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Validity of the local self-energy approximation: Application to coupled quantum impurities
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We examine the quality of the local self-energy approximation, applied here to models of multiple quantum
impurities coupled to an electronic bath. The local self-energy is obtained by solving a single-impurity
Anderson model in an effective medium that is determined self-consistently, similar to the dynamical mean-field
theory (DMFT) for correlated lattice systems. By comparing to exact results obtained by using the numerical
renormalization group, we determine situations where “impurity-DMFT” is able to capture the physics of highly
inhomogeneous systems and those cases where it fails. For two magnetic impurities separated in real space, the
onset of the dilute limit is captured, but RKKY-dominated interimpurity singlet formation cannot be described.
For parallel quantum dot devices, impurity-DMFT succeeds in capturing the underscreened Kondo physics by
self-consistent generation of a critical pseudogapped effective medium. However, the quantum phase transition
between high- and low-spin states upon tuning interdot coupling cannot be described.
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I. INTRODUCTION

Dynamical mean-field theory (DMFT) has been well estab-
lished as a powerful tool for treating correlated materials [1].
At its heart is a local self-energy approximation that only
becomes exact in the limit of infinite lattice coordination [2].
In many applications to real materials [3], direct comparisons
with experiment have shown the quality of this approximation
to be very good. However, the interacting lattice fermion
models to which DMFT is applied typically have no known
exact solution with which to fully compare.

Although DMFT was originally formulated for translation-
ally invariant problems, the local self-energy approximation
can also be used in an inhomogeneous context. Each in-
equivalent site in the system is mapped to a single-impurity
Anderson model in an effective medium that is determined
self-consistently [4]. This inhomogeneous (or real-space)
DMFT has been applied to a diverse range of systems, includ-
ing materials with surfaces [4], layered heterostructures [5–7],
atoms in optical traps [8,9], and even nanostructures or devices
for molecular electronics [10–12].

Inhomogeneous DMFT has also been used to study depleted
lattices [13,14]. In the case of metals doped with randomly
distributed magnetic impurities, the physics is dominated by
effects of disorder; while heavy-fermion physics is recovered
upon approaching the periodic limit, where standard DMFT
applies. In the other limit of dilute impurities, inhomogeneous
DMFT is exact by construction since the impurity effective
medium is simply the clean host metal.

The physics of dilute magnetic impurities is of course also
well known [15], with the impurity spin degrees of freedom
being screened by surrounding conduction electrons by the
Kondo effect at low temperatures [16]. Models of single
magnetic impurities can be solved exactly with the numerical
renormalization group [17–19] (NRG), which provides access
to thermodynamic and dynamic quantities on essentially any
temperature or energy scale.

However, the physics of the intermediate regime with
a few coupled quantum impurities is notoriously complex.
Already in the two-impurity case there is a subtle competition

between single-impurity Kondo physics and through-host
Ruderman–Kittel–Kasuya–Yosida (RKKY) coupling [20–23].
Theoretically, multi-impurity problems are inherently much
more difficult to treat: N -impurity models generally involve N

coupled conduction-electron channels. For NRG, the required
computational resources scale exponentially with the number
of channels. In fact, the full dynamical properties of the
two-impurity system have only recently been obtained with
NRG for a true real-space system, taking into account details
of the host lattice exactly [24]. Although the efficiency of
NRG can be greatly enhanced by interleaving different Wilson
chains [25,26] or by exploiting large symmetries [27], it is clear
that an exact solution for true many-impurity systems is beyond
reach. Similar difficulties afflict other numerical methods.

Coupled quantum dot devices [28] and magnetic nanos-
tructures or single-molecule junctions [10–12] can also be
described theoretically in terms of generalized quantum
impurity problems. However, these systems typically contain
many correlated “impurity” degrees of freedom (and several
effective screening channels), again essentially precluding an
exact numerical treatment.

Inhomogeneous DMFT is therefore a highly appealing
approximate technique for such systems, since the compu-
tational complexity grows only linearly in the number of
inequivalent interacting sites [4]. However, details of geometry
(or molecular structure), interimpurity coupling, and RKKY
effects are important in these contexts. The quality of the local
self-energy approximation is therefore not at all obvious since
these systems are far from an infinite-coordination limit.

In this paper we apply inhomogeneous DMFT to two
paradigmatic quantum impurity problems—two magnetic
impurities separated in real space, and systems of coupled
quantum dots between metallic leads (see Fig. 1 and Sec. II).
As with regular DMFT, the local self-energy scheme in this
“impurity-DMFT” represents a rather sophisticated approxi-
mation (Sec. III), and its application here produces nontrivial
results. Even though the real-space two-impurity model and
parallel quantum dot models are among the simplest examples
for which DMFT can be used, they are in fact already at
the limit of complexity for an exact treatment with NRG.
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FIG. 1. (Color online) Schematic of the models and mappings
used. (a) Two separated impurities on the surface of a 3D cubic
lattice, mapped to a problem involving two Wilson chains in NRG.
(b) Mapping to a single-impurity problem in a self-consistently
determined effective medium, via the local self-energy approximation
(impurity-DMFT). (c) Quantum dots coupled in parallel between
source and drain leads, mapped to a multi-impurity but single-channel
problem in NRG.

These models therefore present an almost unique opportunity
to test the validity of the local self-energy approximation by
comparing exact NRG with impurity-DMFT results.

In the context of quantum impurity models, Ref. [29]
focused on the two-impurity Anderson model in a one-
dimensional geometry. Calculation of various static spin sus-
ceptibilities (and comparison with DMRG results) showed that
the impurity-DMFT is quantitatively correct at large impurity
separations. However, impurity-DMFT clearly breaks down at
shorter distances, where it predicts a transition to a symmetry-
broken state [29].

Here we focus on dynamical quantities; in particular, spec-
tral functions, which are the central experimental observables
for these systems. In the two-impurity model, we consider
explicitly a three-dimensional (3D) cubic lattice host. The
exact NRG solution discussed in Sec. IV A shows a range of
correlated-electron physics, with RKKY-dominated effects for
small impurity separations and standard Kondo in the dilute-
impurity limit. Impurity-DMFT is able to correctly determine
the onset of the dilute limit [24] and certain low-energy
properties; however, when the Kondo effect is suppressed by
nonlocal interimpurity RKKY coupling, impurity-DMFT fails
qualitatively (see Sec. IV B). On the other hand, impurity-
DMFT is shown to perform surprisingly well for models
of parallel coupled quantum dots, capturing, for example,
nontrivial underscreened Kondo physics through the self-
consistent generation of a critical pseudogapped effective
medium in the local problem—see Sec. V. Magnetization

effects on application of a dot field are also very well captured
(Sec. V C), although the quantum phase transition between
high- and low-spin dot states upon tuning interdot coupling
is not describable within impurity-DMFT (Sec. V D). We
conclude in Sec. VI with a wider discussion of the applicability
of inhomogeneous DMFT.

II. QUANTUM IMPURITY PROBLEMS AND EXACT
SOLUTION WITH NUMERICAL
RENORMALIZATION GROUP

Quantum impurity systems, involving either one or several
coupled impurities, are modeled in terms of generalized Kondo
or Anderson Hamiltonians [15]. They can be decomposed as
H = Hhost + Himp + Hhyb, where Hhost and Himp describe the
isolated host and impurities, respectively; and Hhyb describes
the coupling between them. In the following, we focus on
models of N coupled Anderson impurities. Each impurity α is
regarded as a single spinful correlated quantum level,

Himp =
N∑

α=1

[∑
σ

εαd†
ασ dασ + Uαd

†
α↑dα↑d

†
α↓dα↓

]
+ Himp-imp,

(1)

where d†
ασ creates an electron on level α = 1, . . . ,N with spin

σ =↑/↓. The single-particle level energy is εα , while Uα is
the local Coulomb repulsion penalizing double occupancy.
Additionally, there may be interimpurity couplings, embodied
by Himp-imp. In the case of coupled quantum dots,

Himp-imp =
∑

α �=β,σ

vαβd†
ασ dβσ + H.c, (2)

where vαβ is a tunnel-coupling matrix element connecting
different dots α and β. For real magnetic-impurity clusters
on surfaces, Eq. (2) describes a direct intracluster coupling.
In modeling multilevel quantum dots, the different levels are
regarded as different “impurities”; then Himp-imp may include
a ferromagnetic Hund’s rule exchange between levels [30].
Capacitive couplings between different dots could also be
included.

The host metal is taken to be noninteracting; in a diagonal
basis it is described generically by

Hhost =
∑
k,σ

εkc
†
kσ ckσ . (3)

In the thermodynamic limit, the conduction electrons form a
continuous band of half-width D, and total density of states
per spin ρtot(ω) = ∑

k δ(ω − εk).
The hybridization between the impurities and conduction

electrons is given by

Hhyb =
∑

α

∑
k,σ

Vαkd
†
ασ ckσ + H.c. (4)

Note that the corresponding Kondo models are obtained
via a Schrieffer–Wolff transformation [15] in the limit of
single occupation for each level, perturbatively eliminating
excitations involving empty or doubly occupied levels to
second order in Hhyb.
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The question of how many electronic screening channels
are involved in such models is a subtle one. Although in general
one can expect Nc = N screening channels for a system of N

impurities, in fact any 1 � Nc � N can be realized, depending
on the parameters Vαk .

Consider the N×N impurity Green function matrix
Gimp

σ (ω), which contains all the information on the impu-
rity single-particle dynamics. In general, there are finite
local and nonlocal elements G

imp
αβ,σ = 〈〈dασ ; d†

βσ 〉〉ω [as usual,

〈〈Â; B̂〉〉ω is the Fourier transform of the retarded correlator
−iθ (t)〈{Â(t),B̂(0)}+〉]. The matrix Dyson equation then reads[

Gimp
σ (ω)

]−1 = [
gimp

σ (ω)
]−1 − �σ (ω). (5)

Here, �σ (ω) is the interaction self-energy matrix containing
all of the nontrivial correlated electron physics of the problem.
The noninteracting (but host-coupled) impurity Green func-
tions are given by[

gimp
σ (ω)

]−1 = (ω + i0+)I − E − v − �(ω), (6)

where [E]αβ = δαβεα , [v]αβ = vαβ , and elements of the
hybridization matrix are given by 
αβ(ω) = ∑

k V ∗
αkVβk/

(ω + i0+ − εk).
In certain high-symmetry cases, the hybridization matrix

�(ω) can be diagonalized by a single canonical transformation
of operators (that is, independently of energy ω). A given
channel in this basis is then decoupled from the impurity
subsystem if it has zero eigenvalue, 
̃ii(ω) = 0, yielding
Nc < N .

For Nc = N one generally expects an overall singlet ground
state, with each impurity eventually fully Kondo screened. By
contrast, for Nc < N there is the possibility of underscreening,
in which the ground state remains degenerate. We consider
examples of each below (see also Fig. 1).

A. Two-impurity problem in real space

When two Anderson impurities α = 1 and 2 are embedded
in a host metal at different real-space positions r1 and r2,
a rich range of correlated electron physics can result due to
the competition between the Kondo effect and a through-host
RKKY coupling [20–24,31].

We will assume here that there is no direct interimpurity
coupling, Himp-imp = 0. We take as a concrete physical exam-
ple a semi-infinite 3D cubic tight-binding host with a (100)
surface,

H 3D
host = −t

∑
〈ij〉,σ

(c†ri σ
crj σ

+ H.c.), (7)

where t is the tunneling matrix element connecting nearest-
neighbor sites i and j . This simplified real-space realization
captures many features of real metals—in particular, there is a
definite bandwidth 2D = 12t , and the surface density of states
is finite and flat around the Fermi level, with ρloc(ω = 0) =
1/(6t). Equation (3) is the diagonal representation of Eq. (7).

In this real-space basis, the hybridization Hamiltonian (4)
reads

H 2IAM
hyb =

∑
α=1,2

∑
σ

Vαd†
ασ crασ + H.c. (8)

Elements of the hybridization matrix then follow as 
αβ(ω) =
V ∗

α Vβ G0(rα,rβ,ω), where G0(rα,rβ,ω) = 〈〈crασ ; c†rβσ 〉〉0
ω is

the propagator between sites rα and rβ of the clean host
(without impurities). Due to translational invariance on the
surface of the clean host, 
11(ω) = 
22(ω) ≡ 
loc(ω) and

12(ω) = 
21(ω). Note that the nonlocal functions 
α �=β(ω)
depend on the interimpurity separation R = r1 − r2 and must
be computed explicitly for each real-space realization of the
two-impurity problem. Here we compute the lattice Green
functions numerically exactly using the convolution method of
Ref. [19], which can be formulated for systems with a surface.

We take now equivalent impurities, εα ≡ ε, Uα ≡ U , and
Vα ≡ V . By transforming to an even/odd impurity orbital basis
de/o,σ = 1√

2
(d1σ ± d2σ ), the 2×2 matrix Dyson equation (5) is

diagonalized to yield[
G

imp
e/o,σ (ω)

]−1 = ω + i0+ − ε − 
e/o(ω) − �e/o,σ (ω), (9)

where �e/o(ω) = �11(ω) ± �12(ω) for � = G, 
, and �. The
even and odd channels are strictly decoupled in the noninter-
acting (U = 0) system: the even (odd) impurity combination
couples only to the even (odd) conduction electron channel.
However, note that �e(ω) and �o(ω) each contains information
on both impurities and their mutual correlations.

Since 
e(ω) �= 
o(ω) �= 0, the full real-space two-impurity
Anderson model (2IAM) is irreducibly two-channel; see
Fig. 1(a).

B. Coupled quantum dots

Several coupled quantum dots, connected between source
and drain metallic leads, are modeled by Eqs. (1)–(4). Here we
focus on the specific geometry of quantum dots in parallel [32]
[see Fig. 1(c)], which also mimics a multilevel dot [30]. We
consider explicitly the symmetric setup with εα ≡ ε, Uα ≡ U ,
and vij ≡ v. The dot-lead hybridization for a system of N dots
is taken to be

H
PQD
hyb = V

N∑
α=1

∑
σ

d†
ασ c0σ + H.c., (10)

where c0σ is an operator for the symmetric combination of lead
orbitals coupling to the dots. The other conduction electron
states couple indirectly to the dots via c0σ .

The impurity Green functions for this parallel quantum dot
(PQD) model are given by the N×N matrix Dyson equa-
tion (5) with elements of the hybridization matrix in Eq. (6)
identical by symmetry, 
αβ(ω) ≡ 
loc(ω). For simplicity, in
the following we take 
loc(ω) to be the same as in Sec. II A.

In fact, only the symmetric (“even”) combination of dot
orbitals couples directly to the leads,

H
PQD
hyb =

√
N × V

∑
σ

d†
eσ c0σ + H.c., (11)

with deσ = N−1/2 ∑N
α=1 dασ . The other dot orbital combi-

nations couple indirectly through deσ . The matrix Dyson
equation can again be diagonalized, yielding in particular for
the even-orbital Green function G

imp
e,σ = 〈〈deσ ; d†

eσ 〉〉ω,[
Gimp

e,σ (ω)
]−1 = ω + i0+ − ε − (N − 1)v − 
e(ω) − �e,σ (ω),
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(12)

where 
e(ω) = N
loc(ω). The other (N − 1) conduction
electron channels decouple from the impurities, 
o(ω) =

αα(ω) − 
α �=β(ω) = 0, leaving a single-channel descrip-
tion. Note, however, that the self-energy �e(ω) = �αα(ω) +
(N − 1)�α �=β(ω) still inherently contains interimpurity
correlations.

C. Numerical renormalization group

A wide range of quantum impurity problems can be solved
exactly using NRG [17], including the above real-space 2IAM
and PQD models.

The NRG method involves mapping the full quantum
impurity model to a one-dimensional (1D) form amenable
to iterative diagonalization. Specifically, the impurities must
be coupled to the end of one or more decoupled Wilson
chains—see Fig. 1. This necessitates a diagonal structure of
the hybridization matrix 
αβ(ω) ∝ δαβ , each nonzero element
of which is discretized logarithmically and mapped to a
semi-infinite 1D tight-binding Wilson chain [17]. Starting
from the impurity subsystem, Wilson orbitals are successively
coupled on, and the Hamiltonian defined in the larger Hilbert
space is diagonalized. Only the NK lowest-energy states are
retained for construction of the Hamiltonian at the next step.
This truncation scheme is justified by the exponential decay of
hoppings down the Wilson chain. Successively lower energies
are reached at each step, revealing the renormalization group
(RG) character of the problem.

In the case of the real-space 2IAM, �(ω) is diagonal in
the even/odd orbital basis, with 
e/o(ω) = 
11(ω) ± 
12(ω),
such that information about the real-space separation of the
impurities is encoded in the difference between 
e(ω) and

o(ω). Discretizing each and mapping to even and odd Wilson
chains leads to the setup illustrated in Fig. 1(a), with two
impurities and two channels. In our NRG implementation, we
discretize 
e/o(ω) using  = 2.5, label states by total charge
and spin projection quantum numbers to block-diagonalize
the Hamiltonian, and retain NK = 15 000 states at each step.
So-called z averaging was not required.

Generalized two-channel problems of this type are com-
putationally demanding [25,26]. Furthermore, the local en-
vironments of the two impurities must be identical to ac-
complish the above mapping. If, for example, the impurities
are different distances away from the surface, or if the
host is disordered, then �(ω) cannot simply be diagonal-
ized by canonical transformations. Similarly, in the case of
three impurities, NRG can only treat a symmetric geometry
with 
αα(ω) = 
loc(ω) and 
α �=β(ω) = 
non-loc(ω). The result-
ing three-channel problem would also require significantly
greater computational resources than that of the two-impurity
case.

In the case of PQD models, the formulation in Sec. II B
is single channel: 
e(ω) can be discretized and mapped to a
Wilson chain with the dots at one end, as illustrated in Fig. 1(c).
The complexity here is contained in the impurity Hamiltonian
itself, which involves N interacting orbitals. In practice this
limits NRG to models with N � 8. The possibility of Kondo
underscreening and frustration due to finite interdot coupling v

means that a rather large number of states NK = 5000 to 8000
must be kept at each step to accurately capture the low-energy
physics (for  = 2).

Impurity spectral functions presented in the following
sections are obtained from the matrix Dyson equation (5)
by using the appropriate exact noninteracting propagators
gimp

σ (ω). The nontrivial physics enters through the N×N

self-energy matrix, which is calculated here by using NRG via
a generalization of Ref. [33], from the full density matrix [34]
constructed in the complete Anders–Schiller basis [35].

III. LOCAL SELF-ENERGY APPROXIMATION
FOR QUANTUM IMPURITY PROBLEMS

While the above models can still be solved exactly by
standard NRG, they are computationally demanding and
represent an approximate limit on what can be achieved at
present. Clearly, true many-impurity systems and complex
nanostructures are out of reach using full NRG. This provides
motivation for developing approximate schemes capable of
dealing with Kondo physics in multi-impurity systems.

An inhomogeneous (or real-space) DMFT approach has
been widely used to treat generalized Hubbard models which
lack translational invariance [4]. At its heart, it involves
a local self-energy approximation, which allows the full
problem to be mapped onto a set of auxiliary single-impurity
Anderson models (one for each inequivalent site in the
system), each in an effective medium that must be determined
self-consistently. Quantum impurity problems can in fact be
regarded as highly inhomogeneous Hubbard models, and we
apply a similar local self-energy approximation (or “impurity-
DMFT”) here to the real-space 2IAM and PQD models—see
Fig. 1.

We first recap briefly the generalized method. The impurity
Green functions are obtained from the matrix Dyson equa-
tion (5) by using the exact noninteracting propagators gimp

σ (ω).
However, within impurity-DMFT the self-energy matrix takes
the form

[�σ (ω)]ij
DMFT= δij�

loc
iσ (ω). (13)

For each inequivalent site γ , we introduce an auxiliary
Anderson impurity model,

Hγ
aux =

∑
σ

εγ d†
σ dσ + Uγ d

†
↑d↑d

†
↓d↓

+
∑
k,σ

ε̃γ kc
†
kσ ckσ +

∑
k,σ

(Ṽγ kd
†
σ ckσ + H.c.), (14)

where the parameters εγ and Uγ are specified by the
original quantum impurity model. ε̃γ k and Ṽγ k are, how-
ever, determined self-consistently. All the relevant infor-
mation about the effective medium to which the impu-
rity couples is contained in the hybridization function
�γ (ω) = ∑

k |Ṽγ k|2/(ω + i0+ − ε̃γ k). The impurity Green
function of this auxiliary model is therefore given by[

Gaux
γ σ (ω)

]−1 = ω + i0+ − εγ − �γ (ω) − �aux
γ σ (ω). (15)

The self-energy �aux
γ σ (ω) is then calculated (e.g., by using

standard single-site single-channel NRG) for each inequivalent
site γ , given the hybridization function �γ (ω).
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�γ (ω) is determined self-consistently on the level of the
local Green functions by demanding

Gimp
γ γ,σ (ω) = Gaux

γ σ (ω), (16a)

�loc
γ σ (ω) = �aux

γ σ (ω). (16b)

The self-consistency loop is as follows:
(1) Guess an initial form for �γ (ω).
(2) Calculate �aux

γ σ (ω) for auxiliary model (14) by using
�γ (ω) as input. Repeat for all inequivalent sites γ .

(3) Equate �loc
γ σ (ω) = �aux

γ σ (ω), construct �σ (ω) from
Eq. (13) and then find G

imp
γ γ,σ (ω) from Eq. (5).

(4) Equate G
imp
γ γ,σ (ω) = Gaux

γ σ (ω) and find a new �γ (ω) via
Eq. (15).

(5) Repeat steps (2)–(4) until converged [i.e., G
imp
γ γ,σ (ω)

does not change upon further iteration].
An important feature of this self-consistency, which is

perhaps not immediately obvious, is that it depends crucially
on the basis used for Eq. (5).

For example, in the real-space 2IAM, different solutions
can be converged, depending on whether one uses G

imp
ij,σ (ω)

with i and j labeling either the physical impurity sites 1 and 2,
or their even and odd orbital combinations. Indeed, in the latter
case, there is no self-consistency loop at all: comparing Eqs. (9)
and (15) yields directly �e/o(ω) = 
e/o(ω) for the inequivalent
even and odd impurities. The local Green functions for the
physical impurities (which are identical by symmetry) follow
simply as the average, G

imp
11,σ (ω) = 1

2 [Gimp
e,σ (ω) + G

imp
o,σ (ω)].

By contrast, establishing self-consistency directly on
the level of G

imp
11,σ (ω) implies that �1(ω) = 
11(ω) +

[
12(ω)]2/[ω + i0+ − ε − 
11(ω) − �loc
1σ (ω)]. Iterating the

DMFT cycle then produces nontrivial structure in �1(ω) due
to feedback from the self-energy. This is the formulation
employed in Sec. IV.

Similarly, for the PQD models studied using impurity-
DMFT in Sec. V, we establish self-consistency for the local
Green functions in the physical impurity basis.

In this work, we use NRG [17] to solve the auxiliary
Anderson model (14). For all impurity-DMFT calculations
presented, we use  = 2 and NK = 3000.

IV. REAL-SPACE TWO-IMPURITY MODEL

We examine now the real-space 2IAM, with two impurities
located at different sites on the (100) surface of a 3D cubic
lattice [Eqs. (1), (7), and (8) with N = 2; see Fig. 1(a)]. For
simplicity we focus on the particle-hole-symmetric case, ε =
−U/2. We recap first the true physics of the model, with exact
numerical results obtained from the full NRG solution, before
comparing with impurity-DMFT results. Figure 2 shows a
comparison for the impurity spectral functions, with exact
results as solid black lines, and impurity-DMFT as red dashed
lines.

A. Full numerical renormalization group solution

At very large interimpurity separations |R| → ∞, each of
the two impurities behaves independently and one recovers the
well-known Kondo physics of the single-impurity Anderson
model [15]. Indeed, the “dilute limit” of essentially indepen-

FIG. 2. (Color online) Comparison between exact NRG results
(solid black lines) and impurity-DMFT results (dashed red lines) for
the real-space 2IAM. The local impurity spectral function at T = 0
is plotted as −Im
locG

imp
11,σ (ω) vs ω/D. The two impurities are taken

to be on the (100) surface of a (semi-) infinite 3D cubic lattice,
separated by the vector R ≡ (Rx,Ry). Clockwise from top-left panel:
R = (0,1), (1,1), (0,4), (2,2). Impurity parameters are U/D = 0.5,
ε = −U/2, and V/D = 0.075.

dent Kondo screening sets in rather rapidly with increasing
|R| in 3D systems, as known from experiment [16] and
theory [24]. In the dilute limit, the impurities are each screened
by surrounding conduction electrons below an effective single-
impurity Kondo temperature T

1imp
K . At low energies and

temperatures, the impurity spectral resonance (experimentally
observable in scanning tunneling spectroscopy [16]) takes a
universal Kondo form [15].

For two impurities on the (100) surface of the 3D
cubic lattice, the dilute limit is effectively realized for an
interimpurity separation R ≡ (Rx,Ry) = (0,4) (with lattice
constant a0 ≡ 1). The bottom-right panel of Fig. 2 shows
the corresponding impurity spectral function, which is of
single-impurity form. Note in particular that the Friedel sum
rule [15] (FSR) implies spectral pinning in the single-impurity
case −Im
locG

1imp
σ (ω = 0) = 1, which as such provides a

measure of the independence of Kondo screening in prob-
lems with several impurities. Here, 
loc = −Im
loc(0). For
R = (0,4), the FSR is very well satisfied by NRG results
for the full two-impurity problem. Furthermore, the nonlocal
propagator G

imp
12,σ (ω) is negligible for this separation (not

shown), indicating vanishing interimpurity correlations.
Upon bringing the impurities closer, however, genuine

two-impurity effects are manifest due to through-host RKKY
correlations [22]. This has a marked effect on the impurity
spectral functions, as seen clearly in the other panels of Fig. 2.
In addition to differences in the detailed form of the impurity
spectrum, note that its Fermi-level value depends on R and
is not pinned by the FSR. Indeed, the nontrivial behavior of
−Im
locG

imp
11,σ (0) is well known [21] from simplified models

of the 2IAM; its origin is two-impurity contributions to the
self-energy �σ (ω).
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For separations R = (1,1) and (2,2), the effective RKKY
coupling is ferromagnetic; the impurities bind together into a
triplet state on the scale of |JRKKY|, which is ultimately exactly
Kondo screened by the even and odd conduction-electron
channels. The RKKY scale can be read off from Fig. 2 as the
energy scale where the spectrum departs from single-impurity
behavior. As expected, JRKKY is smaller in magnitude for
R = (2,2) than for (1,1). The anisotropy between even and odd
channels in the case of R = (1,1) is rather significant [due to
large 
12(ω)], leading to effective two-stage quenching of the
interimpurity triplet. For R = (2,2), the even/odd anisotropy is
weaker, and two-channel Kondo screening occurs essentially
in a single step.

For neighboring impurities R = (0,1), the effective RKKY
interaction is antiferromagnetic. The impurities bind together
into a singlet state on the scale of |JRKKY| and decouple from
the host, giving G

imp
11,σ (0)  0.

Note that, in all cases, the overall ground state is a spin-
singlet (there is no phase transition upon varying parameters
or impurity separation [22]). The lowest-energy physics is
Fermi-liquid like, with −Im�αβ,σ (ω) ∼ ω2 as ω → 0.

B. Impurity-DMFT results

We turn now to our impurity-DMFT results for the same
systems—see red dashed lines in Fig. 2.

In the dilute limit, one expects effective single-impurity
physics. The full self-energy matrix �σ (ω) then becomes
diagonal, meaning purely local. The impurity-DMFT scheme
is exact in this limit. This is in fact seen in the bottom-
right panel of Fig. 2, for impurity separation R = (0,4): the
exact NRG and impurity-DMFT solutions are perfectly in
agreement. This is confirmed in Fig. 3, where the DMFT
effective medium �(ω) is plotted. For R = (0,4), we find
under DMFT self-consistency that �(ω)  
loc(ω), meaning
that the presence of the second impurity does not affect the
local electronic environment of the first. Although this might
seem trivial, it should be noted that the impurity-DMFT is
correctly able to identify the onset of the dilute limit at finite
(and surprisingly small) impurity separations. Recovering
single-impurity physics in impurity-DMFT is only strictly
trivial as |R| → ∞.

FIG. 3. (Color online) Impurity-DMFT effective medium,
�(ω)/(πV 2) vs ω/D for the systems plotted in Fig. 2.

The impurity-DMFT scheme is, however, seen to break
down as the impurities are brought closer together, and in-
terimpurity effects (embodied by nonlocal self-energy contri-
butions) become important. The failure becomes increasingly
severe on decreasing the separation.

For R = (2,2) and (1,1), the spectral behavior for energies
|ω| � |JRKKY| is correctly described within impurity-DMFT;
but the effective two-channel screening of the interimpurity
triplet is not captured at lower energies. In particular, the two-
stage screening in the case of R = (1,1) is not apparent in
the impurity-DMFT results, with the effect that the Kondo
temperature (characterizing RG flow to the Fermi liquid fixed
point) is significantly overestimated. TK is modified from the
pure single-impurity result, but not sufficiently to correctly
simulate the exact two-impurity results.

However, it should be noted that, in all Kondo-screened
cases, the impurity-DMFT correctly recovers the nontrivial
Fermi-level value of the spectrum. This is achieved under
DMFT self-consistency by the generation of a nontrivial
effective medium, with �(ω = 0) deviating from 
loc(ω = 0),
as demonstrated in Fig. 3. This is consistent with Ref. [29],
where an impurity-DMFT scheme was used to study two
impurities in a 1D chain. In that work, static quantities at T = 0
were considered and shown to reproduce DMRG results for
large separations. In 3D, as considered here, the dilute limit
sets in much more rapidly. These results suggest that, in the
Kondo regime, quantities that depend only on G

imp
11,σ (0), such as

the T = 0 resistivity due to impurities, might still be accessible
with impurity-DMFT.

Finally, for neighboring impurities R = (0,1), we see a
catastrophic failure of impurity-DMFT. Here, nonlocal self-
energy contributions are responsible for interimpurity singlet
formation and cannot be captured by impurity-DMFT. In
fact, impurity-DMFT predicts a Kondo-like resonance, with

FIG. 4. (Color online) Exact NRG results for the PQD model
consisting of N coupled quantum dots. Plotted is the (even orbital)
impurity spectral function −Im
locG

imp
e,σ (ω) vs ω/D at T = 0 for

N = 1,2,3,4,5 (black, red, blue, green, and purple lines, following
the arrow). The inset shows the rescaled spectra satisfying the pinning
condition (19). Impurity parameters are U/D = 0.5, ε = −U/2,
V/D = 0.06 (and v = h = 0).
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enhanced (rather than suppressed) spectral intensity at the
Fermi energy.

V. COUPLED QUANTUM DOTS

We now discuss systems of N quantum dots, coupled in
parallel between two metallic leads, Eqs. (1)–(3) and (10)—see
Fig. 1(c). Exact NRG results are surveyed in Fig. 4, while a
detailed comparison between exact NRG and impurity-DMFT
results is presented in Fig. 5. In the following we use a
comparatively large U/D = 0.5 to allow for a detailed analysis
of the universal low-energy physics. Although this parameter
regime would be appropriate to describe the Kondo physics
of, e.g., 3d transition-metal impurities in break junctions, real
quantum dot devices are typically characterized by a smaller
U/D. We note that impurity-DMFT can also be applied to the
latter case with equivalent accuracy.

A. Full numerical renormalization group solution

For a single quantum dot between source and drain leads
(N = 1), the standard Kondo effect is known to arise [28,36],
producing a dot spectral function that takes a universal form
when rescaled in terms of T/TK and ω/TK . The dot spin-
1
2 degree of freedom in this case is exactly screened by the
lead conduction electrons below TK , forming a ground state
spin singlet. The low-energy physics is described in terms of

Fermi-liquid theory [15], which (in the case of particle-hole
symmetry) implies

N = 1:

Im�11,σ (ω)
ω�TK∼ −(ω/TK )2, (17a)

Im
loc
[
G

imp
11,σ (ω) − G

imp
11,σ (0)

] ω�TK∼ (ω/TK )2, (17b)

−Im
locG
imp
11,σ (0) = 1. (17c)

The FSR is embodied by Eq. (17c). This, and the charac-
teristic quadratic approach of the spectrum to its Fermi-level
value (17b), can be seen from exact NRG results in Fig. 4 as
the black line.

However, the physics of PQDs with N > 1 (and similarly,
multilevel dots [30,37]) is rather different [32,38]. In particular,
an O(V 4) effective RKKY interaction arises between the dots,
mediated by the conduction electrons [32],

JRKKY ∼ −
2
loc/U. (18)

Importantly, this coupling is ferromagnetic: on tempera-
ture/energy scales ∼|JRKKY|, the N dots form a combined
spin-N/2 object. This spin N/2 is coupled to a single channel
of conduction electrons and so is underscreened to a spin-
(N − 1)/2 object by the Kondo effect below TK � JRKKY.
The ground state therefore remains spin degenerate [39] for
N > 1. The conduction electrons still feel a π/2 phase shift

FIG. 5. (Color online) Comparison of impurity-DMFT results (red lines) and exact NRG (black lines) for PQD models with N = 2,3,4,5.
The main panel in each case shows the rescaled even-orbital spectrum −Im
locG

imp
e,σ (ω) vs ω/TK at T = 0, while the lower insets show the

unscaled (raw) spectra. The upper insets show the detailed low-energy behavior. Here TK is defined via ImGimp
e,σ (ω = TK ) = 0.95ImGimp

e,σ (ω = 0).
The dot parameters are U/D = 0.5, ε = −U/2, V/D = 0.05 (and v = h = 0).
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(at T = 0 and ω = 0) due to the Kondo effect, resulting in
a generalized pinning condition for the even-orbital spectral
function,

− ImN
locG
imp
e,σ (0) = 1. (19)

This is demonstrated in Fig. 4; the inset shows that Eq. (19) is
satisfied numerically at low energies for all N .

However, the full scaling form of the dot spectrum does
depend on N—see Fig. 4. In particular, there are singular
corrections [40] at low energies due to residual ferromagnetic
correlations between the underscreened dot spin (N − 1)/2
and conduction electrons for |ω| � TK . This results in a
“marginal Fermi liquid” at low energies,

N > 1:

Im�e,σ (ω)
ω�TK∼ − ln−2 (ω/TK ), (20a)

Im
loc
[
Gimp

e,σ (ω) − Gimp
e,σ (0)

] ω�TK∼ ln−2 (ω/TK ). (20b)

The low-energy spectral behavior is thus rather different
for N = 1 compared with N > 1, reflecting the difference
between exactly screened and underscreened Kondo.

B. Impurity-DMFT results

In the case of a single dot N = 1, impurity-DMFT is exact
by construction. In this section, we explore the extent to which
the local self-energy approximation in impurity-DMFT can
capture nontrivial underscreened Kondo physics in PQDs for
N > 1. Figure 5 compares exact NRG results (black lines)
with impurity-DMFT results (red) for the even orbital spectral
function in PQD models with N = 2,3,4,5.

The impurity-DMFT solution is certainly seen to be approx-
imate: the value of TK is always underestimated (lower insets
of Fig. 5), and the precise scaling form is not entirely recovered
(main panels). However, impurity-DMFT is apparently rather
successful at capturing certain aspects of PQD physics.

At higher energies |ω| � TK , one observes 1/ ln2(ω/TK )
spectral tails as expected. Furthermore, for |ω| � JRKKY, this
behavior should be characteristic of single-impurity scattering.
Perhaps it is not surprising the impurity-DMFT captures
this physics asymptotically, since the PQD is mapped to an
effective single-impurity model.

Far more interesting is the low-energy physics, which
impurity-DMFT emulates surprisingly well in all cases
considered (see upper insets of Fig. 5 for each N ). This
is a rather nontrivial fact, since the exact results display
marginal Fermi-liquid physics [40] whose physical origin [32]
is the Kondo underscreening of a high-spin object. This
type of Kondo effect is obviously not accessible within a
single-impurity Anderson model.

Instead, the low-energy physics of the PQD model is
mimicked within impurity-DMFT through generation of an
effective medium with nontrivial low-energy structure. This is
shown in the upper panel of Fig. 6 for different numbers of
coupled dots, N = 2,3, . . . ,10 (increasing in the direction of
the arrow). Although at high energies |ω| � TK , the DMFT
effective medium �(ω) ∼ 
loc(ω) is essentially that of the
bare hybridization (dotted line), at lower energies |ω| � TK

a pseudogap develops in �(ω). Specifically, we find the

FIG. 6. (Color online) (top panel) DMFT effective medium
�(ω)/(πV 2) vs ω/D for PQDs with N = 2,3, . . . ,10 increasing in
the direction of the arrow. Low-energy behavior follows a pseudogap
power law �(ω) ∼ |ω|α , with exponent α ∼ N−γ that depends on
the number of dots (see inset, points). We find numerically γ  0.43
(inset, dashed line). The bare hybridization is shown as the red dotted
line for comparison. (bottom panel) Corresponding local DMFT
self-energy −Im�loc

σ (ω), showing the same low-energy power-law
decay as �(ω). Same parameters as for Fig. 5.

low-energy behavior to be well described by

�(ω)
|ω|�TK∼ |ω|α, (21)

where the exponent α ≡ α(N ) > 0 depends on the number of
dots. Although there may be logarithmic corrections to this
pure-power-law behavior, we could not establish that from the
numerical results. As shown in the inset to the upper panel of
Fig. 6, the exponent itself is found to follow a power-law form,
α ∼ N−γ with γ  0.43. In particular, we note that 0 < α < 1

2
for all N > 1.

It is well known that the particle-hole symmetric pseudogap
Anderson model with 0 < α < 1

2 supports a quantum phase
transition separating Kondo strong coupling and local-moment
phases [41–43]. The critical point itself is interacting and
is characterized by nontrivial correlations; the signature of
this is that the impurity self-energy vanishes with exactly the
same power as the hybridization [41–43]. Interestingly, we
find within impurity-DMFT for PQD models that

− Im�loc
σ (ω)

|ω|�TK∼ |ω|α, (22)

with the same exponent α as in Eq. (21). This is shown in the
lower panel of Fig. 6 and confirms that, under self-consistency,
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impurity-DMFT generates a critical pseudogapped effective
single-impurity model. The resulting even-orbital spectral
function [44] then appears to give a very good approximation
to the low-energy behavior arising in underscreened PQD
models—see Fig. 5.

The appearance of an effective pseudogapped local model
for PQDs within impurity-DMFT is rather reminiscent of the
results of Ref. [45]. In that work, a parallel double dot system
was considered, with one interacting and one noninteracting
dot. An exact local model was derived, integrating out the
noninteracting conduction electron bath and also the other
noninteracting dot; the effective hybridization was found to
be pseudogapped with exponent α = 2. Our results therefore
generalize these findings to fully interacting PQDs, albeit that
our local models arise within the (approximate) impurity-
DMFT scheme. Since impurity-DMFT is exact by construction
for the case considered in Ref. [45], it would be interesting
explore this connection by tracking the evolution of the
pseudogap as interactions on the second dot are switched on.

C. Magnetic field

We consider now the effect of applying a magnetic field h

to the dots. The “impurity” Hamiltonian (1) is supplemented
by the term Hmag = −hŜz

PQD, where Ŝz
PQD = 1

2

∑
α[d†

α↑dα↑ −
d
†
α↓dα↓] is the total PQD spin projection. This Zeeman term can

be straightforwardly incorporated into the existing formalism
by simply replacing ε → εσ in Eqs. (12) and (15), where
εσ = ε − hσ/2 (and σ = ± for ↑ / ↓).

In the standard single-impurity case N = 1, an infinitesimal
field h does not destroy the Kondo singlet (which has a binding
energy ∼TK ), and the impurity remains unmagnetized. On the
other hand, for h � TK , spin-flip scattering, which is at the
heart of the Kondo effect, is suppressed [15].

In the present context of PQDs with N > 1, the physics
is more subtle: even for infinitesimal h, the residual dot spin
(N − 1)/2, resulting from Kondo underscreening, becomes
polarized. In terms of the dot spectral function, this implies a
significant (spin-dependent) redistribution of spectral weight
between the Hubbard satellites—an effect not observed in
the single-impurity case. The same basic physics has been
discussed for multilevel dots in Ref. [46]. For larger h � TK ,
the Kondo effect is again destroyed. Most interesting is the
case where the applied field h ∼ TK , so that the Kondo effect
competes with spin polarization. Nontrivial physics associated
with partial Kondo screening is then expected.

In Fig. 7 we present exact NRG results (solid black lines)
for PQDs with N = 2 (upper panels) and N = 3 (lower
panels), in the case of finite field h/TK ∼ 0.1, 1, 10, 100. This
is the intermediate regime where the Kondo effect is only
partially manifest due to competing spin polarization. In all
cases, spectral weight is shifted between Hubbard satellites,
indicative of dot magnetization. As h increases, the Kondo
resonance is progressively diminished, and a field-induced
peak develops at ω ∼ h. The dot field cuts off the logarithmic
corrections and regularizes the spectrum for |ω| � h.

The impurity-DMFT results are shown in Fig. 7 as the red
dashed lines and compare extremely well. Several nontrivial
features of the full N -dot model are recovered by impurity-
DMFT.

FIG. 7. (Color online) Comparison of impurity-DMFT results
(red dashed lines) and exact NRG (solid black lines) for the PQD
model with N = 2 (upper panels) and 3 (lower panels) in an
applied magnetic field. Dot parameters U/D = 0.5, ε = −U/2,
and V/D = 0.06 such that T h=0

K ∼ 10−9D. Shown for v = 0 but
h/D = 10−10, 10−9, 10−8, and 10−7. Plotted for σ =↑.

In particular, the redistribution of spectral weight to the
upper Hubbard satellite is captured essentially exactly. This
might seem surprising because impurity-DMFT involves the
mapping to a single-impurity model in which small fields are
not expected to produce a large magnetization. Instead, the
effect emerges from self-consistent development of structures
in the effective medium �(ω) on the scale of |ω| ∼ U , as
shown in Fig. 8. The true PQD magnetization is in fact captured
very well in impurity-DMFT.

The Fermi-level value of the spectrum in Fig. 7 is also
recovered with high accuracy by impurity-DMFT. This is a
nontrivial result of the renormalized effective medium at the
Fermi level, �(ω = 0)—see Fig. 8.

In addition, the spectral peak at ω ∼ h (arising in
these underscreened PQD models due to the asymmetric
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FIG. 8. (Color online) DMFT effective medium �(ω)/(πV 2) vs
ω/D for PQDs with N = 2, 3, 4, and 5 (increasing with the arrow)
for U/D = 0.5, ε = −U/2, V/D = 0.06, and h/D = 10−8 (v = 0).

spin-resolved Kondo resonance [46]) is described very well
by impurity-DMFT. Figure 8 again shows that this is a result
of the self-consistent feedback of the local self-energy into the
effective medium.

Indeed, the entire energy dependence of the spectrum is
very well described by impurity-DMFT for both N = 2 and
N = 3 over the full range of fields considered. The quality of
the results improve with increasing h.

D. Interdot coupling and quantum phase transition

Finally we consider the situation where the dots are also
directly tunnel-coupled, v �= 0. This generates a direct interdot
exchange Jdir ∼ v2/U which is antiferromagnetic. Together
with the lead-mediated RKKY coupling, the dots feel a
mutual exchange Jtot = JRKKY + Jdir which can be tuned from
ferromagnetic to antiferromagnetic by increasing the interdot
tunnel coupling v. The result of this is that a high-spin PQD
state is realized for v < vc (corresponding Jtot < 0), while a
low-spin PQD state forms for v > vc (Jtot > 0). These distinct
phases are separated by a (level-crossing) quantum phase
transition, arising at vc for which Jtot = 0.

Interestingly, the Kondo physics for even and odd numbers
of dots, N , is therefore very different, as discussed below.
In Fig. 9 we consider specifically N = 2 (left panels) and
N = 3 (right panels), in both the high-spin phase v < vc (upper
panels) and the low-spin phase v > vc (lower panels). Exact
NRG results for the T = 0 spectral function are presented as
the solid black lines.

In the high-spin phase v < vc (encompassing also the
case v = 0 discussed in Sec. V A) the effective interdot
ferromagnetic coupling Jtot < 0 leads to a combined PQD dot
spin-N/2 which is Kondo underscreened to spin (N − 1)/2
below TK . This holds for even and odd N . The inclusion of
finite v in this phase does not change the spectral lineshape,
which is universal for all |ω| � |Jtot| (only the value of Jtot

is changed). In particular, the low-energy spectral pinning
condition (19) still holds.

Including finite v in the impurity-DMFT solution does not
change the results qualitatively, although we note that the

FIG. 9. (Color online) Comparison of impurity-DMFT results
(red dashed lines) and exact NRG (solid black lines) for the PQD
model with N = 2 (left panels) and 3 (right panels) with finite interdot
coupling v �= 0 across the quantum phase transition. Upper panels
show high-spin phase with v = 0.005D < vc. Lower panels show
low-spin phase with v = 0.01D > vc. Shown for fixed U/D = 0.5,
ε = −U/2, and V/D = 0.06 (but h = 0).

Fermi-level value of the spectrum spuriously diminishes with
increasing v—see upper panels of Fig. 9.

By contrast, in the low-spin phase v > vc where Jtot > 0
is antiferromagnetic, even and odd N behave differently. For
even N , the PQD forms a combined spin singlet and decouples
from the leads on the scale of |Jtot|. As such, there is a total
(on-the-spot) collapse of the Kondo resonance on entering the
low-spin phase, Im
locG

imp
e,σ (ω = 0) = 0. This is seen from

the exact NRG results for N = 2 in the bottom-left panel of
Fig. 9. For odd N , the PQD forms an effective doublet state
on the scale of |Jtot|, which is exactly screened by a standard
Kondo effect below TK . This leads to a pronounced spectral
resonance, as seen for N = 3 in the bottom-right panel of
Fig. 9. In this case −Im
locG

imp
e,σ (0) < 1 because the model is

not particle-hole symmetric for finite v. An effective FSR [15]
holds, −Im
locG

imp
e,σ (0) = sin2(π

2 ne
imp), where here the “excess

charge” [17] of the PQD even orbital ne
imp �= 1 depends on v.

Impurity-DMFT fails qualitatively to capture this quantum
phase transition, as demonstrated by comparison with the
red dashed lines. Upon increasing v, there is simply a
smooth crossover, with Im
locG

imp
e,σ (ω = 0) → 0 as v → ∞.

In particular, the effective single-impurity Kondo physics for
odd N and v > vc is totally absent within impurity-DMFT.
In this case, nonlocal self-energy contributions control the
physics, and impurity-DMFT inevitably fails.

VI. CONCLUSION: APPLICABILITY
OF INHOMOGENEOUS DYNAMICAL

MEAN-FIELD THEORY

Although the self-energy becomes strictly local only in
the limit of infinite dimensions [2], DMFT employing local
self-energies is widely used in the approximate treatment
of real systems with finite coordination [1,3]. Furthermore,
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inhomogeneous (or real-space) DMFT has been applied in
diverse contexts, including, e.g., layered materials [5] and
molecular electronics [10–12].

DMFT is certainly a very powerful tool, providing deep
insights into the physics of complex systems [1]. However, for
highly inhomogeneous systems where both strong interactions
and details of real-space geometry are important, it is often
not obvious whether a local self-energy approximation could
yield physically sensible results. Of course, the problems to
which inhomogeneous DMFT is applied are typically those
for which exact results are not available, and so the quality of
the approximation can remain unclear.

In this paper we have applied “impurity-DMFT” to the
2IAM (featuring two magnetic impurities separated in real
space on the surface of a 3D cubic lattice), and PQD models
(in which quantum dots are coupled in parallel between source
and drain metallic leads). The local self-energy, combined with
self-consistency, constitutes a rather sophisticated approxima-
tion, and nontrivial results are obtained.

Although the 2IAM and PQD models are among the
simplest examples for which DMFT can be used, their exact
solution with NRG is still very challenging [17]. By com-
paring exact NRG and impurity-DMFT results for dynamical
quantities in these models, we were able to test the validity of
the local self-energy approximation in highly inhomogeneous
contexts.

We find that, in situations where Kondo screening is
the dominant effect, impurity-DMFT can work surprisingly
well, especially at low energies. For example, in the 2IAM,
impurity-DMFT correctly predicts the onset of the dilute
limit [24] and recovers the Fermi-level value of the impurity

spectral function. In PQD models, subtle underscreened Kondo
physics is apparently captured in impurity-DMFT through the
self-consistent generation of a critical pseudogapped effective
medium. Impurity-DMFT is also correctly able to describe the
effects of an applied magnetic field in PQD systems.

However, we also uncover cases where the local self-energy
approximation fails catastrophically. These are situations
where interimpurity correlations are responsible for suppress-
ing Kondo physics. For example, effective antiferromagnetic
RKKY interactions in the 2IAM can lead to interimpurity sin-
glet states which simply cannot be described within impurity-
DMFT. In PQD models, the quantum phase transition between
high- and low-spin states upon tuning interdot coupling is
similarly not reproducible in impurity-DMFT. These results
naturally have implications for the wider applicability of
DMFT to inhomogeneous systems.

Finally, we comment that exactly solvable quantum im-
purity problems provide an ideal context to develop and test
novel extensions of DMFT, going beyond the local self-energy
approximation. Reliable solutions will then be within reach for
a wider range of problem.
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