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Quantum impurity models with frustrated Kondo interactions can support quantum critical points with
fractionalized excitations. Recent experiments [W. Pouse et al., Nat. Phys. (2023)] on a circuit containing
two coupled metal-semiconductor islands exhibit transport signatures of such a critical point. Here, we
show using bosonization that the double charge-Kondo model describing the device can be mapped in the
Toulouse limit to a sine-Gordon model. Its Bethe-ansatz solution shows that a Z3 parafermion emerges at
the critical point, characterized by a fractional 1

2
lnð3Þ residual entropy, and scattering fractional charges

e=3. We also present full numerical renormalization group calculations for the model and show that the
predicted behavior of conductance is consistent with experimental results.
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Quantum impurity models, which feature a few local-
ized, interacting quantum degrees of freedom coupled to
noninteracting conduction electrons, constitute an impor-
tant paradigm in the theory of strongly correlated electron
systems [1]. They describe magnetic impurities embedded
in metals or other materials [2,3], and nanoelectronic
devices such as semiconductor quantum dots [4–6] or
single-molecule transistors [7,8]. They are also central to
the understanding of bulk correlated materials through
dynamical mean field theory [9]. Generalized quantum
impurity models host a rich range of complex physics,
including various Kondo effects [10–19] and quantum
phase transitions [20–29]. Such models provide a simple
platform to study nontrivial physics which can be difficult
to identify in far more complex bulk materials. Indeed,
exact analytical and numerical methods for quantum
impurity models have given deep insights into strong
correlations at the nanoscale [30–34].
The two-channel Kondo (2CK) [10,23] and two-impu-

rity Kondo (2IK) [21,22] models are classic examples in
which frustrated interactions give rise to non-Fermi liquid
physics at quantum critical points (QCPs) with fractional-
ized excitations. The seminal work of Emery and Kivelson
(EK) [32] solved the 2CK model in the Toulouse limit
using bosonization techniques, and understood the QCP in
terms of a free Majorana fermion localized on the impurity.
In the 2IK model [22,35–39], a free Majorana arises from

the competition between a Ruderman-Kittel-Kasuya-
Yosida (RKKY) exchange interaction coupling the impu-
rities, and individual impurity-lead Kondo effects. In both
cases the QCP is characterized by a finite, fractional
residual impurity entropy of 1

2
lnð2Þ [22,31], which is a

distinctive fingerprint of the free Majorana.
Semiconductor quantum devices [4–6] can constitute

experimental quantum simulators for such impurity models,
with in situ control over parameters allowing correlated
electron phenomena to be probed with precision. The
distinctive conductance signatures predicted [24,36,37] for
the 2CK model at criticality were since observed [25,27]
(although the 2IK model has never been realized [40]). More
recently, Matveev’s charge Kondo paradigm [41,42] has
emerged as a viable alternative to engineer exotic states, with
both 2CK [28] and its three-channel variant [29] being
realized experimentally.
Given the intense experimental efforts to demonstrate the

existence of Majoranas in quantum devices [43,44], and the
broader interest in realizing anyons for the purposes of
quantum computing [45,46], the Kondo route to fraction-
alization has gained traction [47–50]. Experimental circuit
realizations of more complex quantum impurity models
offer the tantalizing opportunity to produce more exotic
anyons in tunable nanoelectronics devices. This can be
viewed as part of a wider effort to study fractionalization in
condensed matter systems [51–57].
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However, despite the suggestive fractional entropies in
certain Kondo-type models [29–31,58–61], the explicit
construction of parafermion operators in these systems
has not previously been possible. This is because—unlike
for the simpler case of Majoranas—parafermions cannot
arise in an effective free fermion system. Applying the EK
method yields an irreducibly strongly interacting model,
which has hitherto hindered finding exact solutions in
which free local parafermions could be identified.
In this Letter, we study the double charge-Kondo (DCK)

model describing a very recent experiment [60] involving
two hybrid metal-semiconductor islands coupled together
in series, and each coupled to its own lead, at quantum point
contacts (QPCs)—see Fig. 1. The DCK model is a variant
of the celebrated 2IK model, but with an interisland Kondo
interaction rather than an RKKYexchange interaction [21].
At the triple point in the charge stability diagram of the
device, a QCP was found to arise due to the competition
between island-lead Kondo and interisland Kondo [60].
Numerical renormalization group [33,34,72,73] (NRG)
calculations for the DCK model showed a fractional
residual entropy of 1

2
lnð3Þ at the QCP—suggesting an

unusual anyonic state (and not simply a Majorana). The
same critical point and fractional entropy were identified
analytically near perfect QPC transmission [74], although
no Kondo effects occur in this limit.
Here, we examine the “Kondo” case of weak-to-

intermediate transmission, and apply the EK mapping
[32] in the Toulouse limit. Even though the EK method
yields a highly nontrivial interacting model, we show that it
can nevertheless be solved using Bethe ansatz. Instead of
the free Majorana found by EK for the 2CK model, we
explicitly establish the existence of a Z3 parafermion in the
DCK model, and identify it as the source of the 1

2
lnð3Þ

residual entropy. Analytic expressions for conductance near
the QCP are also extracted, and we show that experimental
transport data are consistent with these predictions. To
complete the theoretical description, we obtain the full
temperature dependence of entropy and conductance via
NRG, which does not rely on the Toulouse approximation.

System and model.—The two-island circuit illustrated in
Fig. 1 is described by the DCK model at low temperatures
T ≪ EC (with EC the island charging energies) for weak-
to-intermediate QPC transmissions, see Ref. [60]:

HDCK ¼ ðJLSþL s−L þ JRS
þ
Rs

−
R þ JCS

þ
RS

−
Ls

−
C þ H:c:Þ

− hLS
z
L − hRS

z
R þ ISzLS

z
R þHelec; ð1Þ

where Helec ¼
P

α;σ;k ϵkψ
†
ασkψασk describes the electronic

reservoirs either side of QPC α ¼ L, C, R. Although the
physical electrons are spin polarized [60], we label
electrons on the lead or island either side of QPC L, R
as σ ¼ ↑ or ↓, and island electrons to the left or right of the
central QPC C as σ ¼ ↑ or ↓—see Fig. 1. We assume linear
dispersion ϵk ¼ vFk, with momentum k. We then define
pseudospin operators s−α ¼ ψ†

α↓ð0Þψα↑ð0Þ and sþα ¼ ðs−α Þ†,
where ψασð0Þ is defined at the QPC position. Confining our
attention to the lowest two macroscopic charge states of
each island jn;mi≡ jniL ⊗ jmiR, with n ¼ N, N þ 1 the
number of electrons on the left island and m ¼ M, M þ 1
electrons on the right island, we introduce “impurity”
charge pseudospin operators SþL ¼ P

m jN þ 1; mihN;mj,
SzL ¼ P

m
1
2
½jN þ 1; mihN þ 1; mj − jN;mihN;mj�, SþR ¼P

n jn;M þ 1ihn;Mj, SzR ¼ P
n
1
2
½jn;M þ 1ihn;M þ 1j−

jn;Mihn;Mj�, and S−α ¼ ðSþα Þ†. The first line in Eq. (1)
therefore corresponds to tunneling processes at the three
QPCs (with the tunneling amplitude Jα being related to the
transmission τα of QPC α). Gate voltages on the islands
control hL;R and allow the charge stability diagram to be
navigated. I is a capacitive interaction between the two
islands. For JL;C;R ¼ I ¼ 0, the four retained charge
configurations jn;mi are degenerate when hL ¼ hR ¼ 0.
However, a finite JC and/or I partially lifts this degeneracy
to yield a pair of separated triple points (TPs) in gate
voltage space. As with the experiment [60], here we focus
on the vicinity of the TP at which the charge configurations
jN;Mi=jN þ 1;Mi=jN;M þ 1i are degenerate. We here-
after neglect the term I, since it just renormalizes the TP
splitting already induced by JC > 0 and is otherwise
irrelevant [74]. The rest of this Letter is devoted to the
nontrivial Kondo competition arising when the couplings to
the leads are switched on, JL;R > 0.
QCP.—At the TP, the three “impurity” states (the

degenerate charge configurations of the two-island struc-
ture) are interconverted by tunneling at the three QPCs:

jN;Mi↔JL jN þ 1;Mi↔JC jN;M þ 1i↔JR jN;Mi:

The accompanying conduction electron pseudospin-flip
scattering at each QPC described by the operators s�L;C;R
in Eq. (1) give rise to competing Kondo effects. Since
island-lead and interisland Kondo effects cannot be

FIG. 1. Schematic of the two-site charge Kondo circuit de-
scribed by the DCK model. Two hybrid metal-semiconductor
islands are coupled to each other and to their own lead at QPCs.
Macroscopic island charge states mapped to pseudospin degrees
of freedom are flipped by tunneling at QPCs.
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simultaneously satisfied, a frustration-driven QCP arises
when JL ¼ JR ¼ JC, as reported in Refs. [60,74].
NRG solution.—In Fig. 2 we present numerically exact

results for the DCK model tuned to the TP, obtained
by NRG [33,34,72,73] (see [61] for details). We set
JL ¼ JR ≡ J and vary JC in the vicinity of the QCP arising
when JC ¼ J. In panel (a) we show the impurity contri-
bution to the entropy Simp as a function of temperature T.
The critical point JC ¼ J, shown as the red line, exhibits
Kondo “overscreening” to a non-Fermi liquid state on the
scale of TK . The three degenerate charge states give a high-
T entropy of ln(3), but the entropy is partially quenched to
1
2
lnð3Þ for T ≪ TK. Introducing channel anisotropy JC ≠ J

induces a Fermi liquid (FL) crossover on the lower scale
of T�, below which the entropy is completely quenched.
The inset shows the extracted power-law behavior,

T�=TK ∼ ðjJC − Jj=TKÞ3=2: ð2Þ

The same form was reported for detuning away from the
TP in Ref. [60]. For jJC − Jj ≪ TK we have good scale
separation T� ≪ TK , such that the crossover to the critical
point is a universal function of the single scaling parameter
T=TK , whereas the crossover away from it is a universal
function of only T=T�. This is reflected in the behavior of
series conductance, shown in panels (b),(c). At the highest
temperatures T ≫ TK , Kondo-renormalized spin-flip scat-
tering gives standard ln−2ðT=TKÞ corrections to conduct-
ance; whereas on the lowest temperature scales T ≪ T�,
we observe conventional FL scaling of conductance
∝ ðT=T�Þ2. Much more interesting is the behavior in the
vicinity of the critical fixed point [60],

G0 −GðTÞ ∼ ðT=TKÞ2=3; T ≪ TK ; ð3aÞ

G0 −GðTÞ ∼ ðT=T�Þ−4=3; T ≫ T� ; ð3bÞ

with G0 ¼ e2=3h. Equations (2) and (3) are also obtained
analytically and discussed in the following.
Bosonization and Toulouse point.—We now turn to

the details of our exact solution. Following EK [32], we
bosonize the conduction electron Hamiltonian Helec and
obtain a simplified model in the Toulouse limit after
applying a unitary transformation.
As a first step, we write ψασ ¼ eiϕασ=

ffiffiffi
a

p
with

a ¼ 4πvF ≡ 1 and introduce three chiral bosonic fields
δϕα ≡ ðϕα↑ − ϕα↓Þ=

ffiffiffi
2

p
for α ¼ L, R, C. The conduction

electron pseudospin operators follow as s−α ¼ ei
ffiffi
2

p
δϕα , and

Helec ¼
vF
4π

X
α

Z
dx

�
∂δϕα

∂x

�
2

: ð4Þ

For hL ¼ hR ¼ I ¼ 0, we can cast the DCK model as

HDCK ¼ Helec þ
h
JLS

þ
Le

i
ffiffi
2

p
δϕL þ JRS

þ
Re

i
ffiffi
2

p
δϕR

þ JCS
þ
RS

−
Le

i
ffiffi
2

p
δϕC þ H:c:

i
; ð5Þ

where all fields are implicitly taken at x ¼ 0. To make
progress, we deform the original DCK model, which
features only transverse couplings Jα, by adding an Ising
term H̄DCK ¼ HDCK þHI . Since pseudospin anisotropy is
RG irrelevant, HI affects only the flow, not the stable fixed
point itself. Therefore, the critical fixed point (and indeed
the entire FL crossover in the limit T� ≪ TK [36,37]) is the
same for any choice ofHI . We shall exploit this property to
identify an exactly solvable Toulouse limit. To do this we
effect a change of basis,

(a) (b) (c)

FIG. 2. NRG results at the triple point of the DCK model. (a) Entropy SimpðTÞ in the vicinity of the critical point, showing the flow
lnð3Þ → 1

2
lnð3Þ on the Kondo scale TK , and subsequently 1

2
lnð3Þ → 0 on the Fermi liquid scale T�. Plotted for J=D ¼ 0.2 and

jJC − Jj=D ¼ 10−3; 10−4;…; 10−8 (black lines) approaching the critical point JC ¼ J (red line). D is the conduction electron
bandwidth. The inset shows the power-law behavior Eq. (2). (b) Universal conductance curve as a function of T=TK at the critical point.
(c) Universal Fermi liquid crossover as a function of T=T�. Conductance asymptotes are discussed in the text.
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δϕA ¼ ðδϕR − δϕC − δϕLÞ=
ffiffiffi
3

p
;

δϕB ¼ ðδϕL þ δϕRÞ=
ffiffiffi
2

p
;

δϕD ¼ ðδϕL − 2δϕC − δϕRÞ=
ffiffiffi
6

p
; ð6Þ

and introduce δϕ1=2 ¼ ðδϕB=
ffiffiffi
2

p Þ � ðδϕD=
ffiffiffi
6

p Þ. We now
choose

HI ¼ λ½SzL∂xδϕ1ð0Þ þ SzR∂xδϕ2ð0Þ� ð7Þ

and rotate the Hamiltonian into UH̄DCKU† ¼ Helec þHEK
using the EK unitary transformation [32]

U ¼ exp

�
−i

1ffiffiffi
2

p fSzLδϕ1ð0Þ þ SzRδϕ2ð0Þg
�
: ð8Þ

We then obtain

HEK ¼
h
JLS−L þ JRS

þ
R þ JCS

þ
LS

−
R

i
ei

ffiffiffiffiffiffi
2=3

p
δϕA þ H:c:

þ λ̄
h
SzL∂xδϕ1ð0Þ þ SzR∂xδϕ2ð0Þ

i
; ð9Þ

where λ̄ ¼ λ − 1=ð4πÞ2. The Toulouse limit is obtained
by setting λ̄ ¼ 0, for which the bosonic modes δϕB;D

fully decouple and remain free. The symmetric charge
mode δϕA thus controls the low-energy behavior following
Kondo screening. At the QCP with isotropic couplings
JL ¼ JR ¼ JC ≡ J, the model further simplifies,

HEK ¼ Jσei
ffiffiffiffiffiffi
2=3

p
δϕA þ H:c:; σ ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA; ð10Þ

where the operator σ circularly permutes the three impurity
states jN;Mi=jN þ 1;Mi=jN;M þ 1i.
Parafermion modes.—In analogy with the description

of chiral Potts (clock) models by parafermionic chains [75],
we define a second operator τ ¼ diagð1;ω;ω2Þ, with ω ¼
e2iπ=3 in the impurity subspace. The operators [75,76] σ and
σ0 ¼ στ then obey the parafermionic properties,

σ3 ¼ σ03 ¼ 1; σσ0 ¼ ωσ0σ; ð11Þ

and thereby generalize the Majorana operators to a three-
dimensional space with circular Z3 symmetry.
Importantly, HEK in Eq. (10) includes only the terms σ

and σ†, and not σ0. Since σσ† ¼ σ†σ, the parafermion σ
commutes with HEK and remains free. Conversely, σ0 does
not commute and it acquires a finite scaling dimension.
Sine-Gordon model and Bethe-ansatz solution.—We

rotate to the simultaneous eigenbasis of σ and σ† and write
HEK ¼ H0 ⊕ Hþ ⊕ H−, with

Hr ¼ 2J cos

� ffiffiffiffiffiffiffiffi
2=3

p
δϕA þ r

2π

3

�
; r ¼ 0;�1: ð12Þ

The DCKmodel reduces to three decoupled boundary sine-
Gordon models [77–80], related to each other by a Z3

circular shift of the field δϕA → δϕA þ 2π=
ffiffiffi
6

p
. They all

have the same Bethe-ansatz solution describing the cross-
over from high to low energies (the same crossover as an
impurity in a one-dimensional electron gas with Luttinger
parameterK ¼ 1=3 [77]). In particular, the residual entropy
is predicted [81,82] to decrease by ΔS ¼ 1

2
lnð3Þ along the

crossover. For the DCK model we therefore expect a
crossover in the impurity entropy from ln(3) to 1

2
lnð3Þ,

as confirmed by the NRG results in Fig. 2(a). The
parafermions σ and σ0 generate the threefold charge sub-
space. Since σ0 is screened but σ remains free, it simply
halves the residual entropy. The same residual entropy was
found in the quasiballistic limit [74].
Conductance at the critical point.—The linear conduct-

ance between left and right leads is obtained from the
Kubo formula G ¼ −limω→0½ImKðωÞ=ω�, with KðωÞ the
Fourier transform of the retarded current-current correlator
KðtÞ ¼ −iθðtÞh½IðtÞ; Ið0Þ�i. Following the above mapping,

I ¼ −ðe=2πÞ
ffiffi
2
3

q
∂tΘA, where ΘA is the field conjugate to

δϕA. Since δϕA is pinned at the critical fixed point, ΘA
is free, and so hΘAðtÞΘAð0Þi ∼ − ln t at T ¼ 0. This yields
G ¼ G0 ¼ e2=3h: out of the three fields, only ϕA appears
in Eq. (9), thus only ΘA transports electrons, yielding 1=3
of a perfect conductance.
Conductance scaling in the Kondo regime, T ≪ TK .—

We now turn to the leading finite-temperature corrections
to the T ¼ 0 conductance at the critical point. To do this,
we must perturb away from the exactly solvable EK
point by reintroducing finite λ̄. This is because the RG
flow to the critical fixed point is affected by λ̄. The leading
irrelevant operator (LIO) at the QCP is given by OLIO ¼
λ̄½SzL∂xδϕ1ð0Þ þ SzR∂xδϕ2ð0Þ�. As we show in [61], the
operators ∂xδϕ1;2ð0Þ both have scaling dimension 1 and
SzL;R have scaling dimension 1

3
. This yields ΔLIO ¼ 4=3,

and therefore allows us to identify the leading correction to
conductance (arising at order λ̄2) as δG ∼ ðT=TKÞ2ðΔLIO−1Þ
[61], which reproduces Eq. (3a).
FL crossover.—The QCP is destabilized by gate voltage

detuning away from the TP (appearing as pseudo-Zeeman
fields hL;R in the DCKmodel), or by channel anisotropy δJ.
The resulting FL crossover is controlled by the FL scale T�.
Assuming T� ≪ TK, we may again utilize the Toulouse
limit and set λ̄ ¼ 0 to analyze the FL crossover, since any
finite λ̄ scales to zero anyway under RG for T ≪ TK. Both
perturbations hL;R and δJ have the effect of coupling the
otherwise independent sectors of HEK given by Eq. (12).
We focus here on finite hR for simplicity. From Eq. (1),
hR couples to SzR, which in the rotated basis is given by
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SzR ¼ 1
3
ðωτ þ ω�τ†Þ. Analyzing its action at the QCP [61],

we identify τ ¼ e−i
ffiffiffiffiffiffi
2=3

p
ΘA, where this operator circularly

permutes the sectors r in Eq. (12). SzR thus inherits the
RG-relevant scaling dimension ΔR ¼ 1=3 of τ, such that

finite hR generates a FL scale T� ∼ h1=ð1−ΔRÞ
R . Since SzL and

δJ have the same scaling dimensionΔR, in general we have
T� ∼ ðh3=2L ; h3=2R ; δJ3=2Þ [61], which reduces to Eq. (2) in
the case of pure channel anisotropy. The leading correction
in T=T� to the QCP conductance G0 then follows as
δG ∼ ðT=T�Þ2ðΔR−1Þ, yielding Eq. (3b). Additionally,
the free parafermion at the QCP is shown by noise
calculation [61] to scatter fractional charges e� ¼ e=3.
Comparison with experiment.—Finally, we turn to the

implications of our results for the experiments of Ref. [60].
Although the experimental results were obtained at large
transmission τ, τC, we expect the universal low-temperature
behavior near the QCP to be the same as that discussed
above for the Kondo limit [61,74]. Since the maximum
conductance measured is slightly lower than the predicted
value G0 ¼ e2=3h, we infer that the quantum critical state
is not fully developed at experimental base temperatures.
Detuning away from the TP by varying the island gate
voltagesU generates a pseudo-Zeeman field hL ¼ hR in the
DCKmodel, whereas detuning QPC transmission τC (while
keeping τ constant) maps to channel anisotropy δJ. Either
destabilizes the QCP and generates a finite FL scale T�.
Without perfect scale separation, we expect

G0 −GðTÞ ∼ cKðT=TKÞ2=3 þ c�ðT=T�Þ−4=3: ð13Þ
In Fig. 3 we plot the experimental data vs T�=T, with T�
estimated [60,61] for each combination of τC and U, while

T ¼ 20 mK is kept fixed. The rescaled data compare
well with Eq. (13), when cK=T

2=3
K and c� are used as free

fit parameters. This provides strong evidence that the
vicinity of the QCP in the DCK model is probed exper-
imentally in the device of Ref. [60].
Conclusion and outlook.—The two-site charge-Kondo

setup described by the DCK model can in the Toulouse
limit be mapped to a solvable boundary sine-Gordon model
by bosonization methods. At the QCP we show that the
residual entropy 1

2
lnð3Þ is due to a free Z3 parafermion,

while a second parafermion mode is Kondo screened.
Exploiting the mapping, we also obtain exact results for
the conductance near the critical point that agree not only
with NRG results but also with experimental data. This
suggests that a Z3 parafermion is already present in the
experimentally measured device of Ref. [60]. This could be
demonstrated more explicitly by measuring experimentally
the fractional entropy of the parafermion using the methods
proposed and implemented in Refs. [83–85]. Our approach
also opens the door to studying other phases of quantum
matter with irreducible strong interactions using the Emery-
Kivelson mapping.
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S-I. TRIPLET POINT SPLITTING

The model for the double-charge Kondo experiment [1] is detailed in the main text following Eq. (1). Its Hamiltonian
takes the form

HDCK =
(
JL S

+
L s

−
L + JRS

+
R s

−
R + JC S

+
RS

−
L s

−
C +H.c.

)
− hLS

z
L − hRS

z
R + ISz

LS
z
R +Helec , (S-1)

and couples the four charge states of the two islands

|N,M⟩, |N + 1,M⟩, |N,M + 1⟩, |N + 1,M + 1⟩ (S-2)

to electron tunneling at the three QPC with amplitudes JL, JC and JR. The four charge states are conveniently identi-
fied with two pseudospins onto which the pseudospin- 12 operators S±

L/R, S
z
L/R act. In the absence of electron tunneling,

JL/R/C = 0, the four charge states are degenerate when hL, hR and I are all vanishing, and define a quadruplet point.
However, finite tunneling amplitudes JL/R/C ̸= 0 resonantly couple the two state triplets |N,M⟩/|N+1,M⟩/|N,M+1⟩
and |N,M+1⟩/|N+1,M⟩/|N+1,M+1⟩. As the pair of states |N+1,M⟩/|N,M+1⟩ participates in the two triplets,
their energies are decreased with respect to the states |N,M⟩ and |N + 1,M + 1⟩, effectively the same effect as the
capacitive interaction I > 0. As a result, finite JL/R/C and I split the quadruplet into two triplets states moving
symmetrically along the line hL = hR.

The splitting is confirmed in NRG calculations. It has also been derived in the quasi-ballistic limit of very open
QPC [2]. In the main text, we focus on the region in the stability diagram close to one triplet point and correspondingly
shift the definitions of hL and hR such that this triplet point is located at the origin hL = hR = 0. The capacitive
interaction I is moreover discarded as it simply moves the location of the triplet point.

S-II. Z3 PARAFERMION

Following the general idea of Emery and Kivelson [3], the Toulouse limit is obtained by bosonization of the DCK
model (see main text) with the addition of an irrelevant term to reach an exactly solvable line. In the DCK model,
the solvable line is a boundary sine-Gordon Hamiltonian in three decoupled charge sectors with Luttinger parameter
1/3. Remarkably, the study of the corresponding infrared fixed point and its vicinity retrieves many NRG findings
and scalings, which confirms that the term added to the Hamiltonian is indeed irrelevant and does not affect the low-
energy behaviour. It also identifies a fractional entropy 1

2 ln 3 associated with a free, or unscreened, Z3 parafermion.
This result is completely analogous to, and in fact extends, the unscreened Z2 Majorana fermion emerging in the
two-channel Kondo model [3].

∗ Present address: Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
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A. Parafermion screening

We introduce two parafermion (clock) operators σ and σ′ = στ . In the original charge basis |N,M⟩/|N +
1,M⟩/|N,M + 1⟩, they act as matrices

σ =

 0 1 0
0 0 1
1 0 0

 τ =

 1 0 0
0 ω 0
0 0 ω2

 σ′ =

 0 ω 0
0 0 ω2

1 0 0

 (S-3)

with ω = e2iπ/3, and obey the parafermionic rules

σ3 = σ′3 = 1, σσ′ = ωσ′σ. (S-4)

They generalize the Majorana operators to the 3-dimensional space compatible with the circular Z3 symmetry. σ
and σ′ generate the charge subspace in the sense that this three-dimensional subspace has the minimal dimension to
support the above parafermionic properties.

The Hamiltonian on the Toulouse line HEK = J σ ei
√

2
3 δϕA + H.c. involves only σ and σ†. Since [σ, σ†] = 0, σ

commutes with HEK and remains free. In contrast [σ′, HEK] ̸= 0, the second parafermion σ′ develops a non-trivial
scaling in the infrared as determined below. It is more convenient to change to a charge basis that simultaneously
diagonalizes σ and σ†. The rotated clock operators take the new expressions

σ =

 1 0 0
0 ω 0
0 0 ω2

 τ =

 0 0 1
1 0 0
0 1 0

 σ′ =

 0 0 1
ω 0 1
0 ω2 0

 (S-5)

and the Hamiltonian turns into a block diagonal form

HEK = 2J


cos
(√

2
3δϕA

)
0 0

0 cos
(√

2
3δϕA + 2π

3

)
0

0 0 cos
(√

2
3δϕA − 2π

3

)
 = H0 ⊕H+ ⊕H− (S-6)

The three blocks correspond to the charge sectors r = 0,±1. In this rotated basis of the original charge states,
we find three decoupled boundary sine-Gordon models, related to each other by just a Z3 circular shift of the field
δϕA → δϕA+2π/

√
6. They all have the same Bethe-ansatz solution describing the crossover from high energies to the

infrared, the same in fact as an impurity [4] in a one-dimensional electron gas with Luttinger parameter K = 1/3. In

particular, the residual entropy is predicted [5] to decrease by ∆S = ln(
√
3) = ln 3

2 along the crossover. Starting with
S = ln(3) at high energy where the three charge impurity states decouple from the leads, it predicts the fractional
entropy S = ln(3)−∆S = 1

2 ln(3) at the infrared fixed point, as confirmed by NRG calculations (see Fig. 2 in the main
text and Ref. [1]). The same prediction was moreover obtained [2] at large transparency using a different approach.

Overall, the physical picture at the stable fixed point is that the parafermion σ′ is fully screened in the infrared
by the boundary term Eq. (S-6) and one is left with a single free parafermion σ. The original charge space is thus
partially screened dividing the original entropy ln(3) by a factor 2.

B. Scaling dimension of τ at the low-energy fixed point

The scaling exponent of the screened parafermion τ can be obtained at low energy without resorting to the Bethe
ansatz exact solution describing the RG flow. The picture in the infrared is that the boson field δϕA is pinned to a
different value δϕA = 0,∓

√
2/3π in each charge sector r = 0,±1. As τ switches between the (rotated) charge sectors,

see Eq. (S-5), it modifies abruptly the scattering for the bosons δϕA(x) controlled by boundary term Eq. (S-6). The
corresponding orthogonality catastrophe [6] results in a non-trivial dimension for τ as we will now evaluate.
We are interested in the time correlator

⟨τ †(t)τ(0)⟩ = ⟨eiHt/ℏτ †e−iHt/ℏτ⟩ (S-7)

where H = H0 + HEK and the average is taken in the ground state. |GSr, r⟩ denotes the ground state of H in the
sector r = 0,±1, whereas the second r index indicates the charge sector of the wavefunction. Since H acts diagonally
in the charge sectors, we have the obvious identity HEK|GSr, r⟩ = Hr|GSr, r⟩ and, for instance,

HEK (τ |GS−,−⟩) = HEK|GS−, 0⟩ = H0τ |GS−,−⟩,
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where we have used the fact that τ rotates from − to 0. With these rules in mind, we average Eq. (S-7) over the state
|GS−,−⟩ and rewrite

⟨GS−,−|eiHt/ℏτ †e−iHt/ℏτ |GS−,−⟩ = ⟨GS−,−|eiH
−t/ℏe−iH0t/ℏ|GS−,−⟩. (S-8)

We make progress by defining the unitary operator

P ≡ ei
√

2
3 ΘA (S-9)

with ΘA being the conjugate field to δϕA satisfying
[
δϕA,ΘA

]
= iπ. P is a translation operator for the variable δϕA,

namely

P

(√
2

3
δϕA

)
P−1 =

√
2

3
δϕA +

2π

3
, (S-10)

permuting circularly the Hamiltonians PHrP−1 = Hr+1. P is moreover transparent for the kinetic part H0. With
these identities, we can rewrite Eq. (S-8) as

⟨GS−,−|eiH
−t/ℏPe−iH−t/ℏP−1|GS−,−⟩ = ⟨GS−,−|P (t)P−1(0)|GS−,−⟩. (S-11)

The average can also be performed over the states |GS0, 0⟩, |GS+,+⟩ with the same outcome such that we eventually
prove the identity

⟨τ †(t)τ(0)⟩ = ⟨P (t)P−1(0)⟩, (S-12)

and we can identify

τ = P−1 = e−i
√

2
3 ΘA (S-13)

at the infrared fixed point (up to an unknown phase factor). Since the variable δϕA is essentially pinned at low energy,
it implies that the conjugate field ΘA is free with the zero-temperature correlation function ⟨ΘA(t)ΘA(0)⟩ ∼ − ln t.
We find the power law

⟨τ †(t)τ(0)⟩ ∼ 1

t2/3
, (S-14)

corresponding to a scaling dimension 1/3 for the operator τ . The operator σ′ = στ exhibits the same scaling exponent.

It is straightforward to verify that the operator η = τ ei
√

2
3 ΘA commutes with the Hamiltonian (S-6), and not only

at low energy, and thus defines a constant of motion. This is consistent with the identification τ = P−1.

S-III. SCALING EXPONENTS OF THE CONDUCTANCE

A. Relevant and irrelevant perturbations

Despite being a deformation of the original (double-charge) Kondo model (irrelevant in the renormalization group
sense), the Toulouse Hamiltonian captures the exponents characterizing the vicinity of the quantum critical point.
Moving away from the triple point in the stability diagram of gate voltages is described by hL/R ̸= 0. hL and hR
couple to the charge pseudospin operators, written in the original basis |N,M⟩/|N + 1,M⟩/|N,M + 1⟩ as Sz

L =
(1/3) diag(−1, 2,−1) and Sz

R = (1/3) diag(2,−1,−1) up to unimportant constant terms. They can also be expressed
as

Sz
L =

1

3

(
ωτ † + ω∗τ

)
, Sz

R =
1

3

(
ω∗τ † + ωτ

)
, (S-15)

and thereby inherit the scaling dimension ∆R = 1/3 as τ in the infrared.
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The remarkable property that the boundary term HEK depends on σ and σ† which commute with each other holds
only for perfect channel symmetry JL = JR = JC = J . We describe a weak channel asymmetry with JL = JR = J−δJ
and JC = J + 2δJ and write the Hamiltonian as HEK = HEK(δJ = 0) + 2δJ Q with

Q = τ


cos
(√

2
3δϕA + 2π

3

)
0 0

0 cos
(√

2
3δϕA − 2π

3

)
0

0 0 cos
(√

2
3δϕA

)
+ h.c. (S-16)

in the rotated basis. Following the same steps as Sec. S-II B, we find that Q obeys the same scaling dimension
∆R = 1/3 as τ , namely

⟨Q†(t)Q(0)⟩ ∼ 1

t2/3
(S-17)

The operators Sz
L, S

z
R and Q all destabilize the QCP with the same exponent towards a FL regime where the

remaining parafermion is eventually screened (see Fig. 2c in the main text). They generate a FL temperature scale

T ∗ ∼ h
1/(1−∆R)
R (or h

1/(1−∆R)
L , δJ1/(1−∆R)).

So far, we have restricted our investigation to the fine-tuned Toulouse line λ̄ = 0. At low temperature, λ̄ ̸= 0
governs the leading irrelevant temperature correction to observables. From Eq. (9) in the main text, it involves the
operator

OLIO = Sz
L∂xδϕ1(0) + Sz

R∂xδϕ2(0) (S-18)

with dimension 4/3 = 1+ 1/3, the sum of the dimension ∆R = 1/3 of Sz
L/R (τ) and the dimension 1 of the operators

∂xδϕ1/2(0), or

⟨OLIO(t)OLIO(0)⟩ ∼ 1/t8/3 (S-19)

As shown below in Sec. S-III B, this operator yields the (T/TK)2/3 low-temperature correction to the conductance
which confirms the NRG asymptotics of Fig. 2(b) (main text).

B. Linear conductance

The charge current through the double-charge setup can be expressed as

Î = − e

2π

√
2

3
∂tΘA (S-20)

In principle, the full expression also includes the fields ΘB/D but they carry no average current since the corresponding
conjugate fields are free. The linear conductance is expressed using the Kubo formula as

G =
e2

3h

ωn

π

〈
ΘA(iωn)ΘA(−iωn)

〉
iωn→0+

, (S-21)

where ωn = 2πnT/ℏ are bosonic Matsubara frequencies and the Fourier transform is defined as

ΘA(iωn) =

∫ ℏ/T

0

dτeiωnτ ΘA(τ). (S-22)

In the path integral formulation, the action at the quantum critical point is simply quadratic in ΘA

S0 =
∑
n

|ωn|
2π

|ΘA(iωn)|2 . (S-23)

The linear conductance at the QCP is readily obtained from the Kubo formula Eq. (S-21) with the result G = G0 =
e2/(3h). Away from the QCP, the action acquires corrections to the action

S1 =

∫ ℏ/T

0

dτ [LL(τ) + LR(τ)] , (S-24)
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with

LL = −4hL
3

cos

(√
2

3
ΘA +

2π

3

)
LR = −4hR

3
cos

(√
2

3
ΘA − 2π

3

)
(S-25)

where we used the operator identification (S-13). In addition, energies are cut off at the Kondo temperature scale TK .
The first order correction due to LL/R vanishes. Expanding the action to second order and evaluating the gaussian
integrals [2, 7], we arrive at

G =
e2

3h

[
1− C1

h2L + h2R − hLhR
T 2
K

(
TK
T

)4/3 ]
, (S-26)

where C1 is a dimensionless coefficient which can be absorbed into a redefinition of the Kondo temperature. The
combination h2R + h2L − hLhR predicts an anisotropic conductance in the plane of gate voltages (stability diagram).
Rephrased with the energies of the individual charge states, δE1/2/3, measured relative to the QCP, it takes the

symmetric form h2R + h2L − hLhR ∼ δE2
1 + δE2

2 + δE2
3 .

A finite hL or hR destabilizes the QCP with unitary conductance G0 and drives the system towards a new Fermi
liquid point with zero entropy and vanishing conductance. The exact same crossover is driven by channel asymmetry
δJ ̸= 0. The onset of this relevant perturbation is given by Eq. (S-26), with the behaviour (T/T ∗)−4/3. The crossover
scale T ∗ depends on the pseudo-magnetic fields as T ∗ ∼ (h2L + h2R − hLhR)

3/4/
√
TK (or T ∗ ∼ δJ3/2/

√
TK), or

T ∗ ∼ N
3/2
g where Ng is the gate voltage distance to the triple point, in agreement with our NRG data and the results

of Ref. [1, 2].
The finite temperature correction at the QCP can be similarly evaluated by including the leading irrelevant operator

λ̄OLIO (Eq. (9), main text). The action is supplemented by

SLIO = λ̄

∫ ℏ/T

0

dτ OLIO(τ), (S-27)

where the imaginary-time correlator of the leading irrelevant operator is deduced from Eq. (S-19) by conformal
invariance

⟨OLIO(τ)OLIO(0)⟩ =
1

T
2/3
K

(
πT

TK sin(πTτ)

)8/3

(S-28)

The linear conductance is finally computed perturbatively to second order in λ̄

G =
e2

3h

[
1− CLIO

(
T

TK

)2/3
]
, (S-29)

where CLIO ∝ λ̄2 is a dimensionless prefactor. The first order in λ̄ vanishes. The exponent agrees with the experimental
results of Ref. [1] as well as with the power law extracted from the NRG (Fig. 2(a) in the main text) and the quasi-
ballistic power law in Ref. [2].

C. Non-linear current

The effect of a finite voltage biasing of the two-charge Kondo circuit is readily addressed close to the triple point
(QCP). The field ΘA, conjugate to δϕA, is a sum of chiral fields

ΘA =
ΘA,R −ΘA,L√

2
(S-30)

moving in opposite directions. The outgoing field ΘA,R acquires a time dependence with the applied voltage V

ΘA,R → ΘA,R − 1√
3

eV t

ℏ
(S-31)

whereas the incoming field ΘA,L is unchanged. Right at the triple point, inserting this time dependence into the
current expression Eq. (S-20) directly recovers the unitary form I = G0V where G0 = e2/(3h). In the interaction
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representation, the Hamiltonian corresponding to Eq. (S-25) at finite hR/L ̸= 0 takes the form HR/L(t) = TR/L(t) +

T †
R/L(t), with the operator

TR/L(t) = −
2hR/L

3
exp

(
i

√
2

3
ΘA ∓ 2π

3
− i

eV t

3

)
. (S-32)

Then, following linear response theory, the current operator Eq. (S-20) is expanded in powers of HR/L. A careful
analysis must account for the fact that the current operator is taken at a position x = ℓ distant from the outermost
right QPC located at x = 0: TR/L ≡ TR/L(0) in HR and Î ≡ Î(ℓ) in Eq. (S-20). Using the commutation relations

[∂tΘA,R/L(t, ℓ),ΘA,R/L(t
′, 0)] = −2iπδ(t− t′ ∓ ℓ/vF )

expressing causality, we obtain the expansion Î = Î0 + Î1 + Î2 with [2, 8]

Î0(t) = − e

2π

√
2

3
∂tΘA(t, ℓ) +

e2V

3h

Î1(t) = i
e∗

ℏ
∑

j=R/L

[Tj(t− ℓ/vF )− T †
j (t− ℓ/vF )]

Î2(t) =
e∗

ℏ2

∫ tr

−∞
dt′

∑
j,j′=R/L

[Tj(t′) + T †
j (t

′), T †
j′(tr)− Tj′(tr)]

(S-33)

where we introduced the fractional charge e∗ = e/3 and tr = t − ℓvF accounting for the transit time from the right

QPC. The first order term Î1 has a vanishing average whereas [2, 8]

⟨Î2⟩ = −e∗ 2π

Γ(2/3)

(
2

3ℏ

)2

(h2L + h2R − hLhR)

(
3ℏ
eV

)1/3

t
2/3
0 . (S-34)

t0 ∼ ℏ/TK is the short-time cutoff of the effective model. The final result for the total current is thus

I =
e2V

3h

[
1−D1

h2L + h2R − hLhR
T 2
K

(
TK
eV

)4/3
]
, (S-35)

with the dimensionless coefficient D1, or a conductance correction ∼ (V/T ∗)−4/3. A similar calculation shows that
the channel asymmetry δJ yields exactly the same scaling ∼ (V/T ∗)−4/3 with T ∗ ∼ δJ3/2/

√
TK .

We can also utilize Eq. (S-33) to predict the shot noise. Following similar calculations in Refs. [2, 8], we obtain the
Fano factor

F =
S

I(hR/L = 0)− I
=

1

3
(S-36)

corresponding to the backscattering of fractional charges e∗ = e/3. The very same prediction was done in the
quasi-ballistic limit investigated in Ref. [2] suggesting that the scattering of fractional charges is independent of the
transmission of the QPCs and requires only proximity to the QCP. This somewhat extends the prediction of Ref. [9]
where a charge e∗ = e/2 was scattered in the two-channel Kondo model. Here, the Z3 parafermion scatters the
charge e∗ = e/3 and it should be straightforward to show that cascading N consecutive islands isolates a free ZN+1

parafermion scattering e∗ = e/(N + 1) charges. This result was confirmed close to the ballistic regime in Ref. [2].

S-IV. NRG CALCULATIONS

The NRG calculations presented in the main text were performed on the model Eq. S-1, in which the two retained
charge states of each island in Eq. S-2 are mapped to ‘impurity’ spin- 12 degrees of freedom ŜL and ŜR. Since we are
interested in the universal behavior of the critical point arising at a triple point (TP) of the charge stability diagram
[1], we consider explicitly the limit where states |A⟩ ≡ |N,M⟩, |B⟩ ≡ |N + 1,M⟩ and |C⟩ ≡ |N,M + 1⟩ all have the
same energy EA = EB = EC ≡ E (when JL = JR = JC = 0), while |D⟩ ≡ |N + 1,M + 1⟩ has much higher energy
ED ≫ E, and is projected out. This is achieved in practice by setting hL = hR = − 1

2I and sending I → +∞. The
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influence on the physics of neighbouring TPs is therefore eliminated. This is justified at low temperatures if we focus
on the close vicinity of the critical point, since the capacitive interaction I is RG irrelevant. This reveals the universal
physics of the critical point most cleanly. We therefore study with NRG the reduced model for the TP,

HTP = Hleads +
(
JL ŝ

−
L |B⟩⟨A|+ JC ŝ

−
C |C⟩⟨B|+ JR ŝ

−
R|A⟩⟨C|+H.c.

)
, (S-37)

which is a highly nontrivial generalized quantum impurity model, featuring a three-state impurity whose configurations
are interchanged by scattering between six spinless conduction electron channels (physically, these channels are the
electronic reservoirs either side of each of the three QPCs in the two-island device).

We focus on (i) the critical point arising with finite JL = JR = JC ≡ J ; and (ii) the Fermi liquid crossover generated
by perturbing away from the critical point by setting JL = JR ≡ J but JC ̸= J .
The model is then solved using a variant of Wilson’s NRG method [10], in which the channels are interleaved in a

generalized Wilson chain [11], coupled at one end to the impurity. This more efficient ‘iNRG’ method is required for a
model of such high complexity, especially along the experimentally-relevant Fermi liquid crossover where symmetries
are broken.

For all iNRG calculations presented in this work, we use a logarithmic discretization parameter Λ = 4, retain
Ns = 35000 states at each iteration, and exploit all abelian quantum numbers. The impurity contribution to the
entropy Simp(T ) = Stot(T ) − Selec(T ) is obtained in the usual way for NRG from the partition function [10], where
Stot is the full entropy for the coupled impurity-lead system, while Selec is the entropy of the isolated free electronic
reservoirs.

The series dc linear response differential conductance,

G =
dI

dV

∣∣∣∣∣
V→0

(S-38)

is defined in terms of the current I = −e⟨ṄR↑⟩ flowing into the drain lead (R ↑ in Fig. 1) due to a bias voltage V

applied to the source lead (L ↑). Here ṄR↑ = d
dtN̂R↑ and N̂α↑ =

∑
k ψ

†
α↑kψα↑k. An ac voltage bias on the left lead can

be incorporated by a source term in the Hamiltonian, Hbias = −eV cos(ωt)N̂L↑, where ω is the ac driving frequency.
The dc limit is obtained as ω → 0.
We use the Kubo formula [12] to obtain the desired conductance,

G =
e2

h
lim
ω→0

−2π ImK(ω)

ω
, (S-39)

where K(ω) = ⟨⟨ṄL↑; ṄR↑⟩⟩ is the Fourier transform of the equilibrium retarded current-current correlator

K(t) = −iθ(t)⟨[ṄL↑, ṄR↑(t)]⟩. Within iNRG, ImK(ω) may be obtained from its Lehmann representation using the
full density matrix technique [13] in terms of the Anders-Schiller basis [14] established on the iNRG generalized Wilson

chain [11]. The numerical evaluation is substantially improved by utilizing the identity ImK(ω) = ω2Im⟨⟨N̂L↑; N̂R↑⟩⟩
as shown recently in Ref. [15]. We use this method to obtain the NRG conductance results presented in the main
paper.

S-V. EXPERIMENTAL DATA FITTING

The experimental data of Fig. 3 were taken from Ref. [1], where a full description of the experimental setup is given.
For a particular configuration of τ and τC , conductance is measured while the voltages on two gates, one coupled
to each island, are varied. Then, line cuts (inset of Fig. 3) are extracted along the line between a pair of TPs with
equal left and right island gate voltage detuning U , where U = 0 is defined as the point midway between a pair of
TPs. For a given setting of τandτC , multiple line cuts (across different pairs of TPs in the same 2D plot, or the same
pair of TPs in successively acquired 2D plots) are averaged to reduce the noise. In measurements for τC = 0.998
(red), a charge near the islands evidently switched to a new location and then switched back, producing an apparent
discontinuity in the curve (see Supplementary Fig. 6 of Ref. [1] for an example.) However, this does not contribute
to the scaling collapse analysis, which only uses the tail of the line cut, not the portion between the triple points. In
this case we specifically used the righthand tail (positive U), though using the lefthand tail (or both tails) would not
have changed the results in any substantive way.
T ∗ is determined using the expression T ∗ = T ∗

0 + b| cos (2πU/δTP ) −∆TP |3/2 [2], which accounts for the periodic
structure of the TPs. δTP corresponds to the spacing from one TP pair to another TP pair, and ∆TP to the splitting
between the TPs of a single pair. Both are experimentally determined for each τC line cut from longer line cuts
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spanning multiple pairs of TPs from the same stability diagram or other charge stability diagrams with the same
τ, τC values. The prefactor b = 1 mK is the same value used in Ref. [1], which is found from fitting b of each line cut
to best match an NRG calculated universal curve and then averaging the resulting b values of all four line cuts. T ∗

0

accounts for the detuning in τC and is determined for each line cut by a fit, such that the line cut best collapses onto
the others. To fix an overall free parameter in the definition of the Fermi liquid scale T ∗, we take a practical definition
in which it corresponds to the conductance half-width-at-half-maximum at the TP, such that G(T = T ∗) = G0/2,
with G0 = e2/3h the critical point conductance.

From the analytic form for the leading corrections to the critical conductance given in Eq. 13 of the main text, cK ,
TK and c∗ are left as free parameters in a fit to the experimental data. However, since the value of τ = 0.95 is kept
fixed for all data sets shown (it is τC and hence T ∗ that is varied), the value of TK is taken to be a constant. Therefore
the correction to the fixed point conductance G0 = e2/3h at T ∗ = 0 is taken to be a constant, G0−G(T ∗ = 0) ≃ 0.021
e2/h. This yields TK/(cK)3/2 = 6.42 K (we do not separately determine the prefactor cK since its value is somewhat
arbitrary, depending on the definition of TK used). The remaining variation in the conductance as a function of τC
and |U | in the data plotted in Fig. 3 is captured by the T ∗ term in Eq. 13, from which our fit to experimental data
yields c∗ ≃ 0.23. The fit is also consistent with our NRG results.

S-VI. PARAFERMIONS IN KONDO MODELS

The emergence of a free (unscreened) Majorana fermion in the two-channel Kondo model has been established with
an explicit construction via the Emery-Kivelson method [3]. It has also been reproduced by starting from the opposite
quasi-ballistic limit related to the two-channel charge Kondo model [7]. Some other Kondo models have been argued
to host free parafermions at their fixed point. However the identification was done by analogy of the residual entropy
with the quantum dimension associated with a parafermion operator, not with an explicit derivation, in contrast
with what is done in the main text of this Letter and in Sec. S-II, where we construct the parafermion operator and
relate it to the original variables of the model. The ability to do this had previously been hindered because models
hosting parafermions are irreducibly interacting, and therefore more challenging to solve than their non-interacting
counterparts that can host the more simple Majorana modes.

Let us review which Kondo models exhibit a residual entropy suggestive of a local unscreened parafermion mode.
The standard multi-channel Kondo model with N channels has the residual entropy [16]

S = ln

[
2 cos

π

2 +N

]
. (S-40)

The result S = ln[(1 +
√
5/2)] in the three-channel case suggests a local Fibonacci anyon [17]. In the four-channel

Kondo model [6], which has similarities with the model studied here, S = 1
2 ln(3) indicating a local Z3 parafermion.

The topological Kondo model with SO(M) symmetry [18], the residual entropy is S = 1
2 lnM for M odd and

S = 1
2 ln(M/2) for M even, suggesting a local parafermion in all cases and notably a Z3 parafermion for M = 3.

Z3 parafermions have also been mentioned in the context of the three-channel charge Kondo model [17] but with
a totally different meaning. There, the renormalization group flow starting from the quasi-ballistic limit has been
argued [19] to map onto the boundary three-state Potts model. The Z3 parafermions are then bulk operators that
appear in the conformal field theory description of the Potts model. Firstly, those Z3 parafermions are delocalized
objects extending in the leads and differ from the local operators discussed in this work. Secondly, the fixed point of
the three-channel Kondo model does not seem to decouple one of the Z3 parafermions but rather a Fibonacci anyon
as indicated by the residual entropy.

S-VII. KONDO VS QUASI-BALLISTIC LIMITS

The physical device studied experimentally in Ref. [1] consists of two hybrid metal-semiconductor islands, both
of which host a macroscopically-large number of charge states. The islands have a finite capacitance and hence a
finite charging energy EC , which in practice is found to be much larger than the experimental base temperature,
kBT . The islands are connected to each other and to metallic leads by QPCs. The island-lead transmission τ and
the island-island transmission τC can be tuned in-situ within a single device from the weak-tunneling (Kondo) limit
(τ, τC ≪ 1) through to the quasi-ballistic limit (τ, τC ∼ 1). Ref. [1] studied both limits, and the evolution of behavior
between them, experimentally.

However, no single theoretical technique can treat this system exactly for all values of the QPC transmissions. In
this Letter we have considered the weak-tunneling (Kondo) limit using our modified EK approach [3] and NRG [10].
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In this limit, one can rigorously derive [1] a low-energy effective model in which only two charge states per island
are retained – the DCK model. The EK and NRG methods employed here are suited to analyzing such generalized
quantum impurity models. The regime of applicability of NRG was extended to intermediate transmission in Ref. [1]
by generalizing the DCK model to include several (but still a finite number) of charge states per island. However, larger
transmission remains out of reach for EK and NRG because a diverging number of charge states become involved in
transport [7] and the quantum impurity model description breaks down. On the other hand, the quasi-ballistic limit,
near perfect transmission, was studied recently in Ref. [2] using Matveev’s bosonization approach [7]. In that work, a
continuum version of the model is mapped to almost-free bosons, in which the interaction is treated perturbatively.
Different models and methods are therefore used in the two limits. Note however that electronic interactions play a
decisive role in both cases.

Remarkably, the low-temperature physics near the critical triple point is the same in both limits: both the DCK
model and the quasi-ballistic model capture the same behavior. Fundamentally this is a consequence of universality
near the critical point: the rescaled low-energy physics is the same, independently of the microscopic details of the
bare model, such as the values of the bare transmissions. This universality can be exploited to use results obtained
at small transmission and apply them in the experimental setting at larger transmission, provided we are at low
temperatures and confine attention to the vicinity of the critical point. This correspondence was demonstrated
in Ref. [1] and again in the present work when comparing theoretical predictions to experimental data. We note
that the same approach has been adopted previously for single-island devices connected to two and three channels
in e.g. Refs. [17, 20, 21], to establish quantitative agreement between NRG results obtained in the weak-tunneling
Kondo regime, and experimental data obtained at larger transmission. The latter is preferable experimentally since
then Kondo scales are boosted far above base temperatures, allowing the universal regime to be accessed.
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