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A theoretical concept is presented for the screening of several magnetic moments locally exchange coupled to
conduction electrons in a metallic nanostructure. We consider a quantum confined multi-impurity Kondo model
which exhibits the competition between finite-size effects, RKKY interactions, and Kondo physics. In the limit
of weak coupling, Kondo correlations are cut by the finite system size; perturbation theory can then be used to
derive the low-energy effective model, which is of generalized central-spin form. The theory successfully predicts
the degeneracy, total spin, and spin correlations of the ground state, and allows the number of screening channels
to be identified. This is demonstrated for a two-impurity model on a finite one-dimensional ring. Density-matrix
renormalization-group calculations confirm the physical picture at weak coupling. The nontrivial crossovers to
RKKY and strong-coupling regimes are also studied. The numerical renormalization group, tailored to treat finite
systems, is used to examine the crossover to the thermodynamic limit.
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I. INTRODUCTION

Many of the fascinating properties of correlated electron
systems derive from collective behavior. In systems with a
magnetic impurity embedded in a host of conduction electrons,
the Kondo effect [1] represents a prime example. It is caused
by the antiferromagnetic exchange interaction between the
impurity spin and the local spin of conduction electrons. Below
a characteristic temperature TK, the Kondo temperature, the
magnetic moment of the impurity is collectively screened by
a cloud of conduction electrons with spatial extension deter-
mined by ξK ∼ vF/TK, where vF is the Fermi velocity [2,3].
Kondo screening is a phenomenon that eludes a perturbative
approach, as is expressed by the nonanalytic dependence
of TK on the strength J of the local exchange coupling:
ln TK ∼ −1/J . For weak J , the Kondo scale is exponentially
small. This translates into a mesoscopically large Kondo cloud.

Hence, for a magnetic impurity embedded in a small
nanostructure [4–9], the concept of Kondo screening must be
modified [10–14]. The universal aspects of Kondo physics are
lost when TK is of the same order of magnitude as the finite-size
gap � at the Fermi energy of the conduction-electron system
or, if viewed from a real-space perspective, when the Kondo
cloud exceeds the size of the system. A Kondo scale in the
regime of some tens of Kelvins roughly corresponds to a linear
extension in the nanometer range.

If there are several magnetic impurities [15–17], the situa-
tion gets complicated by the competition of Kondo screening
with nonlocal magnetic correlations. The latter are typically
induced by an indirect exchange coupling which is mediated
by the conduction electrons. The effective Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction [18–20] can be derived
perturbatively and scales as JRKKY ∼ J 2. In the weak-J regime
this dominates over the exponentially small Kondo scale, while
the Kondo effect sets in for sufficiently strong J > JD [21–23].

This competition between Kondo screening and RKKY
interaction is also qualitatively modified by quantum confine-
ment [24–27]: For coupling strengths weaker than J�, where

J� is defined by the condition � = TK(J�), the conventional
Kondo effect is replaced by a “finite-size Kondo effect,” where
an impurity spin is screened by forming a singlet with a
single conduction electron occupying the fully delocalized
one-particle state at the Fermi energy. The energy to break
this singlet scales linearly (rather than exponentially) with J

and therefore the finite-size Kondo effect dominates over the
RKKY interaction for J → 0. Hence, with decreasing J there
is a reentrance of the Kondo effect [24].

In this paper we focus on the conditions under which dif-
ferent magnetic moments (impurity spins) in a nanostructure
can be individually screened. To investigate possible screening
mechanisms on the linear-in-J scale, we consider a generic
multi-impurity Kondo model involving a conduction-electron
system with a finite number of sites. In the weak-coupling limit
J < J�, the physics of this model is accessible by standard
perturbation theory. In particular, we study the case where the
electronic structure of the noninteracting conduction-electron
system exhibits more than one single-particle state at the Fermi
energy εF due to symmetries of the confinement geometry.
There are several questions to be answered in this context,
e.g., which states at εF provide a “channel” for the screening
of an impurity spin? How many impurity spins can be screened
for J → 0? In which way does the geometry and the electronic
structure of the nanosystem affect the screening?

Gapless Kondo models (� = 0) with higher spin quan-
tum numbers or multiple screening channels [28–32] have
attracted considerable interest in the past since their low-
energy properties cannot be captured by local Fermi-liquid
theory [33,34]. The present paper addresses the simpler but
analogous question: In a nanosystem with several magnetic
impurities and degenerate orbitals at the Fermi energy, when
and how does an overall spin-singlet ground state arise? Are
there analogs of underscreening and overscreening?

A highly interesting question concerns the crossover from
the physics of the “finite-size multichannel Kondo effect” to
the physics of the gapless system, realized in the thermody-
namic limit. This crossover should be visible when extending
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the nanostructure in size, corresponding to the limit � → 0
and J� → 0, or when increasing J and thereby approaching
the regime J > J� where finite-size effects no longer matter.
With increasing coupling strength, the individual screening on
the linear-in-J scale is expected to be replaced by nonlocal
magnetic correlations due to the operation of the RKKY
coupling at order J 2 until, on further increasing the coupling
toward the strong-J limit, the standard Kondo effect is again
recovered.

To elucidate our ideas with concrete examples we consider
the two-impurity Kondo model on a one-dimensional lattice
in a ring geometry. This model not only shows individual
screening of the two impurity spins for J → 0, depending
on details of the geometry and electronic structure, but also
exhibits various crossovers as a function of J and of the
system size. These are studied numerically by employing
the density-matrix renormalization group (DMRG) [35,36] as
well as the numerical renormalization group (NRG) [37,38].
We use a matrix-product implementation and a folded-chain
geometry to account for the periodic boundary conditions
within the DMRG. Application of the NRG implementation
to an impurity (or multi-impurity) system with a discrete bath
requires a specific adaption of the theory and the numerical
algorithm to perform the Wilson-chain mappings.

The paper is organized as follows: After briefly introducing
the model in Sec. II, the general perturbative theory is
explained in Sec. III. Results obtained with the DMRG and
the NRG for the two-impurity Kondo model on a finite ring
are discussed in Secs. IV and V, respectively. A summary and
the conclusions are given in Sec. VI.

II. MULTI-IMPURITY KONDO MODEL

Using standard notations, the multi-impurity Kondo model
on a lattice of finite size is given by the following Hamiltonian:

H = H0 + H1 =
∑
ii ′σ

tii ′c
†
iσ ci ′σ + J

R∑
r=1

sir · Sr . (1)

The first part H0 describes a system of N noninteracting
conduction electrons moving on a lattice of arbitrary di-
mension and geometry consisting of L sites. There is a
spin-degenerate orbital |i,σ 〉 at each site i, and σ = ↑,↓ is the
spin projection. c†iσ and ciσ are the corresponding creators and
annihilators. Since we wish to address the physics of magnetic
nanostructures, we take L to be finite. Diagonalization of the
spin-independent tight-binding hopping matrix tii ′ ,∑

ii ′
U

†
kg;i tii ′Ui ′;k′g′ = εkδkk′δgg′, (2)

yields the set of one-particle energies εk and one-particle
eigenstates |k,g,σ 〉, where the index g = 1, . . . ,G(k) accounts
for the possible degeneracy of εk arising, e.g., due to spatial
symmetries of the nanostructure. The unitary matrix U has
elements Ui;kg = 〈i,σ |k,g,σ 〉 and is spin independent. Three-
dimensional systems with linear extension in the range of ∼10
nm correspond to a level spacing �εk = εk+1 − εk of the order
of some tens of Kelvins.

The second part H1 describes R magnetic impurities,
modeled as spins with spin quantum number S = 1/2. Each

impurity is coupled by a local antiferromagnetic exchange
J > 0 to the conduction-electron system. The rth spin Sr

interacts with the local conduction-electron spin density sir =
1
2

∑
σσ ′ c

†
ir σ

σ σσ ′cirσ ′ at site ir . Here σ denotes the vector of
Pauli matrices.

The physics of this model in the thermodynamic limit
with L → ∞ is highly complex and characterized by a
subtle competition [21–23] between Kondo screening on
a scale given by the Kondo [1] temperature TK and the
indirect RKKY [18–20] magnetic coupling JRKKY. While
the RKKY coupling is a perturbative concept and obtained
with second-order-in-J perturbation theory, the Kondo effect
is nonperturbative with ln TK ∼ −1/J . Because the Kondo
temperature is exponentially small, the RKKY coupling
JRKKY ∼ J 2 dominates in the weak-J regime.

As was pointed out in Ref. [24], this picture may change
qualitatively for systems of finite size L when TK ∼ �, where
� is the finite-size gap at the Fermi energy. In this case, the
logarithmic Kondo correlations are cut by the finite system
size [10], and the universal Kondo effect is replaced by a
“finite-size Kondo effect.” The latter is characterized by a
linear-in-J energy scale, whose precise value depends on
details of the geometry and electronic structure, and which
dominates over the RKKY interaction as J → 0. Since the
finite-size gap � regularizes the problem, the finite-size Kondo
effect should be well accessible to standard perturbation theory
for coupling strengths J < J�, where J� is given by the
condition � = TK(J�). Since ln TK ∼ −1/J for the infinite
system [1], we have J � −1/ ln �.

III. EFFECTIVE LOW-ENERGY THEORY

Let |FS,γ 〉, with γ = 1, . . . ,�, be the (�-fold degenerate)
N -electron ground state of H0 (the Fermi sea) which is
obtained by occupying all one-particle levels below the Fermi
energy, εk � εF.

One can distinguish between two situations: In the “off-
resonance” case, the ground state is nondegenerate, � = 1,
and the orbitals |kF,g,σ 〉 with g = 1, . . . ,G(kF) at εF = εkF

are fully occupied. Note that this requires an even number of
electrons in the nanostructure. In this off-resonance case, the
interaction H1 can be treated as a perturbation to recover the
effective RKKY model,

HRKKY = 1

2

∑
rr ′

JRKKY,rr ′ Sr · Sr ′ , (3)

where JRKKY,rr ′ is given by J 2 times the nonlocal (r 
= r ′) static
spin susceptibility of the noninteracting conduction-electron
system. In particular, there is no linear-in-J Kondo effect in
this case.

In the following we will concentrate on the “on-resonance”
case where � > 1, i.e., where the one-particle orbitals with
energy εF are incompletely occupied. Note in particular that
this is necessarily the case when the nanostructure hosts an odd
number of electrons N . Employing degenerate perturbation
theory [39] up to linear order in J , the low-energy physics is
captured by an effective model

Heff = P0H1P0, (4)

155104-2



SCREENING MECHANISMS IN MAGNETIC NANOSTRUCTURES PHYSICAL REVIEW B 92, 155104 (2015)

where P0 = ∑�
γ=1 |FS,γ 〉〈FS,γ | is a projector onto the space

of ground states of the unperturbed (J = 0) Hamiltonian. To
compute P0sir P0, we first consider the unitary transformation

c
†
kgσ =

∑
i

Ui;kgc
†
iσ , (5)

which gives

sir = 1

2

∑
kk′,gg′,σσ ′

U
†
kg;ir c

†
kgσσ σσ ′ck′g′σ ′Uir ;k′g′ . (6)

Since the Pauli matrices are traceless, terms with k,k′ 
= kF do
not contribute to P0sir P0:

P0sir P0 = 1

2

∑
gg′,σσ ′

U
†
kFg;ir c

†
kFgσσ σσ ′ckFg′σ ′Uir ;kFg′P0. (7)

The effective low-energy model Eq. (4) can be written as a
spin-only model. To this end we introduce another set of site-
dependent unitary transformations:

c
†
kFασ (ir ) =

∑
g

Vgα(ir )c†kFgσ . (8)

In general, the unitary G(kF) × G(kF) matrices V (ir ) are
different for each site ir (and do not commute); the creator
c
†
kFασ (ir ) is therefore also dependent on ir . V (ir ) are the

transformations that diagonalize the dyadic products ugg′ (ir ) ≡
U

†
kFg;ir Uir ;kFg′ for each ir with r = 1, . . . ,R:∑

gg′
V †

αg(ir )U †
kFg;ir Uir ;kFg′Vg′α′(ir ) = xα(ir )δαα′ . (9)

Trivially, this construction implies that there is a sin-
gle nonzero eigenvalue, xα=1(ir ) = ∑

g |Uir ;kFg|2. The cor-
responding eigenvector has the elements Vgα=1(ir ) =
U

†
kFg;ir /

√∑
g |Uir ;kFg|2 . Using this, and collecting the results,

we find

P0sir P0 = P0

∑
g

|Uir ;kFg|2sF(ir ), (10)

where

sF(ir ) = 1

2

∑
σσ ′

c
†
kFασ (ir )σ σσ ′ckFασ ′(ir )

∣∣∣
α=1

(11)

is the conduction-electron spin on the (spin-degenerate) Fermi
orbital |F,ir ,σ 〉 ≡ c

†
kF,α=1,σ (ir )|vac.〉. Explicitly, we have

|F,ir ,σ 〉 = 1√∑
g |Uir ;kFg|2

∑
g

U
†
kFg;ir

∑
i

Ui;kFg|i,σ 〉. (12)

The goal of the transformation (8) is to cast the effective
Hamiltonian in a spin-only form. With the definition of the
effective coupling,

Jeff(ir ) = J
∑

g

∣∣Uir ;kFg

∣∣2
, (13)

Eq. (4) follows as

Heff = P0

R∑
r=1

Jeff(ir )sF(ir ) · Sr . (14)

Formally, the effective Hamiltonian has the structure of a
central-spin model with the subspace of conduction-electron
states at the Fermi level as the “central” degrees of freedom.
However, the low-energy physics at weak J decisively depends
on different orbitals |F,ir ,σ 〉 that define the conduction-
electron spins sF(ir ) to which the impurity spins Sr are
coupled. These orbitals are degenerate one-particle eigenstates
of H0 with energy εF which are delocalized over the entire
lattice. Since |F,ir ,σ 〉 is in general different for each impurity
spin Sr , Eq. (14) may represent an unconventional central-spin
model.

Depending on the details of the geometry and the electronic
structure, the values of Jeff(ir ) and also the definitions of sF(ir )
in Eq. (14) can be very different. Several distinct situations can
arise, which we discuss now in turn.

First, the coupling constant Jeff(ir ) for a particular impurity
spin Sr can vanish if |Uir ;kFg|2 = 0 for all g (i.e., each
conduction-electron wave function Ui;kFg has a node at the
site ir ). In this case, there is no finite-size Kondo screening
of the impurity at site ir on the linear-in-J scale, and second-
order perturbation theory including RKKY couplings must
be employed to understand the lowest-energy physics. By
contrast, an impurity at another site ir ′ with finite Jeff(ir ′)
can still be screened by forming a delocalized spin-singlet
state with a conduction electron at εF. This situation was
discussed in Ref. [24] for the case with G(kF) = 1 but � = 2
(a single level at the Fermi energy, with an odd total number of
electrons), in the context of a one-dimensional Kondo model
at half-filling with up to three impurities.

Second, we consider the case G(kF) = 1 and odd N , as
above, but for a Fermi wave function Uir ;kF ≡ Uir ;kFg=1 which
is nonvanishing at all impurity sites ir . An illustration is given
by Figs. 1(a) and 1(b). Depending on details of the geometry,
the resulting coupling Jeff(ir ) is possibly site dependent. Since
G(kF) = 1, the matrices V (ir ) reduce to 1 × 1 “matrices”
trivially [V (ir ) = 1 = 1], and all impurity spins Sr couple to
the spin of the same orbital |F,σ 〉 ≡ |F,ir ,σ 〉. In this case, the
effective model reduces to a conventional central-spin model,

Heff = P0sF ·
R∑

r=1

Jeff(ir )Sr , (15)

with a single central spin sF which is independent of ir .
This situation can be viewed as an antiferromagnetic

Heisenberg model on a bipartite “lattice,” with the central spin
sF on an “A sublattice” site and the impurity spins Sr on the “B
sublattice” sites. Hence, the Lieb-Mattis theorem [40] applies:
The ground state has total spin Stot = (R − 1)/2, i.e., there
is exactly one screening channel. For R � 2, this results in
“underscreening” of the impurity degrees of freedom (whereby
the overall ground state remains degenerate). The intuitive
picture is that all impurity spins are antiferromagnetically
aligned to the central spin 〈sF · Sr〉 < 0, which implies
ferromagnetic impurity spin correlations 〈Sr · Sr ′ 〉 > 0.

This underscreening phenomenon can be seen most clearly
in the special case of a translationally invariant D-dimensional
finite lattice comprising L < ∞ sites (for example, a ring
geometry in D = 1). The periodic boundary conditions in this
case imply that the modulus square of the Fermi wave function
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FIG. 1. (Color online) Schematic illustration of the effective low-
energy theory: (a) Multi-impurity Kondo model with hopping t and
antiferromagnetic exchange coupling J . Example with two impurity
spins S1 and S2 coupled to the conduction-electron spins at sites i1

and i2 of a one-dimensional chain. (b) One-particle eigenenergies εk

for J = 0. A single electron occupies the nondegenerate one-particle
state at the Fermi energy εF. � (�′) is the finite-size gap. For 0 <

J  t the effective low-energy model Heff (dashed line) is given by
a central-spin model with effective couplings Jeff (ir ) between Sr and
the spin sF of the delocalized one-particle state at εF. Only a single
screening channel is available in this case.

Uir ;kFg is independent of the site index ir . Hence

Heff = P0Jeff sF ·
R∑

r=1

Sr . (16)

The model can then be straightforwardly solved by using
the standard rules for adding angular momenta: The ground
state of Heff in Eq. (16) with ground-state energy Eeff,0 =
−Jeff(R + 1)/4 is obtained for maximum total impurity-spin
quantum number Simp = R/2 and for total spin quantum num-
ber Stot = Simp − 1

2 , consistent with the Lieb-Mattis theorem,
and is (2Stot + 1)-fold degenerate. The z components of sF and
of the total impurity spin Simp = ∑

r Sr in the ground state with
maximal magnetic quantum number Mtot = Stot are given by
〈sF,z〉 = − 1

2 + 1
R+1 and 〈Simp,z〉 = R

2 − 1
R+1 , respectively.

Finally, and most interesting, we discuss the case where
each impurity spin Sr couples to a different conduction-
electron spin, corresponding to the Fermi orbital |F,ir ,σ 〉.
The inner product of the Fermi orbitals is given by

〈F,ir ′ ,σ ′|F,ir ,σ 〉 = δσσ ′
∑

g Uir′ ;kFgU
†
kFg;ir√∑

g

∣∣Uir′ ;kFg

∣∣2
√∑

g

∣∣Uir ;kFg

∣∣2
. (17)

Suppose that all orbitals |F,ir ,σ 〉 are mutually orthogonal and
that the number of impurity spins R is equal to the degeneracy
of the Fermi energy G(kF). In this case, the effective model (14)
describes a Heisenberg model which decomposes into a set
of R = G(kF) decoupled antiferromagnetic subsystems, each

consisting of an impurity spin Sr and the corresponding
conduction-electron spin s(ir ). The ground state is then a total
spin singlet—there are as many screening channels as impurity
spins, and one has “perfect” screening. The degeneracy of
the one-particle eigenenergies at the Fermi level, and mutual
orthogonality of the states |F,ir ,σ 〉, typically results from
spatial symmetries of the system. A concrete example of this
is discussed in Sec. IV.

The case R > G(kF) corresponds to underscreening, since
the number of available orthogonal Fermi orbitals is insuf-
ficient to form independent singlets with all impurity spins.
Consequently, some of the impurity spins do not couple to
the conduction-electron systems (to first order in J ), leaving a
spin-degenerate ground state.

On the other hand, if R < G(kF), there are more screening
channels than necessary. However, each impurity spin Sr is
coupled to at most one conduction-electron orbital |F,ir ,σ 〉,
precluding the frustrated “overscreening” of any given im-
purity. In this case, some of the Fermi electrons simply
remain decoupled from the impurities, giving rise to a trivial
ground-state degeneracy.

If the inner product (17) is finite, the situation is more
complicated because the creators and annihilators defining the
conduction-electron spins in Eq. (14) do not refer to orthogonal
orbitals. Generally this leads to an unconventional central-
“spin” model, where the Fermi electrons can interact with more
than one impurity. This case requires a different numerical
approach, and will be discussed in a separate paper [41].

IV. CROSSOVERS BETWEEN STRONG COUPLING
AND KONDO OR RKKY REGIMES

Having explored the expected physics of finite-sized mag-
netic nanostructures on general grounds, we turn now to a
specific example with R = 2 impurity spins coupled to a
conduction-electron system with doubly degenerate orbitals
at the Fermi energy [G(kF) = 2].

Going beyond the analysis of the previous section, here we
also consider the various crossovers expected to arise upon
increasing the strength of the exchange coupling J . These
crossovers are manifest in the evolution of zero-temperature
static spin-spin correlation functions, which we calculate
numerically. In particular, when the two impurities are locked
together into a spin singlet, we expect 〈S1 · S2〉 = − 3

4 for
the interimpurity spin correlation. This situation pertains
when the impurities are coupled by an effective nonlocal
antiferromagnetic RKKY interaction. On the other hand, if
the Kondo effect dominates (and provided both impurity
spins can be screened), we expect 〈Sr · stot〉 = − 3

4 for the
correlation between each impurity spin r = 1,2 and the
total conduction-electron spin stot = ∑

i si . The interimpurity
correlation should vanish in this case, 〈S1 · S2〉 = 0, signaling
that the impurities are decoupled from each other.

The question of which process dominates is a subtle one,
since the RKKY coupling cannot be treated as an independent
parameter but rather depends on the Kondo coupling J .
Furthermore, besides the RKKY coupling JRKKY and the
Kondo temperature TK, the finite-size gap � represents a third
energy scale. The competition between these is the focus of
our present study.
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As a concrete example, we now consider a one-dimensional
lattice with a finite, but possibly large number of sites L, to
which two spin- 1

2 impurities are coupled. This two-impurity
Kondo model can be solved for arbitrary coupling strength J

by numerical means, as discussed further below.
Specifically, we assume a nonzero hopping tij = −t be-

tween nearest neighbors i and j of a one-dimensional lattice,
and set t = 1 to fix the energy scale. Two impurity spins
S1 and S2 are coupled to nearest-neighbor sites i1 and i2.
We realize twofold degenerate Fermi orbitals G(kF) = 2 by
imposing periodic boundary conditions (i.e., a ring geometry).
The model is studied at zero temperature and half-filling
(N = L electrons).

The hopping matrix is diagonalized [cf. Eq. (2)] by discrete
Fourier transformation,

Ui;kg = 1√
L

e±ikRi , (18)

with the “+” sign for g = 1 and “−” sign for g = 2, wave
vector k = −(π/a) + n�k (where n = 0,1, . . . ,L − 1), and
position vector Ri = i · a for site i = 0,1, . . . ,L − 1. Here
a is the lattice constant and �k = 2π/(aL). Note that the
effective couplings (13) do not vanish since |Ui;kg|2 
= 0. The
twofold degenerate one-particle energies are given by

εk = −2t cos(ka). (19)

This results in a finite-size gap at the Fermi energy of � =
2t sin(2π/L) ∝ 1/L for large L.

For moderate system sizes up to L = 100 and intermediate
coupling strengths, numerical results for the static T = 0
spin-spin correlators 〈S1 · S2〉 and 〈Sr · stot〉 can be accu-
rately obtained using the density-matrix renormalization group
(DMRG) [35]. We implement here a standard scheme based
on matrix-product states and matrix-product operators; see
Ref. [42] for a brief discussion of the algorithm, and Ref. [36]
for a general overview of matrix-product-state techniques.

Usually DMRG is formulated for and applied to one-
dimensional systems with open boundaries. To employ the
standard algorithm for the present case with periodic bound-
aries, we first consider the open chain consisting of L sites
and connected by nearest-neighbor hopping terms ti,i+1 and
ti+1,i for i = 1, . . . ,L − 1 as usual. The chain is folded in half
and connected at the open end with the missing hopping terms
t1,L and tL,1 to generate a new half-length chain with new
“sites” consisting of pairs (i,L − i + 1) of original sites. We
let the standard DMRG algorithm operate on the new sites. The
approach avoids long-range hopping terms in the Hamiltonian
(which are unfavorable for the scaling of DMRG), at the cost
of an enlarged local Hilbert space. We address larger system
sizes and weaker J in Sec. V using an alternative approach
based on the numerical renormalization group [37,38].

We discuss first off-resonance situations, realized at half-
filling for L = 4m + 2 with integer m—see Fig. 2 for an illus-
tration. Here the ground state for J = 0 is the nondegenerate
Fermi sea, and all one-particle states at εF are completely filled.
Recall from Sec. III that no linear-in-J finite-size Kondo effect
can arise in the off-resonance case, because all Fermi orbitals
are completely occupied. Instead, the effective low-energy
physics in the limit J → 0 is described by the RKKY model,
Eq. (3). The sign of the RKKY exchange coupling depends

J

t

S2

S1
i2

i1 en
er

gy

εF

εk

J

k

FIG. 2. (Color online) Left: Two-impurity Kondo model on a
finite one-dimensional lattice with periodic boundary conditions.
Off-resonance case with L = 4m + 2 (illustrated for m = 1). Right:
Schematic picture of the one-particle eigenenergies εk for J = 0.
Eigenenergies (except for the lowest and highest) are twofold
degenerate, G(kF) = 2. εF denotes the highest occupied one-particle
energy. At half-filling N = L the one-particle states at εF are fully
occupied.

on the distance d ≡ |i1 − i2| between the impurity spins;
for the present case of a half-filled one-dimensional system,
JRKKY ∝ (−1)d+1. In particular, for nearest neighbors (d = 1)
the coupling is antiferromagnetic, JRKKY > 0.

Figure 3 shows DMRG results for the interimpurity
correlations 〈S1 · S2〉 and for the correlation between one
of the impurity spins and the total conduction-electron spin
〈S1 · stot〉. Note that reflection symmetry implies 〈S1 · stot〉 =
〈S2 · stot〉. Results have been obtained for different system
sizes L = 10,50,98. Figure 3 demonstrates that the impurities
are indeed effectively decoupled from the conduction-electron
system for J → 0, as is indicated by the vanishing correla-
tion function 〈S1 · stot〉 → 0. The antiferromagnetic RKKY
exchange, coupling impurity spins S1 and S2, is dominant at
weak coupling. This results in the formation of a nonlocal
RKKY singlet, with 〈S1 · S2〉 → − 3

4 as J → 0.
With increasing J one observes a smooth crossover from

this RKKY regime to a strong-coupling regime where the
two impurity spins are separately screened by the conduction
electrons. This is reflected by a vanishing interimpurity cor-
relation 〈S1 · S2〉 → 0 as J → ∞, and by Kondo correlations
〈Sr · stot〉 → − 3

4 . For large J , the Kondo effect simply reduces
to the formation of entirely local singlets, i.e., we find
〈Sr · sir 〉 → − 3

4 for the local Kondo correlation function (not
shown in the figure).

The system-size dependence of the crossover from RKKY
to Kondo physics is quite regular in the off-resonance case, and
the results for L = 98 are rather representative of the physics
in the thermodynamic limit L → ∞. This is demonstrated
explicitly and discussed further in Sec. V. The off-resonance
behavior here can be understood from the conventional
Doniach scenario [21]; it is associated with a characteristic
coupling strength JD separating RKKY and Kondo regimes.

However, the on-resonance situation (realized here for L =
4m, see Fig. 4) is more complex, since there one expects a
second crossover on the scale of J� to a regime dominated
by the linear-in-J finite-size Kondo effect. We explore this
physics now in the context of full DMRG results with L =
12,48,100 presented in Fig. 3.

First, we comment briefly on the strong-coupling limit
J � JD,J�. Here the physics is essentially the same as
that arising in the off-resonance case, both being dominated
by strong local spin correlations 〈Sr · sir 〉. Details of the
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FIG. 3. (Color online) Evolution of the spin-spin correlation
functions 〈S1 · S2〉 (top) and 〈S1 · stot〉 (bottom) with J , as obtained
from DMRG for various system sizes L. Off-resonance cases for
L = 4m + 2 (lines), on-resonance cases for L = 4m with integer m

(dots). See Fig. 2 for a schematic of the setup.

electronic structure close to the Fermi level then become
irrelevant. This can be seen directly by comparing the off- and
on-resonance situations (lines vs dots) in Fig. 3. For example,
the same basic behavior is found for all J > 1 with L = 98
and L = 100 (green lines and dots); and agreement becomes
essentially quantitative for J > 3 or so.

By contrast, on- and off-resonance cases are qualitatively
very different at weak coupling. Here the low energy details of
the conduction-electron system become important. In the on-
resonance case, the one-particle states at the Fermi energy are

J

t

S2
S1

i2i1 en
er

gy

εF

εk

J

k

FIG. 4. (Color online) Same as Fig. 2, but for an on-resonance
case with L = 4m (illustrated here for m = 2). At half-filling N = L,
the one-particle states at εF are partially occupied.

half-filled, as sketched in Fig. 4. The resulting degeneracy of
the many-body ground state at J = 0 gives rise to a linear-in-J
Kondo scale, which dominates as J → 0. The effective low-
energy model is then given by Eq. (14).

Indeed, our DMRG results are indicative of a vanishing
interimpurity correlation 〈S1 · S2〉 → 0 as J → 0, implying
that the RKKY interaction is inoperative at weak coupling.
Strong Kondo correlations do however appear to develop,
with 〈Sr · stot〉 → − 3

4 as J → 0. This is seen clearly from
the numerics with L = 12 (and results for L = 48 are highly
suggestive). However, we were unable to stabilize well-
converged DMRG results for larger systems and smaller J ,
due to the need to resolve small energy scales � ∼ 1/L, and
the development of highly extended entangled ground states.
Nevertheless, the results are consistent with our expectation
that the ground state for L = 4m is an overall spin-singlet,
with each impurity being separately screened.

In contrast to the strong-coupling (large J ) limit, where
the screening can be visualized as two spatially separated
and almost perfectly localized Kondo singlets, for small
J < J� the “Kondo clouds” extend over the entire system
(i.e., they have extent L). This implies the existence of two
different screening channels. Similarly, in the thermodynamic
limit L → ∞, it was pointed out in Ref. [22] that perfect
and essentially independent Kondo screening can take place
for nearby impurities, even though their Kondo clouds are
extended and substantially overlapping in real space. The
difference, however, is that as L → ∞ the conduction-electron
system becomes gapless � → 0, and the Kondo cloud for a
single impurity then has extent ξK ∼ vF/TK (with vF the Fermi
velocity), which can be understood from a renormalization
group perspective [3].

The DMRG results are fully consistent with the implica-
tions of the effective low-energy Hamiltonian (14). For J < J�

the two impurities interact with a central region given by
the one-particle states at εF and the two Fermi electrons. To
determine whether the impurities couple to orthogonal states
or not, we evaluate Eq. (17) using the wave functions given by
Eq. (18):

〈F,i1,σ
′|F,i2,σ 〉 = δσσ ′ cos[kF(Ri1 − Ri2 )]. (20)

Note the different dependence on the distance as compared to
the RKKY coupling, which is JRKKY ∝ cos[2kF(Ri1 − Ri2 )].
At half-filling, the Fermi wave vectors are kF = ±π/2a. With
|R1 − R2| = a · d, we have 〈F,i1,σ |F,i2,σ 〉 = cos(πd/2). In
the case of nearest-neighboring impurities (d = 1) the matrix
element vanishes, implying that the impurity spins couple to
orthogonal channels, and are screened separately (see Fig. 5).

To summarize these findings: For very large J , each
impurity is Kondo screened by conduction-electron states
which are highly localized in real space. As J is decreased, the
Kondo screening becomes more delocalized. As J is reduced
further, below JD, there is a crossover to an interimpurity
RKKY singlet state. In the off-resonance case, the RKKY
interaction continues to dominate as J → 0. But in the
on-resonance case, a second crossover arises on the scale of
J� to a state characterized by the finite-size Kondo effect,
with orthogonal Kondo clouds spreading over the entire
lattice. Provided J�  JD, these regimes will be distinct, and
re-entrant Kondo physics should be seen.
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FIG. 5. (Color online) Schematic picture of the effective low-
energy model of the system depicted in Fig. 4. The site-dependent
unitary transformation V (ir ) generates orthogonal Fermi orbitals.

Since � ∼ 1/L in one dimension and thus J� ∼ 1/ ln L,
one generally expects that two successive crossovers will be
cleanly observed upon decreasing J for larger system sizes.
This is of course physically sensible, since in the L → ∞
limit, the second (finite-size Kondo) crossover is pushed to
J → 0, and becomes unobservable. By contrast, for small L

(see, e.g., DMRG results for L = 12 and 48 in Fig. 3), J� and
JD are not well separated. Then, the RKKY regime is never
fully realized, and 〈S1 · S2〉 > − 3

4 for all J .
Finally, we touch on the physics arising when the impurity

spins are separated by an even distance d. Here the modulus
of the overlap (20) is unity, implying that both impurity spins
couple to the spin in the same Fermi orbital. The ground state
in this case is a tensor product of the (underscreened) doublet
ground state of the corresponding central-spin model, and the
Kramers doublet of the Fermi sea (with the remaining unpaired
electron at εF).

V. APPROACHING THE THERMODYNAMIC LIMIT

For substantially larger systems, one expects that J�  JD.
In this case, a well-defined RKKY regime should develop,
manifest by interimpurity spin correlations approaching 〈S1 ·
S2〉 → − 3

4 . Furthermore, the distinction between on- and off-
resonance cases must become irrelevant in the thermodynamic
limit L → ∞ for coupling strengths J � J� ∼ 1/ ln L → 0.
Then, the conduction-electron system becomes gapless, and
it is unimportant that states precisely at the Fermi energy are
either fully or partially occupied.

As discussed in Sec. IV, larger systems and weaker
couplings cannot in practice be investigated with DMRG.
To understand the evolution on increasing the system size
to approach the thermodynamic limit, we now employ a
different but complementary approach, based on the numerical
renormalization group (NRG) [37].

Traditionally, NRG is used for single impurities coupled to
gapless conduction-electron systems in the thermodynamic
limit (for a review, see Ref. [38]). In that case, NRG is
known to provide accurate and efficient access to a wide
range of thermodynamic [37] and dynamic [43,44] quantities,
at essentially any temperature or energy scale. Although

generalization of NRG to systems with several conduction-
electron channels requires significantly greater computational
resources [45,46], detailed results for two impurities separated
in real space on a three-dimensional lattice with L → ∞ were
recently obtained in Ref. [22]. Note that NRG can be used
for impurity models of any geometry and dimensionality,
unlike DMRG which is usually confined to one spatial
dimension.

To study finite systems with NRG, we generalize the
standard formulation. In particular, two features of the current
problem are nonstandard and must be treated differently.
First, the conduction-electron density of states for the finite
system consists of a set of discrete poles located at εk ,
rather than a continuum. Second, in the on-resonance case
of particular interest, there is a pole located at the Fermi
energy, which controls the low-energy physics. At the heart
of NRG lies a logarithmic discretization of the conduction-
electron spectrum; in the present context, the spectrum is
already discrete, and a pole at the Fermi energy cannot
be resolved on the logarithmic scale. Our NRG implemen-
tation, which overcomes these issues, is discussed in the
Appendix.

In the following we discuss our NRG results, obtained
for the effective two-impurity, two-channel setup using a
logarithmic discretization parameter � = 2 and retaining
NK = 15 000 states at each step of the iterative process. We
exploit total charge and spin-projection quantum numbers (but
so-called z-trick averaging was not used). In all cases, we have
verified that the results are fully converged with respect to
NK, indicating that the discretized model is solved exactly by
NRG.

Figure 6 shows NRG results (lines) for the full J depen-
dence of the interimpurity spin correlation 〈S1 · S2〉, obtained
for different system sizes from L = 10 up to L = 105. For
small L, the previously discussed DMRG results are included
for comparison (circle points). Off-resonance cases (L =
4m + 2) are shown in black; on-resonance cases (L = 4m)
in blue.

For very large system sizes, both on-resonance (L = 105)
and off-resonance (L = 105 + 2) cases agree perfectly with
results in the thermodynamic limit L → ∞ (red cross points),
where NRG should give numerically exact results [38]. In the
other extreme, for very small system sizes L = 10 and L = 50
(off-resonance) or L = 12 and L = 48 (on-resonance), NRG
agrees very well with the available DMRG data. This is a
nontrivial result, since NRG involves a rediscretization of
the conduction-electron spectrum, which itself only contains
L/2 poles (see Appendix). However, for the on-resonance
case L = 100, we start to see a more significant deviation
between the depth of the minimum in 〈S1 · S2〉 calculated
using DMRG and NRG. This discrepancy can be traced to
the discretization in NRG. Results obtained using different �

indicate that this discrepancy diminishes as � → 1, where the
bare model is recovered. We also found for a given � > 1 that
the DMRG results are recovered using NRG with a slightly
larger L, i.e., the effect of discretization in NRG can be also
be thought of as a slight renormalization of the system size
L. The general trend exhibited as L increases is, however,
consistent with expectation from Secs. III and IV, as now
discussed.
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FIG. 6. (Color online) Evolution of 〈S1 · S2〉 with J , as obtained from NRG for various system sizes L (on-resonance cases: blue lines,
off-resonance cases: black lines). Crosses: continuum result in the limit L → ∞ obtained by standard NRG. DMRG data from Fig. 3 are shown
for comparison (circles).

We find that the results for the off-resonance case L =
4m + 2 converge uniformly and rapidly with increasing L.
In all such cases, 〈S1 · S2〉 → − 3

4 as J → 0, indicating the
dominant RKKY mechanism at weak coupling.

In the on-resonance cases with finite but large L = 1000
and L = 10 000, the spin correlations 〈S1 · S2〉 displayed in
Fig. 6 clearly reflect a dominant RKKY coupling mechanism
in the intermediate-J range. In particular, the minimum
in 〈S1 · S2〉 approaches − 3

4 , symptomatic of interimpurity
singlet formation. In this regime, the corresponding value
of 〈Sr · stot〉 = − 3

4 − 〈S1 · S2〉 ≈ 0 indicates vanishing Kondo
correlations. The crossover from the strong-coupling Kondo
to this RKKY regime is nearly independent of system size and
is located at JD ∼ 1–2.

On the other hand, the crossover from the RKKY regime
to the finite-size two-channel Kondo screened ground state
takes place on the scale of J� ∼ 1/ ln L. For J � J�, the
spin-spin correlations coincide with the continuum result
(L → ∞); only in the range 0 < J < J� does one see marked
deviations. However, this regime progressively shrinks to
zero as J� ∼ 1/ ln L → 0, indicating that the weak-coupling
limit J → 0 and the thermodynamic limit L → ∞ do not

commute. For system sizes L = 100 and smaller, J� and JD

are of comparable size; then only incipient RKKY effects are
observed. The clean crossover to a distinct RKKY regime is
only observed for larger L.

The nontrivial weak-coupling physics is further examined
in Fig. 7. The lower panels show the characteristic energy scale
Ts which is necessary to break the singlet ground state for both
off-resonance (left panel) and on-resonance (right panel) cases.
This energy scale also controls the renormalization-group flow
to the stable fixed point describing the ground state within
the NRG scheme. Clearly one would expect that Ts ∝ J 2 in
the off-resonance case corresponding to the effective RKKY
model (3) and Ts ∝ J in the on-resonance case corresponding
to the central-spin model (14). To check this, we have
calculated with NRG the full (zero temperature) dynamical
correlation function 〈〈S1; S2〉〉ω, i.e., the Fourier transform of
iθ (t)〈S1(t) · S2(0)〉, following Ref. [44]. As ω → 0, we find
〈〈S1; S2〉〉ω → 0—the vanishing of the correlator indicates
spin-singlet formation. At finite ω ∼ Ts , however, 〈〈S1; S2〉〉ω
shows a peak resulting from spin-flip fluctuations. Hence, Ts

can be interpreted as the energy scale for singlet formation.
From the lower panels of Fig. 7 we can read off the following
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FIG. 7. (Color online) Upper panels: J dependence of 〈S1 · S2〉 for small J for various system sizes L. Lower panels: J dependence of
the low-energy scale Ts , corresponding to singlet formation. Distinct asymptotic scaling is found for off-resonance cases (left panels) and
on-resonance cases (right panels). Results obtained by NRG.

asymptotic behavior:

Ts

J→0∼ J 2 (off resonance),

Ts

J→0∼ J (on resonance), (21)

which nicely agrees with our expectations, and confirms the
perturbative analysis.

In the upper panels of Fig. 7, the asymptotic scaling
behavior of 〈S1 · S2〉 is analyzed for the weak-J limit. For
the off- and the on-resonance case we find

〈S1 · S2〉 J→0= −3

4
+

(
J

J̃

)2

(off resonance),

〈S1 · S2〉 J→0= −
(

L

L0

)
×

(
J

t

)
(on resonance), (22)

respectively. Here J̃ = J∞ + a/ ln(bL) has a weak logarith-
mic dependence on system size, and L0 ≈ 300 (a and b are
constants). Within the perturbative regime defined by Eqs. (3)
and (14), the spin correlations cannot exhibit a J dependence
(there is only a single energy scale). The corrections ∝J 2 and
∝J given by Eq. (22) therefore reflect the J dependence of
terms in higher-order perturbation theory.

VI. CONCLUSIONS

The physics of multiple magnetic impurities embedded
in a host metal is characterized by the competition between
Kondo screening and RKKY interactions. In quantum confined
nanostructures, the picture changes qualitatively and the
physics is far richer. In particular, there are parity effects,
and a new regime can emerge at weak coupling dominated by
finite-size effects.

For a single impurity, the finite-size effects [10–14] can
be viewed in two complementary ways. If the conduction-
electron spectrum has a gap � around the Fermi energy
that is larger than the Kondo temperature TK, then spin-flip
scattering and the Kondo effect is suppressed. If there is no
conduction-electron state at the Fermi energy εF (the so-called
off-resonance case), the impurity remains unscreened down
to T = 0. But in the on-resonance case, a state precisely at
εF can bind with the impurity and screen its spin through
singlet formation. This is the finite-size Kondo effect, and
scales linearly in the impurity-host coupling J . Since the
finite-size gap cuts off the Kondo correlations on the scale
of �, the physics on the lowest energy scales is perturbatively
accessible.

Alternatively, one can think of the problem in real space:
if the Kondo screening cloud of extension ξK cannot fit inside
a nanostructure of finite size L, then the Kondo effect is
replaced by its finite-size variant, in which impurity screening
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involves a delocalized conduction-electron state spanning the
entire system.

In finite systems with several impurities [15–17], the RKKY
scale must also be considered. In the off-resonance case,
the impurities become coupled by the RKKY interaction
on the lowest energy scales. For two impurities, they can
collectively either form a singlet or a triplet state, depending
on whether the RKKY interaction is antiferromagnetic or
ferromagnetic. Which is realized in practice depends on details
of the nanostructure geometry and electronic structure, and is
encompassed by standard RKKY theory.

But, since the RKKY interaction scales as J 2, the finite-size
Kondo effect dominates at weak coupling in the on-resonance
case. This physical picture implies that for a particular
system, on decreasing the coupling J , one can realize two
successive crossovers: first from a standard Kondo strong-
coupling state to the RKKY-dominated regime, and then on
further decreasing J , to the finite-size Kondo regime. At weak
coupling J → 0, the finite-size Kondo effect always wins
out in the on-resonance case. But if several impurities are
present, can they all be screened by finite-size Kondo effects?
If not, does underscreening lead to degenerate ground states?
Is frustrated overscreening a possibility?

In this paper we answer these questions by putting the
general concepts on firm footing. We focused mainly on
the on-resonance case, deriving first an effective generalized
central-spin model at weak coupling. All of the impurities
(despite being located at different sites in real space) couple
to the same small number of conduction-electron states which
lie precisely at εF. Several scenarios can arise, depending on
the nanostructure geometry and electronic structure. We show
that it is entirely possible for each impurity to be coupled
to its own Fermi orbital, allowing exact finite-size-Kondo
screening of all impurities, and an overall spin-singlet ground
state. In other situations, there are insufficient degrees of
freedom at εF to screen all of the impurities. The remaining
unscreened impurities are then coupled together via their
mutual RKKY interaction. Depending on details, this could
either lead to a degenerate ground state or a singlet ground
state, with both finite-size-Kondo and RKKY mechanisms
acting simultaneously on different impurities. We show that
overscreening can never occur, since each impurity is coupled
to at most one conduction-electron state at εF.

The implications of the effective low-energy effective
model were substantiated by full DMRG and NRG calculations
for a system comprising two impurities on a finite one-
dimensional ring of conduction-electron sites. This model,
although simplified, captures a number of features relevant
to magnetic nanostructures. In particular, depending on the
system size, one can realize either on- or off-resonance cases.
Furthermore, the coupling between the impurities and the
Fermi orbitals in the on-resonance case can realize either
exactly screened or underscreened scenarios, depending on
impurity separation.

We also investigated numerically the full crossovers be-
tween finite-size-Kondo, RKKY, and regular Kondo strong-
coupling physics on increasing J for a system of given
size L, going beyond the perturbative analysis. For smaller
systems, where DMRG can be used, the RKKY regime is never
fully realized, since there is competition between RKKY and

finite-size-Kondo effects. But for larger systems, accessible
with NRG, the two crossovers are cleanly observed, with a
distinct intermediate RKKY regime. The final crossover to
finite-size Kondo is pushed to weaker and weaker coupling as
L increases. Approaching the thermodynamic limit L → ∞,
this crossover is pushed to J → 0, as intuitively expected.

It would be interesting to explore the physics of more
realistic finite three-dimensional systems with several impuri-
ties. Analysis of the low-energy effective theory in each case
should elucidate the screening mechanisms. Full numerical
calculations could be implemented, using a block-Lanczos
method [23,47,48] to map the real-space system onto a chain
(or ladder) form amenable to treatment with either DMRG
or NRG. Indeed, flatband models [49–53], which sustain a
macroscopically large number of states at the Fermi energy,
could also be investigated.

Finally, an interesting open question regards the fate of
the impurities when the conduction-electron states at εF are
not perfectly degenerate, as would arise due to symmetry-
breaking perturbations (e.g., real-space distortions or coupling
anisotropies). Then one would expect different screening
mechanisms to be available at different energy scales. In this
context, also the broadening of the energy levels due to a
residual coupling of the nanostructure to the environment
must be considered [11,54–56]. Another related question
concerns particle-hole symmetry breaking, and the relation to
hard-gapped problems [57], where quantum-phase transitions
between Kondo and unscreened states might also be accessible.
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APPENDIX: NRG CALCULATIONS

In this Appendix we describe our implementation of Wil-
son’s NRG [37,38], generalized to treat a system comprising
two spin- 1

2 impurities coupled to neighboring sites of a
fermionic tight-binding ring of L = 2m sites. The physical
setup is illustrated in Fig. 8(a).

The conduction-electron Hamiltonian, H0 in Eq. (1), can
be written in the form

H0 = t

m−1∑
n=1

∑
σ,α=±

(c†αnσ cα(n+1)σ + H.c.)

+ t
∑

σ

(c†+1σ c−1σ + c
†
+mσ c−mσ + H.c.). (A1)

The impurity part of the Hamiltonian is H1 = J (S+1 · s+1 +
S−1 · s−1). We now transform to an even/odd orbital basis for
the conduction electrons, defined in terms of the canonical
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FIG. 8. (Color online) Mappings for the two-impurity model in
NRG. (a) Real-space basis Eq. (A1), with two impurities coupled
to neighboring sites of a tight-binding ring comprising a finite even
number of fermionic sites L = 2m. (b) Even/odd basis Eq. (A2),
with impurities coupled to both even and odd conduction-electron
channels, each comprising L/2 sites. (c) Discretized model Eq. (A6),
with impurities coupled to even and odd Wilson chains, each
comprising N < L/2 sites.

fermions, c(e/o)nσ = 1√
2
(c+nσ ± c−nσ ), viz:

H0 = t

m−1∑
n=1

∑
σ,α=e/o

(c†αnσ cα(n+1)σ + H.c.)

+ t
∑

σ

(c†e1σ ce1σ − c
†
o1σ co1σ + c†emσ cemσ − c†omσ comσ ).

(A2)

For J = 0, the even and odd channels are strictly decoupled.
For finite J , each impurity couples to both even and odd
channels—see Fig. 8(b). This two-impurity problem is thus
manifestly and irreducibly two channel in nature. To use NRG,
we must map each channel α = e/o into the form of a Wilson
chain [37].

NRG is usually used for gapless Fermi systems, and
involves a logarithmic discretization of the (continuous)
conduction-electron density. In the present context of the finite
ring, the J = 0 conduction-electron density of states ρα(ω) for
each channel α = e/o is already discrete,

ρα(ω) =
L∑

p=1

aα(p)δ[ω − ε(p)]. (A3)

However, the poles located at ε(p) are not of course distributed
on a logarithmic energy grid, as required for NRG. Employing
the diagonal representation Eqs. (2), (18), and (19) (together
with the even/odd basis transformation), we find ε(p) =
2t cos[2π

p

L
] and ae/o(p) = 1

L
(1 ± cos[2π

p

L
]).

To perform the Wilson chain mappings, we now rediscretize
(or re-bin) each spectrum ρα(ω) on a logarithmic frequency
grid. This is done by dividing ρα(ω) into intervals of
exponentially-decreasing width, defined by the discretization
points x±

n = ±2t�−n (with n = 0,1,2,3, . . . and � > 1). All
poles in a given interval are replaced by a single pole of the
same total weight to yield,

ρdisc
α (ω) =

∑
n,±

bα(n,±)δ[ω − ξα(n,±)], (A4)

where

bα(n,±) =
L∑

p=1

aα(p)θ [±ε(p) ∓ x±
n+1]θ [±x±

n ∓ ε(p)],

ξα(n,±) =
L∑

p=1

ε(p)aα(p)

bα(n,±)
θ [±ε(p) ∓ x±

n+1]θ [±x±
n ∓ ε(p)].

(A5)

For a given real-space system with L orbitals, the number
and distribution of poles in ρdisc

α (ω) is thus controlled by the
discretization parameter �. In general there are (far) fewer
poles in ρdisc

α (ω) than in the true ρα(ω).
For each channel α, the Wilson chain is now defined

uniquely [37,38] as the one-dimensional tight-binding chain
which has the same local density of states at one end as the
discretized spectrum ρdisc

α (ω),

H disc
0 =

∑
α,σ

[
N∑

n=0

eα
nf †

αnσ fαnσ +
N−1∑
n=0

tαn (f †
αnσ fα(n+1)σ +H.c.)

]
,

(A6)

where N ≡ N (L,�), eα
n ≡ eα

n (L,�), and tαn ≡ tαn (L,�) de-
pend on the original system size L and the discretization
parameter �. The number of Wilson chain orbitals N in each
channel is finite and typically (far) smaller than the original
number of real-space orbitals L. In practice, the Wilson chain
mapping is achieved by Lanczos tridiagonalization [37,38],
using as input the pole weights and positions from Eq. (A5).
The impurity subsystem is then coupled to the end of the
Wilson chains, as depicted in Fig. 8(c).

1. Fermi-level pole

As discussed in Sec. IV, the underlying physics of the model
is expected to be very different, depending on whether or not
the conduction-electron system has a pole at the Fermi level.
With system size L = 2m as above, no Fermi level pole exists
in the off-resonance case for odd m, while a pole of weight
2/L lies precisely at the Fermi level in the on-resonance case
for even m.

When there is no Fermi level pole, we can safely use the
logarithmic discretization scheme embodied by Eq. (A5) to
generate the Wilson chain formulation, Fig. 8(c).

However, in the on-resonance case, the important effect of
the Fermi level pole cannot be captured by a discretization
scheme defined on a logarithmic grid. To this end, we broaden
the Fermi level pole using a Lorentzian of width δ. Specifically,
we replace Eq. (A3) by

ρ̃α(ω) =
L∑′

p=1

aα(p)δ[ω − ε(p)] + L

2

δ/π

ω2 + δ2
, (A7)

where the primed summation indicates that the pole at ε(p) =
0 is excluded. The discretized pole positions and weights from
Eq. (A5) are therefore modified to include the extra density in
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FIG. 9. (Color online) Wilson chain coefficients t e
n × �n/2 and ee

n × �n/2 vs Wilson index n using � = 2 for various system sizes L.

each interval,

b̃α(n,±) = bα(n,±) ± L

2π
arctan

[
δ(x±

n − x±
n+1)

x±
n x±

n+1 + δ2

]
,

ξ̃α(n,±)b̃α(n,±) = ξα(n,±)bα(n,±) ± Lδ

2π
ln

[
(x±

n )2+δ2

(x±
n+1)2+δ2

]
.

(A8)

Note that any finite broadening δ results in an infinite number
of discretized poles (albeit with exponentially decreasing
weight). The Wilson chain mapping can now be performed
as before, and the results examined as a function of δ.

We find that inclusion of the Fermi level pole has a
significant effect on the resulting Wilson chain coefficients.
However, the results converge rapidly with decreasing δ.
Finally, we use δ = 10−10. Although physically this pole
broadening should have negligible effect (being far smaller
than any physical energy scale of the problem, including TK),
its inclusion does affect the Wilson chain coefficients, allowing
the physics of the on-resonance case to be studied with NRG.

Figure 9 shows the resulting Wilson chain coefficients for
the same systems as in Fig. 6. Note that for both on- and
off-resonance cases the Wilson chain is of finite length N

(meaning that tαN = 0). Their nontrivial evolution encodes the
real-space physics of the tight-binding ring.
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2. Iterative diagonalization

The key property of the Wilson chain hoppings tαn is that
they decay exponentially down the chain—Fig. 9. This is
obviously not a property of the physical real-space system,
but arises due to the logarithmic (re-)discretization. As with
Wilson’s original NRG formulation [37,38], this justifies an
iterative process of diagonalization and truncation.

Starting from the impurity subsystem, one builds up the
chains by successively coupling on additional Wilson orbitals.
At a given step n � N , corresponding to a system comprising
the impurities and n Wilson orbitals of each channel, the

Hamiltonian is diagonalized. However, only the lowest-energy
NK states are kept for construction of the Hamiltonian at step
n + 1. Because tαn decay exponentially down the chain, the
discarded high-energy states at iteration n do not cross over
into the low-energy manifold at a later iteration n′ > n. The
physics of the system is therefore examined on successively
lower energy scales as more Wilson orbitals are added,
embodying the RG structure of the problem.

The spin-spin correlators presented in Fig. 6 were obtained
from the full thermal density matrix [44], constructed in the
complete Anders-Schiller basis [43].
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