channels, since
each added channel orbital has 4 possible states. For
the parameters above, we find that the largest block
sizes generated within an iteration for standard NRG
are nmax

full ' 600, 1800, 10000 for 1CK, 2CK and 3CK
(data obtained at the MCK fixed point). This increase
in block size is computationally costly, since the new
blocks must be diagonalized, and stored in memory for
calculating dynamics using the FDM-NRG.

To summarise, the increase of computational complex-
ity with Nc is due to increases in:

(a) The number of subspace blocks to be diagonalized

(b) The size of the subspace blocks to be diagonalized

The interleaved method largely solves the problem of
(b): by adding the Nc Wilson chain orbitals one at a
time, truncating the subspace blocks between each ad-
dition, the matrices being diagonalized are significantly
smaller than in standard NRG. For the parameters above,
we find that the largest block size to be diagonalized us-
ing the interleaved method is nmax

int ' 500, 1000 for 2CK
and 3CK (and nmax

int ' 1500 for 4CK).
The interleaved method does not address (a), which is

inherent to the method and the physical problem itself.
(One always needs to retain a sufficient number of sub-
space blocks at a given energy scale in order to capture
the true physics.) But the effect of solving (b) produces
significant savings in computational cost, as explained
further below.

B. Quantitative analysis of the speedup

Reducing the block sizes by the interleaved method
has the advantage of reducing both CPU and memory
requirements for the calculation. The CPU time taken
to diagonalize a block of dimension n scales as n3 (for
large n), and the computer memory needed to store the
block scales as n2.

We define suitable platform-independent measures,
proportional to the actual diagonalization time and mem-
ory usage, viz,

ti = n3
i ; mi = n2

i , (1)

such that the sum over all subspaces gives the total re-
sources required at a given iteration, t =

∑
i ti and

m =
∑
imi. The distribution of ti at the MCK fixed

point for 1CK, 2CK, 3CK and 4CK are given in Fig. 1.
Red bars correspond to the ‘full’ calculation by stan-
dard NRG, while blue bars show the interleaved method.
(The standard and interleaved methods are, by defini-
tion, identical in the 1CK case, so only the standard
results are shown here. On the other hand, only the
interleaved results are shown in the 4CK case, since the
standard NRG calculation is computationally too expen-
sive to run as far as the 4CK fixed point.)

It is clear from the 2CK and 3CK plots that the largest
ti is much smaller for the interleaved method than the
standard method (as pointed out in the previous section).
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The shaded regions highlight those subspaces in the stan-
dard method that are thereby ‘avoided’ when using the
interleaved method: noting the double-logarithmic axes,
we find that 95.5% of the total diagonalization time is
spent on these subspaces in the standard 2CK calcula-
tion, while 99.4% is spent on them for the standard 3CK
calculation.

A significant increase in efficiency is therefore obtained
using the interleaved method: overall the 2CK calcula-
tion is ∼ 20 times faster on the diagonalization step than
standard NRG, while for 3CK it is ∼ 600 times faster.
The memory requirements are also much reduced: 85.7%
and 95.6% of memory in the standard 2CK and 3CK cal-
culations can be saved by using the interleaved method.
Further metrics are given in Table I for the specific cal-
culations shown in Fig. 1.

II. ACCURACY OF THE INTERLEAVED
METHOD

Having demonstrated in the previous section that the
interleaved method is significantly more efficient than
standard NRG for multichannel problems, here we show
that the error introduced by intermediate truncations is
well-controlled and small.

To put such an analysis on firm footing, we consider
now the 2CK model, which can be solved accurately (if
more laboriously) using standard NRG. Specifically, we
use ρ1J1 = 0.05, and retain Ns = 5000 states at each
iteration. We choose a range of discretization parameters
Λ, employing for each a bandwidth ratio g = Λ−1/4.

In Fig. 2 (upper panel), we show the impurity con-
tribution to the entropy, Simp(T ) vs T/D1 for Λ = 3, 5
and 7 (black, red and blue colors). The circle points are
obtained from standard NRG, while the cross points are
from interleaved NRG. We have tuned ρ2J2 ≈ ρ1J1 in
each case to generate the same Fermi liquid crossover
scale, T ∗FL. As seen clearly from the figure, all calcu-
lations coincide over the entire temperature range. As
further confirmation of the accuracy of interleaved NRG,
we plot as the solid line the exact result for the low-
temperature crossover,1,2

Simp(T ) T�TK∼ 1
2 ln(2) + S̄

(
a
T

T ∗FL

)
, (2)

in terms of the universal function,

S̄(t) =
1
t

[
ψ

(
1
2

+
1
t

)
− 1
]
− ln

[
1√
π

Γ
(

1
2

+
1
t

)]
, (3)

where ψ(z) is the psi (digamma) function, and a = O(1).
The agreement confirms that the additional Hilbert

space truncations at intermediate steps within inter-
leaved NRG do not noticeably affect thermodynamic
quantities. Note that excellent agreement between stan-
dard NRG and the interleaved method was also obtained

FIG. 2: Upper panel: Impurity contribution to entropy for
the 2CK model, Simp(T ) vs T/D1 (= Λ−N/2) for Λ = 3, 5, 7
(black, red and blue colors), calculated via standard NRG
(circle points) and interleaved NRG (cross points). g =

Λ−1/4, Ns = 5000 and ρ1J1 = 0.05 were used, with ρ2J2 ≈
ρ1J1 tuned in each case to give the same crossover scale T ∗FL.
Solid line is the exact result of Eq. 2 for the low-temperature
crossover. Lower panel: Error dRMS(T ), defined in Eq. 4, for
the same systems.

for the t matrix in Fig. 2(a) of the main paper (dot-
dashed line and circle points); see also Sec. III, below.

To quantify the error precisely, we consider now the
root mean squared difference in energies of the eigen-
states from the standard and interleaved NRG methods,
calculated for all eigenstates i at a given iteration N and
for the same Λ. We define

dRMS(N) =
1
Ns

√∑
i

(
Estd
N,i − Eint

N,i

)2

, (4)

which is plotted in the lower panel of Fig. 2 for the same
systems. Since the truncation is justified by energy-scale
separation controlled by Λ, one naturally expects the er-
ror to decrease as Λ increases. This is indeed found to be
the case, with the characteristic error for Λ = 3, 5 and 7
being ∼ 10−4, 10−5 and 10−6 respectively. The increase
in dRMS(T ) around T ∗FL is simply due to the fact that
the relevant perturbation generating the crossover grows
under RG at slightly different rates for slightly different
T ∗FL. We stress that the fixed points and crossovers are
described accurately, as is the universal critical physics
which depends only on proximity to the critical point
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FIG. 3: Comparison of entropy Simp(T ) vs T/D1 for 1CK,
2CK, 3CK and 4CK models, calculated using interleaved
NRG. The same parameters as Fig. 1 were used, and ρ1J1 =
0.075 with ρ2J2 ≈ ρ1J1 tuned to the MCK critical point in
each case. Results with z = 0 and 0.5 were averaged for 3CK
and 4CK to reduce discretization artifacts. The 4CK criti-
cal point was located using calculations in which Ns = 65000
states were kept. φ = 1

2
[1 +
√

5] is the golden ratio.

|ρ2J2 − ρ2J
c
2 |, not on ρ2J2 itself.

To emphasize that the MCK critical point can be
captured by interleaved NRG, and to demonstrate the
method in action for the 4CK model, we show in Fig. 3
a comparison of the impurity entropy for 1CK, 2CK,
3CK and 4CK models for common ρ1J1 = 0.075 and
ρ2J2 ≈ ρ1J1 tuned to the MCK critical point in each case.
The MCK fixed point entropies reproduce the known re-
sults of Ref. 3,4.

III. EMERGENT CHANNEL SYMMETRY

As shown above and in the main paper, the NFL crit-
ical physics of the MCK model is still realized when the
conduction electron channels have different bandwidths.
This is because the critical physics can be accessed by
tuning the coupling constants of the model, to ‘can-
cel out’ the symmetry breaking induced by the different
bandwidths. An emergent channel symmetry then arises.
We explain this point in more detail below.

In the wide, flat-band limit D1 →∞ it is clear that the
quantum critical point of the MCK model (with Nc > 1
channels) arises when ραJα = ρβJβ for any fixed finite
ratio g = Dα/Dβ : all conduction bands are infinitely
wide, so the parameter g ‘drops out’ and the coupling
of the impurity to channel α is described completely by
the dimensionless coupling strength ραJα.5 The crossover
from the local moment fixed point to the NFL fixed point
is then universal, and is the same for all g.

For finite bandwidths, the same universal curve is ob-
tained, but only on universal energy scales � Jα, Dα.
This is well known in the case of equal bandwidths
(g = 1): one argues that the RG flows on energy scales

much less than the bandwidth are the same as those in
the infinite bandwidth case, the non-universal physics
having been integrated out. We point out that the same
is true for g 6= 1. Of course, at high energies the channel
symmetry breaking then causes each dimensionless cou-
pling constant ραJα to evolve differently under RG. But
on the universal energy scales below the smallest of the
bandwidths, the scaling under RG becomes the same as
that of the infinite-bandwidth case, and hence the same
universal physics—including the the same quantum crit-
ical behavior—is expected.

To access the critical physics, one must simply choose
the bare ραJα such that the coupling to each lead is iden-
tical once the universal scaling regime is reached. For
g = 1, this requires that the bare ραJα are equal by
symmetry. For g 6= 1, since the couplings scale differ-
ently at high energies, one must start from different bare
couplings so that the effective couplings become equal in
the universal regime. In other words, the bare couplings
must be tuned to locate the critical point. We stress that
this is a physical feature of the model with unequal band-
widths, and not related to the interleaved NRG method
itself.

To confirm this RG argument, Fig. 2(a) of the main
paper shows the universal t matrix of the 2CK model
calculated using interleaved NRG, with a bandwidth
ratio g = Λ−1/4 (and Λ = 5), compared with results of
standard NRG using g = 1. The universal curves are
manifestly identical, even though the bandwidths in the
two cases are different.

[It should be pointed out that the interleaved method
(relying as it does on a channel-asymmetric truncation
scheme) naturally introduces a very small, additional
shift in the critical ραJα. This can be seen by comparing
results from the standard and interleaved methods
with the same bandwidths. For the 2CK calculation
with ρ1J1 = 0.05, Λ = 5 and g = Λ−1/4, the tuned
couplings for interleaved and standard NRG satisfy
ρ2J

int
2 = ρ2J

std
2 + δ, with the difference δ = 10−7.

That the difference is so small suggests that once the
parameters are tuned additional symmetry-breaking
due to the asymmetric truncation scheme is negligible.
This conclusion is backed up by the excellent agreement
between the universal scaling curves of the standard and
interleaved methods. It is also seen explicitly below in
results for the t matrices.]

In the main panel of Fig. 4, we plot the spectrum of the
t matrix, tα(ω) for each channel in the 3CK problem, as a
full function of frequency |ω|/D1, after tuning to the crit-
ical point. The same parameters are used as in Fig. 2(a)
of the main paper. The three curves are essentially in-
distinguishable below an energy scale |ω|/D1 ∼ 10−3,
demonstrating explicitly that the universal RG flow in
each channel is the same (i.e. there is an emergent chan-
nel symmetry), even in the case where the bandwidth
ratio g 6= 1.
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FIG. 4: Spectrum of the t matrix tα(ω) vs |ω|/D1 for the
3CK model, with α = 1, 2, 3 as the black, red and blue lines
respectively. Parameters used are the same as for Fig. 2(a) of
the main paper. Inset shows a magnified view of non-universal
high-energy features.

Differences in the t matrices of the three channels
arise on high, non-universal energy scales, Dα and Jα,
as shown in a magnified view in the inset. It is worth
pointing out that the features on the scale of Jα are a
real characteristic of the t matrix for a Kondo model,
rather than an artifact of the interleaved NRG method
itself.
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