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Fourier transform scanning tunneling spectroscopy (FT-STS) measures the scattering of conduction electrons
from impurities and defects, giving information about the electronic structure of both the host material and
adsorbed impurities. We interpret such FT-STS measurements in terms of the quasiparticle interference (QPI),
here investigating in detail the QPI due to single magnetic impurities adsorbed on a range of representative
nonmagnetic host surfaces, and contrasting with the case of a simple scalar impurity or point defect. We
demonstrate how the electronic correlations present for magnetic impurities markedly affect the QPI, showing,
e.g., a large intensity enhancement due to the Kondo effect, and universality at low temperatures/scanning
energies. The commonly used joint density of states interpretation of FT-STS measurements is also considered,
and shown to be insufficient in many cases, including that of magnetic impurities.
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I. INTRODUCTION

Magnetic atoms embedded on nonmagnetic surfaces pro-
vide realizations of quantum impurity models [1] which are
amenable to detailed experimental study and manipulation
with a scanning tunneling microscope (STM) [2–4]. Such
systems are promising candidates as a basis for nanoscale
computational, memory storage, and spintronic devices [5,6].
They are also of fundamental interest in their own right, due to
the subtle interplay of strongly correlated local spin and orbital
degrees of freedom coupled to a conduction electron bath.

In scanning tunneling spectroscopy (STS) experiments, the
differential conductance between tip and surface is related to
the local density of electronic states (LDOS) at a particular
scanning energy and temperature [7,8]; by rastering the STM
tip across the surface (Fig. 1) a spatial map of the LDOS in
the vicinity of features such as adsorbed impurities may be
generated [3]. Such impurities break translational symmetry
at the surface, causing scattering of conduction electrons and
modulations in the LDOS that depend strongly on both the
electronic structure of the underlying sample (“host”) and the
properties and distribution of impurities. Fourier transform
STS (FT-STS), in which such modulations are analyzed in
reciprocal space and interpreted in terms of the quasiparticle
interference (QPI) between the diagonal states of the clean
host [9–11], thus provides a wealth of information on the
nature of the impurity-host and (host-mediated) interimpurity
correlations.

The aim of this work is to calculate the QPI due to single
magnetic adatoms on metallic surfaces, drawing comparison
with the case of nonmagnetic, “scalar” impurities (s-wave
potential scatterers in the weak-scattering Born limit [10]). We
also link quantitatively FT-STS measurements to the calculated
QPI for generic systems. By way of contrast, we then examine
the widely used phenomenological joint density of states
(JDOS) interpretation for FT-STS measurements [12,13].

In addition to FT-STS, magnetic impurities can themselves
be spectroscopically probed when the STM tip is positioned
directly over an impurity. A narrow Kondo resonance is
commonly observed around the Fermi energy in these local
STS measurements [2,3], arising from the formation of a

FIG. 1. (Color online) Schematic FT-STS setup: a spatial map
of surface LDOS modulations due to electron scattering from a
magnetic adatom impurity is extracted from differential conductance
measurements as an STM tip is rastered over the surface.

many-body Kondo singlet state where the impurity local mo-
ment is screened dynamically by surrounding host conduction
electrons. For STS studies of Co adatoms on noble-metal
surfaces, typical Kondo temperatures of TK ∼ 50–100 K are
extracted from the half-width at half-maximum of the spectral
Kondo resonance [14]. The single-orbital Anderson impurity
model [15] has been successfully used to rationalize such local
STS measurements [16–18]. It is adopted here as a qualita-
tively accurate description of a generic, low-spin magnetic
adatom, and is treated using the numerical renormalization
group (NRG) [19]. In other cases, e.g., high-spin Mn or
Fe adatoms, generalized impurity models must be employed
to capture the full orbital structure of the adatom and the
host material [20,21] (such calculations are quite specific to
the particular system under consideration [22] and are not
explicitly considered).

We begin by considering a general formulation (Secs. II
and III) for any number or type of impurities embedded
on the surface of tight-binding hosts. The single magnetic
impurity case, which is the main focus of this paper, is simply
a particular example (we subsequently apply the formalism to
multi-impurity systems in Ref. [23]). We highlight in particular
(Sec. III) the differences between the three-dimensional (3D)
cubic lattice with a (100) surface, the two-dimensional (2D)
square lattice, and the honeycomb lattice. These simple but
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representative hosts reproduce a range of possible material
realizations: the LDOS for each features distinct behavior
close to the Fermi level, with flat, divergent, and vanishing
LDOS for the three lattices, respectively. Each host lattice
gives rise to qualitatively different impurity physics with, e.g.,
the single-impurity Kondo temperature significantly enhanced
(suppressed) by increased (depleted) density of states around
the Fermi level [24–27].

Single-impurity systems are considered explicitly in Sec. IV
and following. The QPI due to single magnetic and scalar
impurities for each host is considered in Sec. IV, drawing
attention to the qualitative differences in QPI arising from
the different types of scattering center and host. The rich
dynamical properties of the QPI are studied in detail for sys-
tems containing a magnetic impurity in Sec. V; we emphasize
that this strong energy dependence cannot be reproduced in
systems containing only scalar impurities or structural defects.
Indeed, strong electron correlations in systems with magnetic
impurities are shown to produce unique QPI signatures: in
metallic systems, the QPI exhibits universality in terms of
rescaled scanning energy and temperature due to the Kondo
effect, while nontrivial local-moment physics is observed in
the 2D honeycomb case [24,25,28–30].

Section VI examines the interpretation of experimentally
measurable FT-STS. By simulating the experimental protocol,
we investigate the possible deviation of FT-STS measurements
from calculated QPI due to the finite size of the LDOS pla-
quette measurements in real space. We conclude by critically
examining the relationship between the JDOS and the QPI,
showing that the two quantities are not directly related in any
but the simplest case (a single scalar impurity embedded on a
centrosymmetric host), where the JDOS and QPI are Hilbert
conjugates.

II. HOST SYSTEMS AND IMPURITY PROBLEM

A. Model

We consider a host material with impurities deposited on
the surface, which scatter the quasiparticles of the clean host.
Initially, we consider the general problem of N magnetic
surface adatoms, formulating the QPI generally for any type,
number, and distribution of adatoms.

The clean host is taken to be noninteracting and of tight-
binding form, given in its real-space basis by

Hhost = ε0

∑
i,σ

c†ri σ
cri σ

− t
∑
〈ij〉,σ

(c†ri σ
crj σ

+ H.c.), (1)

where c
†
ri σ creates an electron of spin σ =↑/↓ in the Wannier

orbital localized at site ri ; and 〈ij 〉 denotes a sum over nearest-
neighbor sites, coupled by a tunnel matrix element t . Here, we
consider the half-filled host ε0 = 0.

Specifically, we focus on the simple 2D square lattice, the
3D cubic lattice with a (100) surface, and the 2D honeycomb
lattice. The 3D cubic lattice in particular is representative of a
wide class of regular metallic systems, with a constant (finite)
electronic density of states at low energies. By contrast, the 2D
square lattice, relevant to certain layered materials, features a
Van Hove singularity with a logarithmically diverging density
of states around the Fermi level [26,31]. The honeycomb

lattice, describing graphene within the simplest noninteracting
tight-binding approximation, is notable because it is a bipartite
lattice with a vanishing (pseudogapped) density of states at
low energies [28,32]. Although simplified, these host systems
exemplify a number of distinctive features relevant to real
materials, and each induces qualitatively different impurity
physics (Sec. IV).

The full model, including N impurities, is given by

H = Hhost +
N∑

α=1

Himp,α. (2)

In the simplest case, the local potential at site rα is modified
by impurity α, breaking translational invariance and causing
additional electronic scattering. These static defects, referred
to as “potential scattering” (or “scalar”) impurities, are
described by

Hps
imp,α = v

∑
σ

c†rασ crασ . (3)

This simple model, while often appropriate to describe point
defects in materials, does not faithfully capture the physics
of many adsorbed impurity adatoms, in particular magnetic
impurities, which are dynamic objects with internal degrees of
freedom and strong local Coulomb interactions [1]. These have
a significant qualitative effect on the scattering properties, and
must therefore be taken into account. In this paper, we focus
primarily on adsorbed magnetic impurities, described in terms
of correlated quantum levels

HAIM
imp,α =

∑
σ

εdd
†
ασ dασ + Ud

†
α↑dα↑d

†
α↓dα↓

+ V
∑

σ

(d†
ασ crασ + H.c.), (4)

where d†
ασ creates a spin-σ electron on impurity α, which is

coupled to host site rα by tunneling matrix element V . For
simplicity, we consider explicitly the particle-hole symmetric
case εd = −U/2. We emphasize that true magnetic impurities
preserve SU(2) spin symmetry and time-reversal symmetry,
unlike a static polarized local moment, which simply acts like
a local magnetic field.

B. Impurity dynamics

Single-particle dynamics of correlated impurities embed-
ded in a noninteracting host are described generically by the
Green function matrix [Gd (ω)]α,β ≡ G

αβ

d (ω) = 〈〈dασ ; d†
βσ 〉〉ω,

with 〈〈Â; B̂〉〉ω the Fourier transform of the retarded correlator
−iθ (t)〈{Â(t),B̂(0)}〉. The matrix Dyson equation for the
impurity Green functions is

[Gd (ω)]−1 = [gd (ω)]−1 − �(ω). (5)

The noninteracting (but host-coupled) impurity propagators
are given by

[gd (ω)]−1 = (ω + i0+ − εd )I − �(ω), (6)

in terms of the hybridization matrix �(ω) with elements
[�(ω)]α,β = V 2G0(rα,rβ,ω), where G0(rα,rβ,ω) =
〈〈crασ ; c†rβσ 〉〉0

ω is the propagator between sites rα and rβ
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of the clean host (without impurities), and rα and rβ are
the host sites to which impurities α and β are coupled.
The self-energy matrix �(ω) contains all the nontrivial
information due to electronic interactions, which give rise to
the Kondo effect, RKKY interaction, etc.

In this work, we employ NRG to solve the underlying
quantum impurity problem [19,33]. In the spirit of Ref. [34],
equations of motion can be used to obtain an expression for
the self-energy matrix

�(ω) = [Gd (ω)]−1Fd (ω), (7)

where [Fd (ω)]α,β = U 〈〈dασ ; d†
βσ d

†
βσ̄ dβσ̄ 〉〉ω. Both Gd (ω) and

Fd (ω) are calculated directly in NRG using the full density
matrix approach [35,36] within the complete Anders-Schiller
basis [37].

In the case of a single impurity, the Dyson equation [Eq. (5)]
reduces to G11

d (ω) = [ω − i0+ − εd − �(ω) − 	11]−1, with
the hybridization �(ω) = V 2G0(r1,r1,ω) related simply to
the clean host LDOS (itself independent of position due to
translational invariance). In NRG [19], a discretized version
of the conduction electron Hamiltonian is formulated, and
mapped onto a semi-infinite 1D chain with the impurity
located at one end. Discretizing on a logarithmic energy scale
leads to the “Wilson chain” representation in which hopping
matrix elements decrease exponentially down the chain. The
RG scheme involves iterative diagonalization, starting at the
impurity and working down the Wilson chain, discarding
high-energy states at each step [19].

C. Host dynamics

The full dynamics of the host, in the presence of impurities,
is embodied in the lattice Green functions G(ri ,rj ,ω) connect-
ing arbitrary host sites ri and rj . They can be related exactly
to the above impurity Green functions by equations of motion
[38]

G(ri ,rj ,ω) − G0(ri ,rj ,ω)

=
∑
α,β

G0(ri ,rα,ω)Tαβ(ω)G0(rβ,rj ,ω), (8)

where the sum runs over impurities α and β, and Tαβ(ω) is
the real-space t matrix. For magnetic impurities described by
HAIM

imp in Eq. (4), the t matrix takes the form

T
mag
αβ (ω) = V 2G

αβ

d (ω), (9)

requiring as such a knowledge of the full impurity Green
functions from Eq. (5). By contrast, the t matrix for potential
scattering impurities, described by Hps

imp in Eq. (3), can be
obtained simply in closed form

T
ps
αβ(ω) = v[I − vG0(ω)]−1

αβ , (10)

where the elements [G0(ω)]α′β ′ ≡ G0(rα′ ,rβ ′ ,ω) are free host
Green functions.

In the diagonal quasiparticle basis of the clean host,

Hhost =
∑
k,σ

εkc
†
kσ ckσ (11)

with εk the dispersion (k labels the Bloch state momentum).
The t-matrix equation [Eq. (8)] can also be transformed into

the momentum-space basis


G(k,k′,ω) = G0(k,ω)T (k,k′,ω)G0(k′,ω), (12)

where 
G(k,k′,ω) = G(k,k′,ω) − G0(k,ω)δk,k′ and
G0(k,ω) = [ω + i0+ − εk]−1. All quasiparticle scattering
induced by the impurities is now contained in

T (k,k′,ω) = 1

�BZ

∑
α,β

ei(k′ ·rβ−k·rα )Tαβ(ω) , (13)

where �BZ is the volume of the first Brillouin zone.

III. QPI

At sufficiently low temperature and bias, the differential
conductance dI (r,V )/dV between STM tip and surface for a
particular bias V is proportional to the LDOS, ρ(r,ω = eV),
of the sample at position r. STS thus measures the energy-
resolved electronic structure of the sample at a particular point
in real space [7,8].

The experimental quantity of interest is the QPI

ρ(q,ω) =
∑

i∈(L×L)

e−iq·ri ρ(ri ,ω), (14)

obtained at given scanning energy ω. It is therefore the Fourier
transform of a real-space LDOS map ρ(ri ,ω), itself measured
by STS over an L×L sample region. Since the STS experiment
probes the surface, the LDOS map is two dimensional. In 2D
systems such as graphene, or effective 2D layered systems
such as the cuprates, STS thus probes directly the underlying
lattice. In 3D systems, by contrast, the lattice probed by STS
corresponds to the crystallographic surface lattice.

The FT-STS technique has been employed to investigate the
electronic structure of materials and to map their Fermi surface
contours [13,39], providing complementary information to
techniques such as ARPES [11,12]. FT-STS has proven
of particular value in the study of layered materials such
as cuprates and pnictides [40–42], as well as topological
insulators [43], graphene [44], and heavy-fermion materials
[45]. In many cases (e.g., for weak, disorder-induced scattering
in cuprates [40]), the local defects giving rise to the QPI may
be approximated as scalar impurities in the Born limit [10],
although even for scalar impurities this simplification is known
to be insufficient in some cases [45]. For, e.g., transition-metal
adatoms, however, the full interacting impurity model must be
considered.

The QPI at q = 0 is often omitted in experimental results
because it corresponds to the total density of states sampled,
and is extensive in L2. The desired impurity contribution to
the QPI is then obtained by subtracting the result for the clean
system without impurities


ρ(q,ω) =
∑

i∈(L×L)

e−iq·ri 
ρ(ri ,ω), (15)

where 
ρ = ρ − ρ0 (with ρ0 for the clean host). Since
ρ0(q,ω) ∝ δq,0, 
ρ(q,ω) scales with the number of impuri-
ties. The normalized QPI power spectrum |
ρ(q,ω)/N |2 ∝
|
ρ(q,ω)/L2|2 is intensive, independent of the number of
impurities or sample region size.
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We now give a general formulation for calculating the QPI
due to scattering from single or multiple impurities, which can
either be simple static potential scattering defects or magnetic
(dynamic, interacting) impurities.

A. Real-space formulation

Following the experimental protocol, the QPI can be
calculated by discrete Fourier transform of the LDOS within an
L×L region of the host surface, using Eq. (15). The LDOS at
site ri in the presence of impurities is related to the local host
Green function ρ(ri ,ω) = − 1

π
ImG(ri ,ri ,ω), such that from

Eq. (8),


ρ(ri ,ω) = − 1

π
Im

∑
α,β

G0(ri ,rα,ω)Tαβ(ω)G0(rβ,ri ,ω) (16)

in terms of the full scattering t matrix and free nonlocal host
Green functions. The virtue of Eq. (16) is that it is entirely
general, and can in principle be used for any lattice with any
number or type of impurities. Although the LDOS is sampled
over a finite region, we stress that the host system is in the
thermodynamic limit.

The accurate calculation of lattice Green functions
G0(ri ,rj ,ω) is itself a subtle and well-studied problem
[46–49]. Exact diagonalization of finite-sized lattices or dis-
crete Fourier transforms yield poor approximations to Green
functions of the desired (semi-)infinite systems, especially
at low scanning energies or near Van Hove singularities.
Recursion methods [47,50] can be used for periodic systems
where the exact dispersion εk is known, but such techniques
are numerically unstable for large site separations |ri − rj |,
and converged solutions can be computationally demanding
[51]. Although “bond cutting” [52] and “continued fraction”
[53] variants have been developed in special cases, recursion
methods typically cannot be used for systems with a surface
that breaks translational invariance, limiting applicability
within the QPI context. In consequence, calculation of all
N×L2 nonlocal Green functions required for a system of N

impurities in an L×L region is often a major challenge.
In this paper, we have developed instead a technique for fast

and accurate numerical calculation of free Green functions
on hypercubic-type lattices. The method is detailed in the
Appendix, and involves successive convolutions of simpler
1D Green functions which are known exactly in closed form.
The convolution itself can moreover be performed efficiently
using fast Fourier transform.

B. Scattering state formulation

The “true” QPI containing all scattering information is
obtained by taking the thermodynamic limit of plaquette size
L → ∞. Translational symmetry implies a basis of states with
well-defined momentum parallel to the surface, i.e., over the
first surface Brillouin zone (1SBZ). The local Green function
for a surface lattice site is expressed in terms of this basis by
2D Fourier transformation

G(ri ,ri ,ω) =
∫∫

1SBZ

d2k‖d2k′
‖

�BZ
e−iri ·(k′

‖−k‖)G(k‖,k′
‖,ω), (17)

with �BZ the volume of the 1SBZ. Writing 
ρ(ri ,ω) =
− 1

π
Im
G(ri ,ri ,ω), Eq. (15) takes the form


ρ(q,ω) = − 1

π

∑
i

e−iq·ri Im
∫∫

1SBZ

d2k‖d2k′
‖

�BZ

× e−iri ·(k′
‖−k‖)
G(k‖,k′

‖,ω), (18)

where 
G(k‖,k′
‖,ω) = G(k‖,k′

‖,ω) − G0(k‖,k′
‖,ω).

Equation (18) can itself be recast as


ρ(q,ω) = − 1

2πi
[Q(q,ω) − Q(−q,ω)∗], (19)

where

Q(q,ω) =
∫

1SBZ
d2k‖
G(k‖,k‖ − q,ω) (20a)

≡
∑
α,β

Tαβ(ω) × �αβ(q,ω). (20b)

As highlighted by Eq. (20b), the QPI factorizes
into a momentum-independent scattering amplitude Tαβ(ω)
[Eqs. (9) or (10)], and a host response function �αβ(q,ω)
which depends only on the host lattice and the spatial location
of impurities, but not the type of impurity (and thus details of
the scattering). The explicit form of this host function must
be determined separately for each lattice, as considered in the
following.

1. 2D square lattice

Consider first the 2D square lattice, where the QPI calcu-
lation is simplest. As the system is itself two dimensional, the
surface-momentum basis is simply the diagonal representation
k = k‖. The QPI thus follows from Eqs. (20a), (12), and (13),
and is indeed of form Eq. (20b) with

�αβ(q,ω) =
∫

1SBZ

d2k
�BZ

G0(k,ω)G0(k − q,ω)ei[k·rα−(k−q)·rβ ].

(21)

The free momentum-space Green functions are themselves
given by [54] G0(k,ω) = [ω + i0+ − εk]−1, with 2D square
lattice dispersion (and lattice constant a0)

εk = −2t[cos(a0kx) + cos(a0ky)] . (22)

The half-bandwidth is then D = 4t in terms of the lattice
hopping matrix element t appearing in Eq. (1).

�αβ(q,ω) can be computed efficiently by using the convo-
lution theorem to do the Brillouin zone integration:

Fk[�αβ(q,ω)] = Fk[G0(k,ω)eik·rα ] × Fk[G0(k,ω)e−ik·rβ ],

where Fk denotes the 2D fast Fourier transform.

2. 3D cubic lattice with (100) surface

Three-dimensional host lattices are more subtle, due to
the surface-sensitive STM measurement. As only the surface
LDOS is probed, the QPI amounts to a partial trace over
the t-matrix equation (12), in contrast to the full trace for
the 2D square lattice [Eq. (21)]. The QPI must thus be
evaluated in a basis which preserves the layer index, the
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surface momentum basis of Eq. (17) [rather than the diagonal
basis of Eq. (12)]. 
G(k‖,k‖ − q,ω) in Eq. (20) thus involves
propagators between states with surface momentum k‖ and
k‖ − q. The 2D transform of G(ri ,ri ,ω) [Eq. (17)] leads to
a diagonal representation in each 2D plane in isolation, but
surface states labeled by k‖ remain coupled to the bulk (and
thus to each other). In general, 
G(k‖,k‖ − q,ω) does not
therefore take the form of Eq. (12), but rather


G(k‖,k′
‖,ω) =

∫∫
1SBZ

d2k′′
‖d

2k′′′
‖

�BZ
G̃0(k‖,k′′

‖,ω)

× T (k′′
‖,k

′′′
‖ ,ω)G̃0(k′′′

‖ ,k′
‖,ω), (23)

where G̃0(k‖,k′′
‖,ω) is a complex through-bulk propagator.

Calculation of the QPI thus in general requires the full integrals
over intermediate scattering pathways.

In the case of hypercubic-type lattices, however, a signifi-
cant simplification arises because k‖ is still a good quantum
number, so a surface-momentum t-matrix equation with the
same structure as Eq. (12) still applies, albeit with modified
host surface Green functions. The result for the 3D cubic lattice
with a (100) surface is simply


G(k‖,k′
‖,ω) = G0

surf(k‖,ω)T (k‖,k′
‖,ω)G0

surf(k
′
‖,ω), (24)

where the t matrix is still given by Eq. (13), but

G0
surf(k‖,ω) = f

(
ω − εk‖

2t

)
, where

(25)

tf (ω̃) = ω̃ −
{

sgn(ω̃)
√

ω̃2 − 1, |ω̃| > 1
i
√

1 − ω̃2, |ω̃| � 1

with εk‖ the 2D square lattice dispersion [Eq. (22)]. This
broadens the pole in G0(k,ω) arising for the pure 2D system,
to an ellipse of width 2t centered on ω = εk‖ in G0

surf(k‖,ω) for
the 3D system. It follows that the structure of the host function
�αβ(q,ω) is the same as in the 2D square case [Eq. (21)], with
G0

surf(k||,ω) in place of G0(k,ω). In this paper, we calculate
the true 3D cubic QPI via Eqs. (19), (20), and (21), using the
exact expression for the bulk-coupled surface Green functions
(25).

For more complex systems where such a prescription is not
available, the bulk dephasing of pure 2D surface states could
be approximated by using G0(k‖,ω) = [ω + iη − εk‖]

−1, with
finite η > 0. Green function poles are thereby lifetime broad-
ened by Lorentzians of width η.

3. Honeycomb lattice

The honeycomb lattice is complicated by the bipartite
nature of the lattice, which is viewed as two interlocking
triangular sublattices. We define

t(k) = te−ik·τ [1 + eik·a1 + eik·a2 ] (26)

in terms of the triangular sublattice vectors a1 and a2 and the
intersublattice vector τ = rA

i − rB
i (where rγ

i is a site i on
the γ = A/B sublattice). The A/B-sublattice structure gives
rise to distinct +/− bands in momentum space [32]. The
honeycomb lattice dispersion for these +/− bands, and the

complex phase, follow as

ε±
k = ±|t(k)|, (27a)

φ(k) = arg [t(k)]. (27b)

Real-space operators are expressed in a diagonal basis by

crγ

i

= 1√
2

∫
1BZ

d2k

�
1/2
BZ

eirγ

i ·keisγ φ(k)/2[c−,k + sγ c+,k], (28)

where sγ = ±1 for the A or B sublattice.
Generalizing Eqs. (15) and (16) to take account of this

sublattice structure gives


ρ(q,ω) =
∑

γ,γ1,γ2


ργ,γ1,γ2 (q,ω), (29)

where


ργ,γ1,γ2 (q,ω) = − 1

π

∑
i∈γ

e−iq·rγ

i Im
∑
α∈γ1

∑
β∈γ2

G0
(
rγ

i ,rγ1
α ,ω

)
× Tαβ(ω)G0

(
rγ2
β ,rγ

i ,ω
)

(30)

with the real-space sum over i spanning sites rγ

i on sublattice
γ . Impurity α (β) is taken to be on sublattice γ1 (γ2). Thus,

ργ,γ1,γ2 (q,ω) is the contribution to the full QPI from sites on
the γ sublattice due to impurity-induced scattering between γ1

and γ2 sublattices.
Using Eq. (28) in the definition G0(rγ

i ,rγ ′
j ,ω) =

〈〈crγ

i

; c†
rγ ′
j

〉〉0
ω, 
ργ,γ1,γ2 (q,ω) takes the same form as Eq. (18):


ργ,γ1,γ2 (q,ω) = − 1

π

∑
i

e−iq·rγ

i Im
∫∫

1BZ

d2k d2k′

�BZ

× e−irγ

i ·(k′−k)
Gγ,γ1,γ2 (k,k′,ω), (31)

but now with


Gγ,γ1,γ2 (k,k′,ω)

=
∑
α∈γ1

∑
β∈γ2

Tαβ(ω)

4�BZ
e−i(r

γ1
α ·k−r

γ2
β ·k′)ei[(sγ −sγ1 )φ(k)−(sγ −sγ2 )φ(k′)]/2

×[sγ G0
−(k) + sγ1G

0
+(k)][sγ G0

−(k′) + sγ2G
0
+(k′)], (32)

in terms of the +/− band free Green functions [54]
G0

±(k) ≡ 〈〈c±,k; c†±,k〉〉0
ω = [ω + i0+ − ε±

k ]−1. The QPI contri-
bution then follows as


ργ,γ1,γ2 (q,ω) = − 1

2πi

[
Qγ,γ1,γ2 (q,ω) − Qγ,γ1,γ2 (−q,ω)∗

]
,

(33)

where

Qγ,γ1,γ2 (q,ω) =
∑
α∈γ1

∑
β∈γ2

Tαβ(ω) × �
γ,γ1,γ2
αβ (q,ω). (34)
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Equations (33) and (34) are thus analogs of Eqs. (19) and (20),
with

�
γ,γ1,γ2
αβ (q,ω) =

∫
1BZ

d2k
4�BZ

e−i[r
γ1
α ·k−r

γ2
β ·(k−q)]

× ei[(sγ −sγ1 )φ(k)−(sγ −sγ2 )φ(k−q)]/2

×[sγ G0
−(k) + sγ1G

0
+(k)]

×[sγ G0
−(k − q) + sγ2G

0
+(k − q)]. (35)

We stress that interband scattering and the momentum-
dependent phase factors appearing in Eq. (35) are important,
and affect the full QPI qualitatively.

IV. SINGLE-IMPURITY QPI: MAGNETIC
AND SCALAR IMPURITIES

The generalized problem involving N magnetic impurities,
spatially separated and coupled to conduction electrons of
the host lattice, is naturally highly rich and complex (we
consider aspects of it in subsequent work [23]). From here
on in this paper, we focus on a single magnetic impurity, in
terms of which experimental QPI patterns are in fact typically
interpreted. In this case, the QPI is given by Eq. (20b) (with
α = β = 1, dropped hereafter):

Q(q,ω) = T (ω)�(q,ω), (36)

with T (ω) the single-impurity t matrix and explicit forms for
the host functions �(q,ω) given in Secs. IV B–IV D.

The impurity itself is often taken to be a static potential
defect in the weak-scattering Born limit [10]. The t matrix is
then pure real and energy independent,

T ps(ω) � v, (37)

with v the potential scattering strength [see Eq. (3)].
Equation (37) is the leading-order approximation to the exact
Eq. (10), holding provided |vG0(rα,rα,ω)| � 1. We add,
however, that this approximation is not valid in the vicinity
of divergences in the host density of states (arising, e.g., at
ω = 0 in the 2D square lattice). In the special case of a single
impurity on a centrosymmetric surface Q(q,ω) = Q(−q,ω),
so [Eq. (19)] 
ρ(q,ω) = − 1

π
ImQ(q,ω). For a scalar impurity

in the Born limit,


ρ(q,ω)
scalar= − v

π
�′′(q,ω), (38)

where �(q,ω) = �′(q,ω) + i�′′(q,ω). The QPI scanning-
energy dependence is thus due solely to that of �′′(q,ω).

For magnetic impurities by contrast, electron correlations
give rise to nontrivial dynamics. From Eq. (9),

T mag(ω) = V 2Gd (ω) (39)

in terms of the impurity Green function Gd (ω); the QPI follows
from Eqs. (19) and (36). For a centrosymmetric surface,


ρ(q,ω)
mag= −V 2

π
[ReGd (ω)�′′(q,ω) + ImGd (ω)�′(q,ω)],

(40)

with contributions from both real and imaginary parts of
�(q,ω), and weights that depend on the impurity Green

function at energy ω. As discussed in the following, the Kondo
effect produces a scattering enhancement at low temperatures
and scanning energies, causing a crossover in the QPI from
being dominated by �′′(q,ω) at high energies (similar to that
of a scalar impurity) to being dominated by �′(q,ω) at low
energies.

A. Effect of host on impurity dynamics

For a magnetic impurity, the QPI depends on both the
host function �(q,ω) and the impurity Green function Gd (ω),
which itself depends on the host. Specifically, the impurity
problem is controlled by the hybridization function �(ω),
related to the clean host density of states ρ0(ω), by −Im�(ω) =
πV 2ρ0(ω). The Kondo physics is sensitive to the behavior of
ρ0(ω) near the Fermi level (ω = 0) [24–26,30] and to leading
order

ρ0(ω)
|ω|�t∼

⎧⎪⎪⎨
⎪⎪⎩

ln(16t/|ω|)
2π2t

: 2D square
1
6t

− ω2

6
√

2π2t3 : 3D cubic, (100) surface
|ω|√
3πt2 : honeycomb.

(41)

These lattices exemplify three paradigms, with densities of
states that are diverging, flat, or pseudogapped at low energy.
ρ0(ω) versus ω/t is shown in the insets to Fig. 2.

The density of states for metallic systems is typically flat at
low energies. This gives rise to an exponentially small Kondo
scale [1] TK/t ∼ exp[−πU/8V 2ρ0(0)], and low-energy Fermi
liquid behavior [1]

Im�(ω) × ImGd (ω)
|ω|�TK∼ 1 − αω(ω/TK )2 + · · · , (42)

with Fermi level spectral pinning −πV 2ρ0(0)ImGd (0) = 1 [as
Im�(0) = −πV 2ρ0(0)]. This is shown for a magnetic impurity
on the (100) surface of a 3D cubic lattice in Fig. 2 (center
panel), where the imaginary and real parts of tGd (ω) are
plotted versus ω/t . We have chosen representative impurity pa-
rameters U = 1.95t and V = 0.56t , yielding TK ≈ 5×10−3t

(defined here as the half-width at half-maximum of the Kondo
resonance [55]). With the host bandwidth 12t = 11 eV (such
that U = 1.79 eV and V = 0.51 eV) we obtain TK ≈ 57 K,
consistent with established results [14,17,56] for Co atoms on
a Cu surface. As seen from Fig. 2 (center), the Kondo effect
results in a large imaginary part −tImGd (ω) ∼ 6t2/(πV 2) �
6.2 for low energies |ω| � TK .

For the 2D square lattice, the low-energy divergence in the
host density of states results in an enhanced Kondo temperature
[26]. In any Kondo phase, the pinning condition from Eq. (42)
still holds [30,57], implying that

− ImGd (ω)
|ω|→0∼ 2πt

V 2
[ln(16t/|ω|)]−1, (43)

which decays logarithmically at low energies. As confirmed in
the left panel of Fig. 2, the impurity spectrum −ImtGd (ω)
therefore shows a maximum at |ω| ∼ TK . With the same
parameters as the 3D cubic system, we now obtain a much
higher TK ≈ 584 K [55].

Finally, in the pseudogapped honeycomb lattice the Kondo
effect is suppressed due to the depleted density of states near
the Fermi level, and the local moment phase is stable for
any U/V 2 at particle-hole symmetry [24,28]. The impurity
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FIG. 2. (Color online) Dynamics of a single magnetic impurity on various lattices at T = 0, plotted as −Im tGd (ω) (solid lines) and
Re tGd (ω) (dashed) vs ω/t , calculated via NRG. Insets show corresponding host density of states tρ0(ω). Impurity parameters: U = 1.95t and
V = 0.555t for 2D square and 3D cubic lattices; U = 0.704t and V = 0.493t for honeycomb lattice.

spectrum then takes the low-energy form

− ImGd (ω)
|ω|→0∼ α′|ω| (44)

(with α′ a constant). This decay of Gd (ω) is demonstrated in the
right panel of Fig. 2. With t = 2.84 eV, the honeycomb lattice
models the π/π∗ bands of graphene [58]; we use U = 0.704t

and V = 0.493t as realistic impurity parameters obtained from
ab initio calculations for Co atoms on graphene [59].

We now turn to the QPI for these three lattices.

B. 2D square lattice

The QPI is obtained from Eq. (38) or (40), with �(q,ω) for
a single impurity given from Eq. (21) (with rα = rβ = 0):

�(q,ω) =
∫

1SBZ

d2k
�BZ

G0(k,ω)G0(k − q,ω). (45)

Figure 3 shows the absolute value of the QPI |
ρ(q)| as a
color map in q space (upper panels), comparing the scalar
impurity (left) with the magnetic impurity (right), at a fixed
scanning energy ω � TK , using the same parameters as Fig. 2.
The lower panel shows a cut across the Brillouin zone of

ρ(q)/
ρtot, where 
ρtot ≡ 
ρtot(ω) = ∫

1BZ d2q|
ρ(q,ω)|
is the total scattering amplitude at energy ω. For a single
impurity, the topology in q space, on which we now focus,
is completely determined by the host function �(q,ω) [see
Eqs. (38) and (40)].

For scalar impurities in the Born limit, only the imaginary
part �′′(q,ω) plays a role [Eq. (38)]. For given scanning
energy ω, its structure gives rise to singular lines at q = q∗(ω)
associated with the Van Hove point of the 2D square lattice.
Around the � symmetry point, these lines are rectangular
hyperbola

(q∗
x )2 − (q∗

y )2 |ω|�t∼ ±a�(ω)2 : −π < q∗
x,y � π (46)

with the dispersive properties controlled by a�(ω), while
around the M point

(q∗
x ± q∗

y )2 |ω|�t∼ [2π − aM(ω)]2 : −π < q∗
x,y � π. (47)

In q space, �′′(q,ω) is found to diverge as

�′′(q,ω)
q→q∗
∼ |q − q∗|−1/2 (48)

when approaching a point q∗ from the � or M points. The
region enclosed by these divergences is therefore characterized
by high QPI scattering intensity (see Fig. 3 for the scalar
impurity). �′′(q,ω) does not, however, diverge on approaching
from X, and remains comparatively small in its vicinity. In fact,
�′′(q,ω) is odd in ω due to the exact symmetry �(q,ω) =
�(q, − ω)∗. The scalar impurity QPI 
ρ(q,ω) ∼ ω thus
vanishes at low energies away from the lines of divergence.

The situation is rather different for the magnetic impurity
because both real and imaginary parts of �(q,ω) are important
[Eq. (40)]. Because �′(q,ω) is even in ω, residual QPI
intensity around the X symmetry point persists even at
low energies, due to finite �′(q,ω = 0) = b′

q. �′(q,ω) also
diverges logarithmically [as Eq. (48)] on approaching the
singular lines from X (it does not diverge in the vicinity of
� or M). As such, the QPI scattering intensity is enhanced
around X for magnetic impurities.

Further, as shown in the lower panel of Fig. 3, the sign of

ρ(q,ω) can be reversed by the contribution from the second
term in Eq. (40). This is a hallmark of scattering from magnetic
impurities, where ImGd (ω) < 0 can become large due to the
Kondo effect (see Fig. 2). This leads to additional structure in
the measurable |
ρ(q)|, not found in QPI for scalar impurities.

C. 3D cubic lattice with (100) surface

The (100) surface of the 3D cubic lattice is again a square
lattice, but “surface” quasiparticles are dephased by coupling
to the bulk. This leads to the t matrix (24), and for a single
impurity

�(q,ω) =
∫

1SBZ

d2k‖
�BZ

G0
surf(k‖,ω)G0

surf(k‖ − q,ω) (49)

with scattering vectors q ≡ q‖ confined to the 2D surface [and
the G0

surf(k‖,ω) given by Eq. (25)].
The resulting QPI, shown in Fig. 4, does not contain the

divergences arising in the 2D square lattice, but remnants of
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FIG. 3. (Color online) QPI for a single impurity on the 2D square
lattice at a scanning energy ω = 0.055t � TK . Upper panels compare
the QPI maps |
ρ(q)| for scalar (left) and magnetic (right) impurities;
lower panel shows a Brillouin zone cut along the path � → X →
M → �, plotted as 
ρ(q)/
ρtot. Symmetry points defined as q� = 0,
qX = A1, qM = A1 + A2 in terms of reciprocal lattice vectors A1 =
2π/a0(1,0), A2 = 2π/a0(0,1). Magnetic impurity parameters as in
Fig. 2 such that ω = 5×10−2t = TK ; and v = 0.5t for the scalar
impurity.

this singular structure appear in broadened regions of enhanced
scattering intensity around the M symmetry point in the cubic
lattice. The global fourfold symmetry of the QPI evolves
locally into a continuous rotational symmetry around this
point, with �(q,ω) ≡ �(|q − qM|,ω) for |ω| � t . Further, the
QPI for the scalar impurity [which only depends on �′′(q,ω)]
is distinctly conical, with

�′′(q,ω)
q→qM∼ a′′

M(ω) + b′′
M(ω)|q − qM| +O|q − qM|2, (50)

whereas the QPI for a magnetic impurity can become domi-
nated by the quadratic term (see Fig. 4) since

�′(q,ω)
q→qM∼ a′

M(ω) + c′
M(ω)|q − qM|2 +O|q − qM|4. (51)

A striking feature of the QPI for the 3D cubic lattices is the
difference in intensity between scalar and magnetic impurities
(note the rescaled color range in Fig. 4). There are two distinct
reasons for this. First, �′′(q,ω) is odd in ω, whence �′′(q,ω) ∼
ω at low energies |ω| � t . For the scalar impurity, Eq. (38)
implies that the QPI, 
ρ(q) ∼ ω, is therefore also small. By
contrast, the QPI for a magnetic impurity [Eq. (40)] has a
contribution from �′(q,ω), which remains finite as ω → 0.

Second, in the case of magnetic impurities, the Kondo effect
produces a spectral resonance in ImGd (ω) of width TK that
does not decay at low energies [cf. Eq. (43) and Fig. 2]. In
consequence, the QPI is considerably more intense at low
energies for magnetic impurities than scalar impurities in
standard flat-band metallic systems.

FIG. 4. (Color online) QPI for an impurity on the (100) surface
of a 3D cubic lattice. As Fig. 3 but at ω = 5×10−3t = TK .

D. 2D honeycomb lattice

The 2D honeycomb lattice, modeling the π and π∗ bands
in graphene within a nearest-neighbor tight-binding picture
[58], generates richer structure in the QPI [13,59,60] due to the
bipartite nature of the lattice and the low-energy pseudogapped
density of states [Eq. (41)].

A single impurity coupled to a single honeycomb site (on
sublattice γ ′ = A or B) lowers the symmetry by breaking
the centrosymmetry of the lattice. The single-impurity QPI
is therefore obtained from Eqs. (19) and (36), with �(q,ω)
comprising contributions from both sublattices

�(q,ω) =
∑

γ

�γ,γ ′,γ ′
αα (q,ω). (52)

�
γ,γ ′,γ ′
αα (q,ω) itself is given by Eq. (35), and depends on

the phase φ defined in Eq. (27b). This phase has a marked
qualitative effect on the resulting QPI, and cannot be neglected.
For centrosymmetric lattices, the QPI is periodic across the first
Brillouin zone because �(q + nAi ,ω) = �(q,ω) with integer
n for any reciprocal lattice vector Ai . But, in the honeycomb
lattice

�(q + 3nAi ,ω) = �(q,ω), (53)

arising because φ(k + nAi) = φ(k) + exp[2nπi/3] [61]. As
such, the period of the QPI is enlarged to include the third
Brillouin zone.

One consequence of this is the inequivalence of in-
travalley scattering at the � and �2 points (located at
q� = 0 and q�2 = A1, respectively), where 
ρ(q�2 ,ω) =

ρ(q�,ω)× exp[−πi/3]. At low energies |ω| � t , these
points are surrounded by singular lines in �(q,ω) at q = q∗,
where

|q − q∗| = d�(ω), (54)

giving rise to a circular derivative discontinuity in the QPI
around q� and q�2 . The dispersive properties are controlled by
d�(ω) = d�2 (ω), discussed further in the following subsection.
For the scalar impurity at low energies |ω| � t , both points
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are surrounded by flat regions of high scattering intensity

|
ρ(q,ω)| |q|<|q∗|∼ b� (55)

with b� = b�2 independent of scanning energy ω. However,
the local environment of the � and �2 points is different. The
immediate vicinity of the �2 point possesses a continuous
rotational symmetry, with divergences in the QPI along the
entire singular line q = q∗:

�(q,ω)
q→q∗
∼ ln2 |a0q − a0q∗|. (56)

By contrast, a lower sixfold symmetry is found around the
� point as ω → 0 due to divergent points arising only when
q∗×δ = 0, with δ = A1, A2, and (A1 + A2).

Complex features in the QPI also appear in the vicinity of
the K symmetry points due to intervalley scattering, and are
again enclosed by singular lines, denoted q∗. These features
possess only reflection symmetry about the line (q� − qK), the
continuous rotational symmetry being lifted by the underlying
phase texture (itself arising because the impurity couples to a
single sublattice). The line of divergence along q∗ is intersected
by a perpendicular nodal line at pinch points where (q∗ − qK) ·
(q� − qK) = 0. For the scalar impurity, scattering is forbidden
within the region around the K point enclosed by the singular
lines. These features are seen clearly in the QPI map and
cuts for the scalar impurity presented in Fig. 5. At higher
scanning energies, trigonal warping sets in, giving rise to a
local threefold point symmetry around qK.

For the magnetic impurity, the relative weight of �′(q,ω)
and �′′(q,ω) in the QPI depends on the complex t matrix
T (ω), which evolves with scanning energy ω (see Fig. 2).
Importantly, this can lead to distinctive features in the
measurable QPI, |
ρ(q,ω)|. Accidental cancellation of terms
in Eq. (19) can produce “dark spots” of suppressed scattering in

FIG. 5. (Color online) QPI for a single impurity on the honey-
comb lattice. As Fig. 3 but at ω = 0.3t and with impurity parameters
from Fig. 2. The Brillouin zone cut takes the path � → M →
�2 → M2 → K → �, where q� = 0, qM = 1

2 A1, q�2 = A1, qM2 =
A1 + 1

2 A2, qK = 2
3 A1 + 1

3 A2, in terms of reciprocal lattice vectors
A1,2 = 2π/a0( 1√

3
, ±1).

the QPI. An example is shown in Fig. 5, where |
ρ(q,ω)| � 0
for |q| < |q∗| in the vicinity of the � point. In contrast to the
scalar impurity case [Eq. (55)], the QPI in general depends on
ω and varies with q in the vicinity of the � and �2 points when
magnetic impurities are present. Indeed, magnetic impurities
also induce scattering near the K point.

V. CHARACTERISTIC KONDO PHYSICS IN THE QPI

A. Scanning-energy dependence

We turn now to dynamical features of the QPI for the
three lattices, comparing scalar and magnetic impurities.
Numerically exact results which exemplify the key physics
are presented in Fig. 6.

For scalar impurities, the scanning-energy dependence of
the QPI is due entirely to the ω dependence of �(q,ω),
which characterizes the clean host lattice. The real part of
this function is plotted as a color map in the center column
panels of Fig. 6 (the real and imaginary parts are related by
Hilbert transformation).

For magnetic impurities, QPI dynamics result from both
�(q,ω) and the impurity Green function Gd (ω), whose
spectrum is plotted in the left column panels of Fig. 6 [see also
Fig. 2 and Eqs. (42)–(44) for the detailed low-energy behavior].
The nontrivial scanning-energy dependence of the QPI reflects
the rich structure of the underlying quantum impurity problem.

For the 2D square lattice, divergences in �(q,ω), described
by Eqs. (46) and (47), give rise to lines of intense scattering
in the QPI. The dispersive properties of these features are
controlled at low energies |ω| � t by a�(ω) and aM(ω), which
are related by continuity at the edge of the Brillouin zone
through aM(ω) = a�(ω)2/(2π ). We find linear dispersion of
the divergent features around the M symmetry point, implying

aM(ω) ∼ |ω|; a�(ω) ∼ |ω|1/2, (57)

as confirmed directly in the upper panels of Fig. 6.
As ω → 0, the divergences are confined to the line q∗

x = q∗
y

connecting � and M symmetry points, whence

�(qx = qy,ω)
|ω|�t∼ aqδ(ω) + bq|ω| + icq

1

ω
+ · · · . (58)

The QPI itself thus diverges along this line with the universal
asymptotic form

|
ρ(qx = qy,ω)| |ω|→0∼
{∣∣ 1

ω

∣∣ : scalar,
1

|ω| ln2(16t/|ω|) : mag.,
(59)

where ReGd (ω → 0) ∼ [ln(16t/|ω|)]−2 is used in the case
of the magnetic impurity [obtained by Hilbert transform of
Eq. (43)]. The divergence is thus sharper along the M-� line
for magnetic impurities, as evident in Fig. 6.

Away from this divergent line (e.g., along the cut
� → X → M in Fig. 6), the QPI is characterized by vanishing
scattering intensity at low scanning energies due to

�(qx �= qy,ω)
|ω|→0∼ ãq + b̃q|ω| + ic̃qω ln |ω/t | + . . . , (60)

giving rise to the asymptotic behavior of the QPI,

|
ρ(qx �= qy,ω)| |ω|→0∼
{

ω ln |ω/t | : scalar,
1

ln(16t/|ω|) : mag.
(61)
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FIG. 6. (Color online) QPI dynamics for a single impurity on various lattices: 2D square, 3D cubic with (100) surface, honeycomb (top,
middle, and bottom row panels, respectively). Right column panels: color plots of the QPI |
ρ(q,ω)| across a Brillouin zone cut as a function
of scanning energy ω/t , comparing scalar and magnetic impurities. Center column panels show a color plot of the host function �′(q,ω) over
the same q cut and energies. Left column panels show the spectral function for a magnetic impurity −Im[tGd (ω)] vs ω/t , calculated via NRG
at T = 0. Magnetic impurity parameters as in Fig. 2. Scalar impurity v = 0.15t .

As a result, the QPI intensity for the magnetic impurity decays
much more slowly than that of the scalar impurity as the
scanning energy is reduced in the vicinity of the X symmetry
point (see Fig. 6).

At higher scanning energies |ω| ∼ U/2, the “Hubbard
satellites” in the spectral function of the magnetic impurity
give rise to enhanced scattering near the M and X points. These
features are not of course present in the scalar impurity QPI,
and are as such one signature of strong electron correlations
in magnetic impurities.

For the 3D cubic lattice, the dynamics are rather different,
for two reasons: the host function �(q,ω) does not contain
divergences, and the magnetic impurity Green function does
not vanish at low energies because the host density of states is
essentially flat for |ω| � t .

For a scalar impurity on the cubic (100) surface, the
QPI intensity vanishes everywhere at low energies |ω| → 0
because �′′(q,ω) = −�′′(q, − ω) is odd in ω (see center row
panels of Fig. 6). By contrast, the Kondo effect gives rise to
enhanced scattering at temperatures and energies �TK ; this
gives rise to a large finite QPI intensity for ω � TK . This is the

typical behavior expected for magnetic impurities in standard
metallic systems.

Finally, we consider QPI dynamics on the the honeycomb
lattice. In the case of the scalar impurity, the region of intense
intravalley scattering around � and �2 described by Eq. (55)
disperses linearly at low energies according to Eq. (54), with
d�(ω) ∼ ω. As ω → 0, the only divergent points are at q∗ =
q� and q�2 . At q = qK, the QPI 
ρ(qK,ω) = 0 is identically
zero for any |ω| < t . These features are shown in the lower
panels of Fig. 6.

The QPI for the magnetic impurity near these points shows
intense scattering at energies |ω| ∼ U/2, corresponding to
the Hubbard satellites in the impurity spectral function due
to charge fluctuations. At lower energies, however, Gd (ω)
vanishes linearly according to Eq. (44) due to the host LDOS
which also vanishes linearly at low energies. Importantly, the
Kondo effect is suppressed at particle-hole symmetry, and
the local moment phase is always stable for any interaction
strength [24,28]. Electron correlations give rise to the nontriv-
ial spin-flip scattering typical of such degenerate non-Fermi
liquid phases [24,30]. As a result, the QPI for the magnetic
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impurity vanishes everywhere at low energies, according to

|
ρ(q,ω)| |ω|→0∼
⎧⎨
⎩

|ω| ln3 |ω/t | : q = q�(2) ,

0 : q = qK,

|ω| ln |ω/t | : elsewhere .

(62)

B. Universality

We focus now on a single magnetic impurity on the (100)
surface of a 3D cubic lattice, the case most relevant to
standard metallic systems where the host density of states
becomes essentially flat at low energies [see Eq. (41)]. The
Kondo effect is operative in such systems [1], with a spectral
resonance setting in on temperature/energy scales ∼TK (see
center panel of Fig. 2). This resonance embodies enhanced
spin-flip scattering, which screens the impurity local moment
dynamically. Importantly, all physical properties depend only
on the single emergent scale TK at low temperatures/energies,
reflecting the universal RG flow between local moment and
strong coupling fixed points [1].

At sufficiently low temperatures T � TK , the impurity
Green function Gd (ω) is a universal function of ω/TK on
all energy scales |ω| � min(t,V 2/U ), not only for |ω| � TK

where strong coupling Fermi liquid behavior Eq. (42) holds,
but also for |ω| � TK where local-moment physics dominates
the dynamics. In that case, the impurity spectral function takes
the asymptotic form [62]

− ImGd (ω)
|ω|�TK∼ 1

1 + a ln2 |bω/TK | , (63)

with a,b = O(1) constants. This behavior for TK � |ω| �
min(t,V 2/U ) is universal because the hybridization function
Im�(ω) is essentially constant for |ω| � min(t,V 2/U ) on the
cubic lattice [and Re�(ω) ∼ ω].

Similarly, the real part of the host function �′(q,ω) becomes
constant on energy scales |ω| � t , while �′(q,ω) ∼ ω. In
the scaling limit TK → 0, ImGd (ω) thus controls the energy
dependence of the QPI in the universal regime [see Eq. (40)].
In practice, nonuniversal contributions are negligible for finite
TK � min(t,V 2/U ).

In consequence, the entire QPI develops a universal
scanning-energy dependence at low energies and temperatures.
This means that magnetic impurities with different interaction
strengths U and couplings V on different metallic sub-
strates give the same normalized low-temperature/energy QPI
|
ρ(q,ω)|/|
ρ(q,0)| when plotted versus rescaled scanning
energy ω/TK , for any scattering vector q. Rescaled experi-
mental QPI data for different systems should thus collapse
onto a part of this universal curve, providing the unambiguous
signature of scattering from magnetic impurities. This scaling
collapse is demonstrated for the 3D cubic lattice in Fig. 7.
Departure from universality is governed by the onset of ω

dependence in �(q,ω), which is distinct for each q; for the
experimentally relevant parameters used, this is found to occur
at |ω| � 20TK � 0.1t .

C. Thermal effects

So far, we have considered T = 0, appropriate in practice
when T � TK � t , such that temperature is the smallest
energy scale in the problem. This regime is relevant, as typical

FIG. 7. (Color online) QPI |
ρ(q,ω)|/|
ρ(q,0)| vs ω/TK for a
magnetic impurity on the 3D cubic (100) surface for scattering vectors
q = q� , qX, and qM (vertically offset by 0.5 for clarity), plotted
for a range of impurity parameters: V/t = 0.555, 0.474, 0.392 with
fixed U = 1.95t , corresponding to TK/t = 5×10−3, 7×10−4, and
3×10−5. Equation (42) (solid line) and Eq. (63) (dashed line) describe
|ω| � TK and � TK asymptotes.

STM experiments are conducted at ∼5 K [14], but studies at
higher T may also be performed [63] to investigate the change
in QPI upon increasing temperature through TK , and beyond.

Noninteracting conduction electrons and uncorrelated im-
purities (e.g., the scalar impurity) in practice have T -
independent electronic structure, and thus QPI. By contrast,
electronic correlations of the magnetic adatom exhibit a strong
T dependence, entering the t matrix via the impurity Green
function. As T is increased in metallic systems, the Kondo
singlet is broken, destroying the Kondo resonance on the scale
T � TK and resulting in local-moment physics [1]. This results
in a quite dramatic change in the t matrix, and hence QPI, on
increasing T through TK .

In addition to this interaction-driven T dependence, the
local tunneling current measured in STS is weakly T depen-
dent due to thermal excitation of conduction electrons; at finite
T , the differential conductance

dI

dV
(ri ,ω = eV,T ) ∝

∫ ∞

−∞
dε ρ(ri ,ε,T )f ′(ω − ε,T ), (64)

where f ′(ω − ε,T ) = d
dω

f (ω − ε,T ) and f (x,T ) = [1 +
exp(x/T )]−1 is the Fermi function. Equation (64) represents
the convolution of the LDOS (T dependent only for the
magnetic impurity) with a broadening kernel, controlled by
T . The QPI measured via FT-STS, 
ρmeas(q,ω,T ), is then
related to the “pure” QPI by


ρmeas(q,ω,T ) =
∫ ∞

−∞
dε 
ρ(q,ε,T )f ′(ω − ε,T ). (65)

Figure 8 shows the thermal evolution of the QPI for
an impurity embedded on the 3D cubic (100) surface. For
the magnetic impurity, the magnitude of the QPI decreases
substantially as T increases through TK , and the Kondo
resonance is suppressed. By contrast, the QPI for a scalar
impurity has a much simpler T dependence [entering only
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FIG. 8. (Color online) Simulated experimental FT-STS measure-
ments |
ρmeas(q,ω = 0.1TK )| for a single magnetic impurity (param-
eters as in Fig. 2, such that TK = 5×10−3t) at fixed scanning energy,
plotted across the 1BZ for a series of temperatures T/TK = 0.1, 0.2,
0.5, 1, 2, and 5.

via the thermal broadening, Eq. (65)], with essentially no T

dependence for T � t , as depicted by the dashed line in Fig. 9.
The strong T dependence of QPI is a characteristic signature
of Kondo physics in systems with magnetic impurities.

The asymptotic low-T expansion of the impurity Green
function at particle-hole symmetry and ω = 0 (applicable in
the regime ω � T � TK ) is a universal function of the Kondo
temperature [1]

Im�(ω = 0) × Im Gd (ω = 0,T )
T �TK∼ 1 − αT (T/TK )2 + · · · .

(66)

FIG. 9. (Color online) QPI |
ρmeas(qM)| for a single magnetic
impurity (parameters given in Fig. 2, such that TK = 5×10−3t) at
the point qM = (π,π ) in the 1BZ, shown as a function of ω (T )
at a series of different T (ω) in the upper (lower) panel, such that
T/TK (ω/TK ) = 0.01,0.1,0.2,0.5,1,2,5,10. Increasing T from low
to high is denoted by the arrow. The QPI due to a scalar impurity
is also plotted (dashed line) for comparison. Lower panel inset: the
measured FT-STS (red) and the “pure” QPI (blue) vs T/TK , showing
the same universal behavior in each case (up to a scale factor due to
thermal broadening).

This leads to a close correspondence between the ω and T

dependencies of the QPI [via the impurity Green function,
comparing Eqs. (42) and (66)], as seen by comparison of the
upper and lower panels in Fig. 9.

As such, we expect to observe universal scaling in the T

dependence of the QPI for the magnetic impurity, analogous to
that of the ω dependence. The comparison of the pure QPI and
the thermally broadened FT-STS signal in the inset of Fig. 9
demonstrates this universal behavior, which is unaffected by
the thermal broadening of the STM-measured conductance
Eq. (65) (up to a trivial scale factor).

VI. INTERPRETATION OF FT-STS

A. Finite-size effects

In experiment, the surface LDOS 
ρ(ri ,ω) is measured
over an L×L plaquette using STM [40], with the QPI obtained
from Eq. (15). The q-space resolution of the resulting QPI
naturally depends on the real-space sample size. The “true”
QPI is recovered as L → ∞, obtained theoretically by the
t-matrix approach.

We now consider explicitly the effects of finite sample size,
by simulating the experimental protocol. The LDOS for these
surface sites is calculated exactly using Eq. (16), with the
nonlocal free Green functions obtained using the convolution
method described in the Appendix.

Figure 10 shows a Brillouin zone cut through the QPI
for a magnetic impurity on the cubic lattice (100) surface,
computed in the L → ∞ limit using the t-matrix approach
(solid line). This true QPI is compared with results for the
same system restricting to an L×L surface sample, with
L = 100 (crosses) and L = 10 (diamonds). The true QPI is
very well approximated when L = 100 is used (corresponding
to a plaquette of side length ∼102 Å, as typical in experiment
[40]). The q-space resolution is also sufficient to capture
accurately all features. Indeed, even for an extremely small
sample region L = 10, the accuracy is surprisingly good,
although the discretization is severe.

Reassuringly, the experimental protocol reproduces accu-
rately the true QPI. A large sample size is, however, still

FIG. 10. (Color online) Brillouin zone cut of |
ρ(q,ω)| for a
magnetic impurity on the 3D cubic (100) surface at ω = 10−4t . Exact
QPI (line) calculated via the t-matrix approach [Eq. (40)], compared
with the direct real-space approach [Eq. (15)], sampling an L×L

surface plaquette with L = 100 (cross points) and L = 10 (diamond
points). Impurity parameters as in Fig. 2.
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needed to resolve sharp q-space features; in 2D systems, the
characteristic sharp cusps in the QPI in Figs. 3 and 5 would
require very large LDOS samples in real space.

B. JDOS interpretation

The QPI 
ρ(q,ω) is often interpreted (e.g., Refs. [13,40])
in terms of the joint density of states [JDOS, J I (q,ω)], viz.

ρ(q,ω) � J I (q,ω) with

J I (q,ω) =
∫

1SBZ

d2k
�BZ

ρ0(k,ω)ρ0(k − q,ω) (67)

and ρ0(k,ω) = − 1
π

ImG0(k,ω) the k-resolved surface density
of states at energy ω. Contributions to the JDOS arise when
quasiparticles on a constant energy contour with momenta k
and k′ are separated by q = k − k′.

On heuristic grounds, it is usually argued that the amplitude
of impurity-induced scattering from k to k′ at energy ω can
only be significant if there is a high density of quasiparticle
states at both k and k′ (i.e., they have a large JDOS). The QPI at
scattering vector q is the sum of all scattering processes where
k′ = k − q. By assuming that the QPI is large when the JDOS
is large, QPI patterns can be used to infer the JDOS and hence
electronic properties of the clean host material. Experimental
QPI data are typically interpreted in this way [13,40].

The usefulness and relative simplicity of the JDOS picture
has motivated efforts to connect rigorously the QPI and JDOS.
Notably, the perturbative approach employed in Ref. [64]
makes the link by assuming a constant scattering amplitude
and phase along the constant energy contour. But, a faithful
description of interfering scattering processes typically re-
quires relative phase information, and the JDOS simply lacks
information about overlap matrix elements between states in
the impurity-coupled system. In consequence, the QPI may
be small even when the JDOS is large (as may be verified
explicitly). The JDOS picture then fails to capture the basic
physics of the scattering, as is known, e.g., in graphene [13].
We emphasize that J I (q,ω) cannot be derived from 
ρ(q,ω)
at a given q and ω, in any controlled limit.

However, for a simple scalar impurity on a centrosymmetric
lattice, the QPI and JDOS are in fact related by Hilbert
transformation. From Eqs. (38) and (45) [or, e.g., Eq. (49)],
the QPI in this case can be written as


ρ(q,ω) = 2v

∫
1SBZ

d2k
�BZ

[ReG0(k,ω)]ρ0(k − q,ω), (68)

where we have exploited periodicity across the 1SBZ. We
introduce the complex quantity J (q,ω), defined as

J (q,ω) = − 1

π

∫
1SBZ

d2k
�BZ

G0(k,ω)ρ0(k − q,ω) (69a)

≡ − 1

2vπ

ρ(q,ω) + iJ I (q,ω) , (69b)

such that the QPI and JDOS are Hilbert conjugates, being
respectively the real and imaginary parts of J (q,ω).

The JDOS interpretation of the QPI may thus be roughly
correct for dilute scalar impurities on centrosymmetric lattices
because the underlying q-space topology of singular and nodal
lines is the same for J I (q,ω) as it is for 
ρ(q,ω), both

FIG. 11. (Color online) Comparison of QPI, |
ρ(q,ω)| (left col-
umn), with the JDOS (right column) plotted as 2πvJ I (q,ω) [see
Eq. (69)], for the 2D square lattice (upper row) and (100) surface
of 3D cubic lattice (lower row), for scanning energy ω and Born
impurity scattering potential v as in Figs. 3 and 4, respectively.

being related to a single complex analytic function J (q,ω).
Nevertheless, even in this case the QPI is not accessible directly
from the JDOS at a given q and ω: the entire ω dependence
of J I (q,ω) must be known to obtain 
ρ(q,ω) by Hilbert
transformation. By way of illustration, Fig. 11 compares the
JDOS to the QPI for the 2D square and (100) surface of the 3D
cubic lattice; in the former case, the two quantities are roughly
similar, while in the latter the JDOS has significantly different
q-space structure and intensity.

We add that the above connection [Eq. (69b)] does not
hold in the case of noncentrosymmetric lattices or bipartite
lattices, where Eq. (68) is inapplicable. The QPI, 
ρ(q,ω),
then depends on both real and imaginary parts of J (q,ω) due to
additional q-dependent phase factors. This explains the failure
of the JDOS interpretation in the case of impurities in graphene
[13] (see Sec. IV D).

Finally, we emphasize that the JDOS and QPI are never
related simply by Hilbert transformation when magnetic
impurities are present. This is because the t matrix is a complex
dynamical object: the real and imaginary parts of J (q,ω)
are again mixed. Indeed, the Hilbert transform, involving
integration over all energy scales, necessitates a full knowledge
of the impurity dynamics, information simply not contained in
the JDOS.

VII. CONCLUSION

We have studied theoretically the use of quasiparticle
interference (QPI), measured in FT-STS experiments, as a
probe of magnetic adatoms on surfaces. Following a general
formulation of the QPI due to an arbitrary distribution of im-
purities, we turned explicitly to single impurities adsorbed on
a range of host surfaces: the (100) surface of a 3D simple cubic
lattice, and the 2D honeycomb and square lattices, in which the
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Fermi level densities of states, respectively, embody standard
metallic behavior, pseudogap behavior, and a divergence due
to a Van Hove singularity. In all cases, the single-impurity QPI
factorizes into a local scattering t matrix, and a host response
function �(q,ω) at scanning energy ω = eV.

The scattering t matrix for a magnetic impurity is simply
related to the impurity Green function, itself dependent on the
host lattice, and thus the rich dynamics due to electronic cor-
relations is manifest in the QPI. Despite the local, momentum-
independent nature of these correlations, the q-space structure
of the QPI is found to be qualitatively different from that of a
simple scalar impurity due to nontrivial phase shifts associated
with scattering from magnetic impurities, which reflect, e.g.,
the Kondo effect.

The response function �(q,ω) is also nontrivial, despite
being a property of the free, noninteracting host. It displays
significant structure in q space, symptomatic of the symmetry
and dimensionality of the host, but its energy dependence
becomes featureless for |ω| � t (with t the intersite lattice
hopping). By contrast, the Kondo physics due to a magnetic
impurity is controlled by an emergent scale TK � t , and so
scattering becomes strongly energy dependent at low energies.
Indeed, the QPI exhibits universal scaling in terms of ω/TK

and T/TK , a characteristic hallmark for systems containing
magnetic impurities. Conversely, the QPI for systems contain-
ing scalar impurities has no energy or temperature dependence
on scales �t .

The more complex case of QPI for multiple, mutually
interacting magnetic impurities remains to be investigated.
Such systems will display an even wider array of impurity
physics, due to the competition of local and nonlocal (RKKY-
type) interactions between impurities. These are expected to
have a significant impact on the QPI for randomly distributed
impurities, and is the subject of future work [23].
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APPENDIX: CONVOLUTION METHOD FOR LATTICE
GREEN FUNCTIONS

The calculation of real-space lattice Green functions
(LGFs) for periodic tight-binding (TB) models is a well-known
problem relevant to many areas of physics [46,48,49]. The
(retarded) real-space Green function between sites at r and r′
on a d-dimensional lattice is generally given by

G0(r,r′,ω) =
∫

1BZ

ddk
�BZ

e−i(r′−r).k

ω + i0+ − ε0 − εk

, (A1)

where εk is the dispersion and ε0 ≡ μ is a constant onsite
energy (or chemical potential). For a nearest-neighbor (NN)
TB lattice specified by Eq. (1), εk = t

∑
n eiδn.k, with {δn} the

set of NN lattice vectors.

In 1D, simple expressions for the local (onsite) and
nonlocal (intersite) LGFs are readily obtained, either by direct
evaluation of Eq. (A1) or via equations of motion [38,65].
For the terminal site of a semi-infinite 1D chain with onsite
energies ε0, the local LGF is given exactly in closed form by

G0
1D(ε0,ω) = f

(
ω − ε0

2t

)
where

tf (ω̃) = ω̃ −
{

sgn(ω̃)
√

ω̃2 − 1, |ω̃| > 1

i
√

1 − ω̃2, |ω̃| � 1

(A2)

which is equivalent to Eq. (25). The LGFs for the infinite
1D chain can be obtained in terms of Eq. (A2) by exploiting
translational invariance

G0
1D∞ (x,x ′,ε0,ω) =

[
tG0

1D(ε0,ω)
]|x−x ′ |

ω − ε0 − 2t2G0
1D(ε0,ω)

. (A3)

However, LGFs for various lattice geometries in two and
three dimensions are typically highly complicated [47,50]
and not available in closed form. Direct numerical evaluation
of Eq. (A1) is notoriously difficult, particularly for low
energies, large site separations, or in the vicinity of Van Hove
singularities. Recursion relations have been established in
several cases, but solutions are often numerically unstable [51].
Improved variants of the recursion technique (or continued
fraction expansions) have been developed [51,53], but are
costly to implement if LGFs are needed as an entire function
of frequency.

Here, we derive an approach to the calculation of LGFs
on hypercubic-type lattices, which is both highly accurate
and numerically efficient. The method exploits the simple
closed-form expressions for the LGFs in 1D [Eqs. (A2)
and (A3)], building up lattices in higher dimensions by
successive convolutions of those functions. The process is
highly efficient because fast Fourier transform algorithms can
be used to perform the convolution integrals. The method
also has the advantage that boundary edges in 2D systems or
explicit surfaces in 3D systems can be simply treated. Indeed,
2D nanoribbon or 3D block geometries can be implemented,
and infinite systems can also be handled directly with no extra
cost.

We demonstrate the method first for the infinite 2D square
lattice (and henceforth set ε0 = 0 without loss of generality).
We denote the creation operator at lattice site r = (x,y) as
c
†
r,σ ≡ c

x †
y,σ , and define the vector of operators for row y as

�c †
y,σ = (. . . ,c

1 †
y,σ , c

2 †
y,σ , c

3 †
y,σ , . . .). The TB Hamiltonian then

takes the form

H2D =
∞∑

y=−∞

∑
σ

[�c †
y,σ T̂1D�cy,σ − t(�c †

y,σ �cy+1,σ + H.c.)], (A4)

where T̂1D a matrix describing the connectivity between sites
of the yth row (here equal to t for nearest-neighbor sites and
0 otherwise). Importantly, for hypercubic-type lattices, T̂1D is
independent of row index y. Equation (A4) represents a set of
coupled infinite 1D TB chains to form the 2D lattice.

We now perform a canonical transformation of operators
�fy,σ = Û †�cy,σ , with the matrix Û defined such that D̂ =
Û †T̂1DÛ is diagonal (Dkk′ = ε1D

k δkk′). Since this system is
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(a) 2D square lattice

(b) 3D cubic lattice with (100) surface

FIG. 12. Schematic showing the transformation from the real-
space basis (left) to a basis of decoupled 1D chains (right). Bonds
denote hoppings t connecting sites. Û diagonalizes rows of constant
ry in the infinite 2D square lattice system of (a), while M̂ diagonalizes
planes of constant rz � 0 in the semi-infinite 3D cubic lattice system
of (b).

infinite and periodic in the x direction, k ≡ kx can be un-
derstood as the Bloch momentum, and ε1D

k the 1D dispersion.
However, in general (e.g., for systems with a boundary), k

merely labels an eigenstate of Û , with eigenvalue ε1D
k .

In this basis, Eq. (A4) reduces to

H2D =
∑

k

[∑
y,σ

ε1D
k f k †

y,σ f k
y,σ − t

(
f k †

y,σ f
k

y+1,σ + H.c.
)]

, (A5)

which describes a set of decoupled 1D chains labeled by
k, each with constant onsite energy ε1D

k . The transformation
from coupled to uncoupled chains is shown schematically in
Fig. 12(a).

The LGFs can then be expressed as

G0
2D(r,r′,ω) ≡ 〈〈

cx
y,σ ; cx ′ †

y ′,σ
〉〉
ω

=
∑
k,k′

UxkU
∗
k′x ′

〈〈
f k

y,σ ; f k′ †
y ′,σ

〉〉
ω

=
∑

k

UxkU
∗
kx ′G

0
1D∞

(
y,y ′,ε1D

k ,ω
)
, (A6)

where the last line follows because 〈〈f k
y,σ ; f k′ †

y ′,σ 〉〉ω ∝ δkk′

is diagonal in k [see Fig. 12(a)]. The 1D Green function
G0

1D∞ (y,y ′,ε1D
k ,ω) is given by Eq. (A3).

We now make use of the spectral representation of the 1D
LFGs, which can be expressed in terms of ε1D

k and Uxk , viz.,

Im G0
1D∞ (x,x ′,0,ω′) = −π

∑
k

UxkU
∗
kx ′δ

(
ω′ − ε1D

k

)
. (A7)

One can then write Eq. (A6) as

G0
2D(r,r′,ω) = − 1

π

∫ ∞

−∞
dω′ImG0

1D∞ (x,x ′,0,ω′)

× G0
1D∞ (y,y ′,ω′,ω). (A8)

Since G0
1D∞ (y,y ′,ω′,ω) ≡ G0

1D∞ (y−y ′,ω−ω′) from Eqs. (A2)
and (A3), Eq. (A8) takes the form of a convolution integral.
Convolution theorem then allows the efficiency of fast Fourier
transform algorithms to be exploited, as

Fω[G0(r,r′,ω)] = − 1

π
Fω

[
Im G0

1D∞ (x,x ′,ω)
]

× Fω

[
G0

1D∞ (y,y ′,ω)
]
, (A9)

where Fω denotes Fourier transformation.
Straightforward extension of this method allows access to

LGFs in higher dimensions. As a final instructive example,
we consider now the 3D cubic lattice with an explicit (100)
surface. The Hamiltonian is written as

H3D =
∞∑

z=0

∑
σ

[�c †
z,σ T̂2D�cz,σ − t(�c †

z,σ �cz+1,σ + H.c.)], (A10)

in terms of vectors of operators for planes stacked in the z

direction, �c †
z,σ = (. . . ,c

r1 †
z,σ , c

r2 †
z,σ , c

r3 †
z,σ , . . .), where c

r †
z,σ creates

an electron at site r = (x,y) of plane z. T̂2D is now the
connectivity matrix for the 2D square lattice planes.

We now diagonalize each 2D plane by writing �fz,σ =
M̂†�cz,σ such that D̂ = M̂†T̂2DM̂ is diagonal. As before, Dkk′ =
ε2D
k δkk′ , but now ε2D

k is the 2D square lattice dispersion. In the
transformed basis, the semi-infinite 3D cubic lattice becomes a
bundle of decoupled semi-infinite 1D chains, each with onsite
energy ε2D

k , as depicted in Fig. 12(b):

H3D =
∑
k,σ

[ ∞∑
z=0

ε2D
k f k †

z,σ f k
z,σ − t

(
f k †

z,σ f
k

z+1,σ + H.c.
)]

. (A11)

The surface LGFs, with z = 0, then follow as

G0
surf(r,r

′,ω) ≡ 〈〈
c

r
0,σ ; cr′ †

0,σ

〉〉
ω

=
∑

k

MrkM
∗
kr′G

0
1D

(
ε2D
k ,ω

)
, (A12)

where G0
1D(ε2D

k ,ω) is given by Eq. (A2). Employing the spec-
tral representation of the 2D square lattice Green functions,

Im G0
2D(r,r′,ω) = −π

∑
k

MrkM
∗
kr′δ

(
ω − ε2D

k

)
, (A13)

we can write

G0
surf(r,r

′,ω) = − 1

π

∫ ∞

−∞
dω′ImG0

2D(r,r′,ω′)G0
1D(ω′,ω),

(A14)

which can again be viewed as a convolution, here between the
semi-infinite 1D Green function G0

1D(ω′,ω) ≡ G0
1D(ω − ω′)

given in Eq. (A2) and the 2D square lattice Green function
G0

2D(r,r′,ω) given in Eq. (A8).
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