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Fractional entropy is a signature of nonlocal degrees of freedom, such as Majorana zero modes or more
exotic non-Abelian anyons. Although direct experimental measurements remain challenging, Maxwell
relations provide an indirect route to the entropy through charge measurements. Here we consider
multichannel charge-Kondo systems, which are predicted to host exotic quasiparticles due to a frustration
of Kondo screening at low temperatures. In the absence of experimental data for the charge occupation, we
derive relations connecting the latter to the conductance, for which experimental results have recently been
obtained. Our analysis indicates that Majorana and Fibonacci anyon quasiparticles are well developed in
existing two- and three-channel charge-Kondo devices, and that their characteristic kB log

ffiffiffi
2

p
and

kB log½ð1þ
ffiffiffi
5

p Þ=2� entropies are experimentally measurable.
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A plethora of condensed-matter systems are conjectured
to support exotic quasiparticles, which may serve as basic
ingredients for quantum technologies [1]. However, the
experimental demonstration is debated, and an unambigu-
ous observation is still lacking. For example, current
experimental evidence for the observation of Majorana
fermions (MFs) is based on measurements of zero-bias
peaks in the differential conductance which, however,
may be attributable to other sources [2]. By contrast,
thermodynamic quantities can unambiguously distinguish
MFs from simpler excitations [3–5]. In particular, the
additional entropy due to a single Majorana fermion is
S ¼ 1

2
kB log 2—half that of a regular spin-degenerate state.

This fractional entropy implies that information is stored
nonlocally across a pair of decoupled bound states. The
measurement of a fractional entropy would therefore serve
as a smoking-gun signature for exotic quasiparticles [6,7].
In the context of the low-dimensional mesoscopic

electronic systems predicted to host exotic quasiparticles,
thermodynamic quantities are unfortunately difficult to
measure experimentally. Techniques developed to measure
extensive properties in bulk systems are inapplicable to
identify small changes due to individual excitations over
the large background phonon contributions. Thus obser-
vation of fractional entropy remains elusive. Two indirect
approaches to entropy measurement have been developed
recently in nanoelectronic devices, although neither has as
yet been applied to a system hosting exotic quasiparticles.

One method utilizes thermopower measurements [8], while
the other exploits a Maxwell relation connecting entropy
changes to charge measurements [7,9,10].
In this Letter we discuss the latter approach in the context

of charge-Kondo quantum dot devices [11,12]. These
experimental systems are highly accurate circuit realiza-
tions of multichannel Kondo (MCK) models [11–18].
Because of a frustration of Kondo screening at low
temperatures, the two-channel charge-Kondo (2CK) model
supports a Majorana fermion, with a residual “impurity”
entropy S2CK ¼ kB log

ffiffiffi
2

p
, while the three-channel (3CK)

model hosts a Fibonacci anyon as manifested by a residual
entropy S3CK ¼ kB logϕ, where ϕ ¼ 1

2
ð1þ ffiffiffi

5
p Þ is the

golden ratio [14,19,20]. The central question we address
in this work is the following: can these predicted MCK
fractional entropies be measured and distinguished, taking
into account the complexities and limitations of the
experimental realization?
So far, only the electrical conductance of charge-Kondo

devices has been measured experimentally [11,12,21], and
so here we make use of this existing data by deriving novel
exact relations between the conductance G and the temper-
ature-dependence of the dot occupation, dN=dT. Such
relations are bijective and universal when the underlying
physics is governed by a single energy scale, such as the
Kondo temperature. The entropy is then extracted via a
Maxwell relation [9]. Assuming that the charge sensing
protocol is minimally invasive, we conclude that the
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experimental observation of a nontrivial temperature scal-
ing toward the ideal fractional values of the 2CK and 3CK
entropy is entirely feasible. The method can be generalized
to other systems, although the relations themselves are
model specific.
Multichannel Kondo models.— A single spin-1

2
“impu-

rity” coupled antiferromagnetically to one or more inde-
pendent conduction electron channels represents an
important paradigm in the theory of strongly correlated
electrons. At high temperatures, the impurity is effectively
free, and so the impurity contribution to the total system
entropy is SCB ¼ log 2 (setting kB ≡ 1 here and in the
following). The impurity becomes strongly entangled with
conduction electrons in a surrounding “Kondo cloud”
[22,23] at low temperatures T ≪ TK , where TK is the
Kondo temperature. In the single-channel case, the con-
duction electrons exactly screen the impurity spin by
formation of a many-body Kondo singlet, leaving zero
residual entropy, S1CK ¼ 0. For k ≥ 2 channels, the frus-
tration of Kondo screening results in an “overscreened”
scenario [14,19,20] with a finite residual entropy SkCK ¼
log f2 cos ½π=ð2þ kÞ�g, a hallmark of non-Fermi liquid
(NFL) physics. In particular, the impurity in the 2CKmodel

hosts an effective Majorana fermion at low temperatures
[24] with S2CK ¼ log

ffiffiffi
2

p
, while S3CK ¼ logϕ, correspond-

ing to a Fibonacci anyon, is predicted for 3CK [25,26].
Charge-Kondo realization.— The charge 2CK and 3CK

effects were demonstrated [11,12] in a metallic quantum
dot (QD) tunnel coupled via quantum point contacts
(QPCs) to two or three leads, as illustrated in the inset
to Fig. 1(b). The device is operated in a large magnetic field
such that the QD and leads are in the quantum Hall regime,
and the QPCs each consist of a pair of counterpropagating
spinless fermions, one incoming into the QD and the other
outgoing from the QD. The Hamiltonian of the k-channel
charge-Kondo model reads as

H ¼ ℏvF
Xk
j¼1

X
ν¼in;out

Z
dxψ†

jνi∂xψ jν þ ECðN̂ − NgÞ2

þ ℏvF
Xk
j¼1

ðrjψ†
jinð0Þψ joutð0Þ þ H:c:Þ: ð1Þ

The first term describes the free fermion modes ψ jν (with
Fermi velocity vF), while the second term describes the dot

(a) (c) (e)

(b) (d) (f)

FIG. 1. (a) Phase diagram of the charge k-channel Kondo device. For T ≫ TK the entropy is S ¼ log 2 (yellow) at charge degeneracy
Ng ¼ � 1

2
, but S ¼ 0 (blue) in the Coulomb valley when T ≪ EC. Inset: expanded view of red box, where the k ¼ 2 system maps to the

2CK model and the entropy for T ≪ TK (obtained by NRG) approaches log
ffiffiffi
2

p
. (b) Entropy difference along the red arrow in

(a) obtained from experimental conductance data for τ ¼ 0.2 and T=mK ¼ 7.9, 9.5, 12, 18, 28.9, 40, and 55 via Eqs. (2) and (3) (points)
compared with Eq. (4) (line). Inset: device schematic for k ¼ 3. (c) 2CK phase diagram and impurity entropy, showing the NFL-FL
crossover on the scale of T� along the red arrow. (d) Entropy change extracted from the experimental 2CK conductance data via Eqs. (2)
and (5) (points) as a function of T�

M=T for different τ, compared with Eq. (6) (line). (e) Phase diagram of channel-asymmetric 2CK
system with τ1 ≠ τ2, showing finite T� even atNg ¼ 1

2
. The low-T suppression of impurity entropy results in the nonmonotonic behavior

of ΔS on decreasing T. (f) Extracted entropy from experimental data as for (d) but for τ1 ≠ τ2, showing the NFL-FL crossover. For
logðτ1=τ2Þ < 0 (> 0), we set τ2 (τ1) to 0.93 and vary τ1 (τ2). Inset: temperature dependence of ΔS for τ1 ¼ τ2 (red) and τ1 ≠ τ2 (blue)
corresponding to the dashed boxes.
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interactions with EC the charging energy and N̂ the electron
number of the QD. Ng is the gate voltage applied to the dot,
normalized such that Ng ¼ 1 corresponds to the addition of
a single electron to the dot. The last term describes the
reflection amplitude rj at each QPC, related to the trans-
mission coefficient τj as 1 − τj ≃ r2j [27,28].
The charge degeneracy at a Coulomb peak (Ng ¼ 1

2
)

maps to an effective impurity pseudospin-1
2
[17]; tunneling

at the QPCs then corresponds to pseudospin flip processes.
The 2CK and 3CK models were found to accurately
describe the experimental QD device with two and three
leads by detailed comparison with electrical transport
measurements [11,12,17,18]. The thermoelectric response
(as yet unmeasured in these systems) was predicted in
Refs. [34,35].
At the frustrated critical point, rj ≡ r (hence τj ≡ τ). The

Kondo temperature TK is determined by the transmission;
at a given temperature T, small τ implies T ≫ TK (where
TK ∝ ECe−π

2=
ffiffiffiffi
4τ

p
) and so the system is in the classical

Coulomb blockade (CB) regime, while for larger τ such
that T ≪ TK [e.g., TK ∝ EC=ð1 − τÞ for 2CK [11,17]], the
system exhibits the overscreened MCK effect. By detuning
the gate voltage, a crossover is induced from the NFL point
with fractional entropy, to a Fermi liquid (FL) state with
quenched impurity entropy [15–18].
Maxwell relation.—We focus on the entropy change ΔS

occurring as the gate voltage is swept from Ng ¼ 0 to 1
2
,

corresponding to the crossover from the FL-trivial state
with zero entropy, to the critical point which has fractional
entropy for T ≪ TK. From theory we therefore expect
ΔSðTÞ to approach S2CK or S3CK for the two- and three-
channel charge-Kondo devices as T=TK is lowered. The
Maxwell relation relates this change to the gate-voltage
integral of dN=dT viz.,

ΔS ¼ 2EC

Z
1=2

0

dNg
dN
dT

: ð2Þ

Entropy and conductance-charge relation in CB.— The
system is in the CB regime for large QPC reflections, such
that EC ≫ T ≫ TK . The phase diagram in this regime is
depicted in Fig. 1(a), where the red arrow denotes the line
along which the entropy change is measured. Herewe expect
ΔS ≃ log 2 since Simp ≃ 0 at the Coulomb valley, while for
Ng ¼ 1

2
the impurity spin-1

2
remains largely unscreened.

In the CB regime, both the conductance and the number
of electrons in the dot can be obtained by classical rate
equations,

dNCB

dT
¼ 1

2T
tanh

ECðNg − 1
2
Þ

T

2EC
T ðNg − 1

2
Þ

sinh½2EC
T ðNg − 1

2
Þ�

≡ 1

2T
tanh

ECðNg − 1
2
Þ

T
GCB

GCB;max
; ð3Þ

where GCB is the CB conductance and GCB;max is the
Coulomb peak conductance (itself a function of τ and
T [11,17]). Physically, this relation follows from the fact
that both observables are proportional to the dot density of
states. In deriving Eq. (3) we assumed T ≪ EC and retained
only two dot charge states (therefore it is not periodic in Ng

and should be used only in the vicinity of a well-isolated
CB peak). Within the same approximation, we can calcu-
late the thermodynamic free energy and hence obtain a
prediction for ΔS directly,

ΔSCB ¼ log 2þ EC=T

1þ e−EC=T
− logð1þ eEC=TÞ: ð4Þ

This result also coincides with that obtained from Eq. (2)
using dNCB=dT. Note that ΔSCB → log 2 as T → 0, cor-
responding to the unscreened twofold charge degeneracy of
the dot in the CB regime.
We now utilize experimental data for the CB conduct-

ance [11] and Eqs. (2) and (3) to obtain an estimate for
ΔSCB in the experimental setting of the charge-Kondo
device. The results are plotted in Fig. 1(b), comparing with
Eq. (4) (line). The agreement is good at higher temperatures
as expected, although experimental noise around the low-
conductance signal in the CB regime naturally introduces
errors. At lower temperatures, deviations due to Kondo
renormalization are observed. To capture the behavior in
the Kondo regime, one must use a more sophisticated
theory to obtain the full conductance-charge relation.
While the theoretical curve displays a decay of ΔSCB to
zero for temperatures exceeding the charging energy, the
present experimental data are restricted to temperatures up
to 55 mK which is well below EC. In the following
we do this analytically for 2CK and numerically for 3CK.
Entropy and conductance-charge relation for 2CK.—

We consider now the 2CK case with τ1 ¼ τ2 ≡ τ and T ≪
TK (large τ regime). A new energy scale is generated by
gate-voltage detuning, T� ¼ T�

Mcos
2ðπNgÞ, with T�

M ¼
8eCECð1 − τÞ=π2 (and C the Euler constant). The NFL
phase is stabilized for T� ≪ T ≪ TK, while for T ≪ T� the
system is in the zero-entropy, FL state—see Fig. 1(c). Thus,
a fractional entropy change is expected along the red arrow,
corresponding to the crossover between FL and NFL states.
The model can be mapped to a resonant Majorana tunnel-
ing model [17,24,28]; this analytic solution allows us to
obtain dN=dT as well as the relation between dN=dT and
G at large τ:

dN2CK

dT
¼ T�

M sinð2πNgÞ
4ECT

�
1 −

T�

2πT
ψ ð1Þ

�
1

2
þ T�

2πT

��

≡ T�
M sinð2πNgÞ
4ECT

2G2CKh
e2

: ð5Þ

For comparison, a direct calculation of the entropy yields
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ΔS2CK ¼ T�
M½ψð12 þ

T�
M

2πTÞ − 1�
2πT

− log

�
Γð1

2
þ T�

M
2πTÞffiffiffi
π

p
�
; ð6Þ

where ψðxÞ and ψ ð1ÞðxÞ are the di-γ and tri-γ function,
respectively.
We again use experimental conductance data [11] to

obtain dN=dT via Eq. (5), taking the experimental values of
EC and τ—but now in the nontrivial Kondo regime of the
two-lead device. The entropy change is then extracted from
Eq. (2), and plotted in Fig. 1(d) for various values of τ. The
experimental data are seen to collapse accurately onto the
predicted scaling form of Eq. (6) (solid line) for large τ
where the above relation applies, with the entropy change
tending to ΔS → S2CK as the temperature is lowered.
Appreciable deviations appear only for τ ≲ 0.85, for which
the leading irrelevant operator must be taken into account in
the theory [17,36].
We note that the impurity entropy at Ng ¼ 0 does not

reach zero even at the experimental base temperature of
T ¼ 7.9 mK for EC ¼ 300 mK, as reported in Ref. [11].
Therefore the measured entropy change is about 80% of the
ideal 2CK bound S2CK ¼ log

ffiffiffi
2

p
. Our results (in particular

the temperature scaling) are consistent with the formation
of a single Majorana fermion on the dot, but the bound
would be better saturated for larger EC=T.
Next we consider the channel-asymmetric case where

τ1 ≠ τ2. On reducing the temperature, the system now
flows from the 2CK critical point to a 1CK FL state with the
more strongly coupled channel—see Fig. 1(e). Extending
the theory to this case, the crossover scale marked as a
dashed line in Fig. 1(e) becomes

T� ¼ 2

π2
eCEC½2−τ1−τ2þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−τ1Þð1−τ2Þ

p
cosð4πNgÞ�:

ð7Þ

The relation between dN=dT and the conductance in
Eq. (5) still holds once (1 − τ) in the expression for T�

M

is replaced by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − τ1Þð1 − τ2Þ

p
. This shows how the

fractional entropy in the NFL phase is quenched to zero as
the channel asymmetry drives the system to the 1CK FL
regime. Applying this relation to the available experimental
conductance data [11] we obtain ΔS along this crossover.
The entropy ΔS extracted in this way is in quantitative
agreement with the direct calculation of the entropy, shown
as solid lines in Fig. 1(f). Interestingly, ΔS is not a
monotonic function of logðτ1=τ2Þ. This is due to the fact
that as one, e.g., decreases τ2, T� increases. As a conse-
quence, the system is first driven closer to the 2CK fixed
point, before turning over and flowing toward the 1CK
fixed point. Similarly, ΔS is not a monotonic function of T;
see Fig. 1(e) and the inset to Fig. 1(f).
Entropy and conductance-charge relation for 3CK.—

We now turn to the critical 3CK system obtained by tuning

τ1 ¼ τ2 ¼ τ3 ≡ τ in the three-lead charge-Kondo device
[12]. Here the situation is more complex theoretically, as an
analytical solution along the NFL to FL crossover is not
known. Instead we employ a numerical solution using
state-of-the-art numerical renormalization group (NRG)
calculations [37–39] to obtain the conductance G as well
as dN=dT along the crossover.
By comparison of the NRG model predictions to the

conductance data [12] we note that the experiment at large τ
is not in the fully universal regime. In order to make our
comparison with experiment quantitative, we generalize the
standard 3CK model by retaining multiple dot charge states
[28]. For each experimental conductance curve we fit the
model parameters to best match the conductance line
shapes. We consider a single (base) temperature of
T ¼ 7.9 mK, and transmissions ranging from τ ¼ 0.79
to τ ¼ 0.198 as in the experiment, which corresponds to
the crossover regime from T ≪ TK to T ≫ TK .
Figure 2(a) depicts the remarkable agreement between

the experimental conductance curves and the NRG line
shapes over the entire range of Ng for all values of the
transmission considered. This again validates the theoreti-
cal model as an accurate description of the physical device.
For these same parameters, NRG also yields dN=dT, and
hence we deduce numerically the relation between G and
dN=dT, as shown in Fig. 2(b). Unlike the CB and 2CK
cases [Eqs. (3) and (5)], in 3CK, there is no simple relation
between dN=dT and G [28]. Accordingly, for each set of

(a) (b)

(c) (d)

FIG. 2. (a) Conductance G for the 3CK system as a function of
Ng for different τ at T ¼ 7.9 mK, comparing experimental data
(points) with NRG calculations (lines). (b) Numerically deter-
mined relation between dN=dT and G for the same model
parameters as in (a). (c) 3CK entropy difference ΔS (points) from
Eq. (2) using G from panel (a) and dN=dT ¼ fðGÞ from
panel (b), compared with thermodynamic NRG results (lines).
(d) Schematic phase diagrams for large transmission (left) and
small transmission (right): CB regime in blue (T ≫ TK ,
S ¼ log 2), FL in yellow (T ≪ T�, S ¼ 0), NFL in red
(T� < T < TK , S3CK ¼ logϕ).
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parameters, we use the numerically obtained relation
between dN=dT and G to determine the entropy difference
ΔS via Eq. (2). These are marked as the circle points in
Fig. 2(c).
The results are consistent with the entropy obtained from

standard thermodynamic NRG calculations [Fig. 2(c),
lines], which include the full temperature dependence.
For larger transmissions we find a direct crossover from
ΔS ¼ 0 to logϕ for T ≪ TK, corresponding to the 3CK
NFL state hosting a Fibonacci anyon. Interestingly, for
small τ we find that ΔS first approaches log 2 for T ≫ TK
before approaching logϕ at the low-temperature limit.
These two behaviors for large and small transmissions
are illustrated in the two phase diagrams in Fig. 2(d). For
large τ, due to large charge fluctuations, the 3CK Kondo
temperature TK well exceeds the Ng dependent crossover
scale T�. As a result, ΔS—which probes gate-voltage
sensitivity—increases from 0 to logϕ as T is lowered
below the crossover temperature T�. For small transmis-
sions, however, there are effectively only two accessible
charge states, as in the familiar spin Kondo problem. Then
we have a large gate-voltage sensitivity, which acts as an
effective magnetic field on the impurity pseudospin.
Similar to the situation shown in Fig. 1(a), above TK the
system is described by the CB theory, and below TK there is
a FL–NFL crossover, leading to the nonmonotonic behav-
ior observed in Fig. 2(c) at small τ.
Conclusion.— Nanoelectronic devices offer a control-

lable route to realizing anyonic quasiparticles. Their exist-
ence can be demonstrated through their fractional entropy.
Here we develop an indirect route to the latter in 2CK and
3CK systems by (i) exploiting a Maxwell relation con-
necting the entropy change ΔS to the charge variation
dN=dT, and (ii) deriving relations between dN=dT and the
measured electrical conductance G. Applying our meth-
odology to existing conductance data for 2CK and 3CK
charge-Kondo devices [11,12], we observe a scaling toward
the expected nontrivial entropy value S2CK ¼ log

ffiffiffi
2

p
for a

Majorana anyon case. Likewise our analysis of the 3CK
model for various transmission values is consistent with
S3CK ¼ logϕ for a Fibonacci anyon. Although experimen-
tal charge measurements on these systems are required for
the incontrovertible demonstration of fractional quasipar-
ticles, our analysis shows that existing experiments do
operate in the necessary regime, and that the protocol for
the observation of fractional entropy via the Maxwell
relation is feasible. Entropy spectroscopy could serve as
a smoking-gun probe of exotic anyons in other more
controversial systems such as Majorana wires [7,40] or
other experimental systems realizing Kondo criticality
[21,41–44].
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