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Abstract
In quantummany body physics, namely in the second quantization formalism, the Schrödinger

equation for non-interactingHamiltonians that are quadratic in operators can be simply solved

using linear transformations of operators. However, for interacting systems (quartic in oper-

ators), one resorts to doing linear transformations of many-particle states, which is far more

challenging. On the other hand, when expressed in the representation of Majorana fermions,

the door opens to non-linear canonical transformations as an alternative way to engage with

these interacting problems. By introducing a gauge degree of freedom with a decoupled aux-

iliary orbital to the Hamiltonian of the particle-hole symmetric Hubbard model in the single

site case and in the insulating phase, non-linear transformations on the Majorana operators

take this interacting system (due to Coulomb repulsion) to an effectively non-interacting form.

The language of third quantization is used to provide a lens into these interacting problems, by

defining an orthonormal basis of operators and the transition Hamiltonian, investigating how

the basis operators connect to one another under the action of the Hamiltonian. Transition

Hamiltonians with only zero entries inside blocks connecting the linear Majoranas to higher

order products determines if the Hamiltonian is non-interacting in a chosen basis. This trans-

ition Hamiltonian also offers a way to view the change in dynamics of the system after a set of

non-linear canonical transformations have acted on the basis of operators, and is constructed

for simple Hubbard and Heisenberg model systems.

Keywords: second quantization, non-linear canonical transformations, Majorana fermions,

third quantization
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1 Introduction

The field of quantum condensed matter theory (QCMT) aims to find useful ways to describe

the physics of many-body systems. P.W. Anderson describes the necessity for quantum con-

densed matter physicists best: ‘More is different’ [1]. Emergent properties arise from systems

as they scale up in size in ways that cannot be predicted by merely looking at the sum of

their parts. The degrees of freedom of problems involving fermions in QCMT are encoded in

creation and annihilation operators with which the Hamiltonian may be defined by. In this

formalism, problems wherein fermions may interact with one another are known as interact-

ing problems, and are quartic in the fermionic operators, while systems where the fermions

behave independently are known as non-interacting problems. These simpler systems are

quadratic in the fermionic operators, and are solved with the aid of linear transformations

of the fermionic operators. However, solving the Schrödinger equation for the interacting

model requires performing linear transformations on the multiparticle states of the system, a

far more complicated endeavour that requires either more computational power or analytical

ingenuity.

However, a Hamiltonian written in the Majorana representation introduces the possibility

of performing Non-Linear Canonical Transformations (NLCTs). These transformations, per-

formed on the Majorana operators, are able to swap products of any odd number of operators

with single, linear Majoranas. These non-linear transformations are, in effect, able to change

the very structure and interpretation of a Hamiltonian with their ability to alter which terms

contribute to the interaction. This feature of NLCTs is highlighted when introducing gauge

freedoms to our Hamiltonian in the form of a decoupled auxiliary site, which may swap one

of its Majoranas with higher order operator products in the interacting system of interest.

Thus, performing a series of NLCTs may be able to render interacting models effectively non-

interacting.

The dynamics of interacting systems can be further explored with a different formalism

known as third quantisation. While second quantization is built in the language of operator
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space, third quantization is built in the language of operator commutator space. In this form-

alism, an operator inner product and thus an orthonormal basis of operators is defined. The

transition Hamiltonian matrix is constructed using these tools and the operator inner product.

This sheds light into the dynamics and structure of a Hamiltonian, and is also a way to de-

termine whether a Hamiltonian is in a non-interacting form after a series of transformations.

This thesis seeks to use the language of third quantization to explore the nature of interacting

Hamiltonians, and the scope of what becomes possible with the advent of NLCTs.

2 Background

2.1 Second Quantization

Second quantization is a formalism in QCMT that describes states in terms of occupation num-

bers and number operators, as opposed to attempting to describe the entire system by a wave-

function like one may see in single-particle systems. The latter method, also known as first

quantization, is inefficient for describing systems with many particles due to the increasing

complexity of the wavefunction as it attempts to encode more and more particles. Instead,

second quantization simply asks how many particles are in what state of each orbital of a sys-

tem. This formalism works thanks to the notion of indistinguishability in quantummechanics.

The assumption states that, for N-particle systems, any two particles described by the same

quantum numbers i.e. spin, charge, mass, etc. are indistinguishable from one another [2].

To build the formalism of second quantization, we take an ordered, complete single particle

basis |𝑗⟩. The number operator ̂𝑛𝑗 defines how many particles occupy a given state |𝑗⟩ defined

by a set of quantum numbers. The number operator acts on a set of basis states defined by

the quantum number 𝑛𝑗 (known as the occupation number). The eigenvalue equation for the

number operator for an N-particle system is thus,

̂𝑛𝑗 |𝑛1, … , 𝑛𝑗, ...⟩ = 𝑛𝑗 |𝑛1 , … , 𝑛𝑗 , …⟩ (1)
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where ∑𝑗 𝑛𝑗 = 𝑁. Solely focusing on fermionic systems, in which particles have a half-odd

integer spin, 𝑛𝑗 is restricted to taking a value of either 0 or 1 for fermions due to the Pauli

exclusion principle. A value of 0 corresponds to an empty state, while an occupied state will

have the occupation number equal 1. The state given in (1) is known as a Fock state, as they

live in what is known as the Fock space, denoted by ℱ. The Fock space can be thought of

as the sum of the Hilbert spaces corresponding to zero particle states, single particle states,

double particle states, and so on. Mathematically, this is expressed as ℱ = ℱ0 ⊕ ℱ1 ⊕ … ,

where ℱ𝑁 = span{|𝑛1, 𝑛2, ...⟩ |∑𝑗 𝑛𝑗 = 𝑁}.

Several number operators may act on an eigenstate, but their ordering is of paramount

importance for fermions. To understand why, we introduce the fermionic creation operator

( ̂𝑐†𝑗 ) and its adjoint, the annihilation operator ( ̂𝑐𝑗). The creation and annihilation operators are

related to the number operator by,

̂𝑛𝑗 = ̂𝑐†𝑗 ̂𝑐𝑗 (2)

Individually, they act on the basis states by,

̂𝑐𝑗 |0⟩𝑗 = 0, ̂𝑐𝑗 |1⟩𝑗 = |0⟩𝑗 , ̂𝑐†𝑗 |0⟩𝑗 = |1⟩𝑗 , ̂𝑐†𝑗 |1⟩𝑗 = 0 (3)

The creation and annihilation operators obey the following anticommutation relations,

{ ̂𝑐𝑗, ̂𝑐𝑘} = 0, { ̂𝑐†𝑗 , ̂𝑐†𝑘} = 0, { ̂𝑐†𝑗 , ̂𝑐𝑘} = 𝛿𝑗𝑘 (4)

The basis states of the number operator is defined by the creation operators acting on a vacuum

state |𝑣𝑎𝑐⟩. The order in which the operators act on the vacuum state is important, and for

our convention we take the creation operators of higher 𝑗 to act on the vacuum state first. By

the anticommutation relations in (4), swapping around two creation operators incurs a minus

sign. For example,

|101⟩ = ̂𝑐†3 ̂𝑐†1 |𝑣𝑎𝑐⟩

= − ̂𝑐†1 ̂𝑐†3 |𝑣𝑎𝑐⟩
(5)
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Hence it is imperative to be meticulous with the order in which the operators act on a pre-

existing state in order to build another state.

Problems involving particles which do not communicate with one another are known as

non-interacting problems. These Hamiltonians are quadratic with respect to the fermionic

operators. They may be solved by writing the Hamiltonian in the form 𝐻̂ = ⃗̂𝐶
†
𝕋 ⃗̂𝐶, where

⃗̂𝐶 and ⃗̂𝐶
†
represent vectors with the individual fermionic operators as elements, and 𝕋 rep-

resents the single-particle Hamiltonian. The diagonalization of 𝕋 is the equivalent of solving

Schrödinger’s equation, and reduces the Hamiltonian to the form 𝐻̂ = ∑𝑘 𝜖𝑘 ̂𝑛𝑘. This 𝕋matrix

is of dimension 𝑁 × 𝑁, and the eigenstates of such a Hamiltonian are simply the products of

single particle states.

In contrast, problems involving interactions between particles, such as a Coulomb repul-

sion between two fermions, are quartic (or even higher order) with respect to the fermionic

operators. This Hamiltonian cannot be written as a single particle Hamiltonian, and must be

constructed using the multiparticle states of a system, i.e. [𝐻̂]𝑛𝑚 = ⟨𝜙𝑛| 𝐻̂ |𝜙𝑚⟩, which must

then be diagonalised to solve Schrödinger’s equation. This matrix, in contrast, is of dimension

2𝑁 × 2𝑁 , and the eigenstates are superpositions of products of single particle states. It is thus

evident that interacting problems are very different in their nature from non-interacting prob-

lems. The fundamental structure of these interacting models are investigated, especially in the

face of the possibility of non-linear transformations which are able to change the structure of

these interacting models.

2.2 Majorana fermions

2.2.1 Ettore Majorana and the Dirac Equation

The Dirac equation is a historic relativistic wave equation for electrons that famously implied

the existence of antimatter [3]. The equation, originally derived by Paul Dirac in 1928 but

written here in covariant notation used in quantum field theory, and taking the convention of
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ℏ = 𝑐 = 1, reads,

(𝑖𝛾𝜇𝜕𝜇 −𝑚)𝜓 = 0 (6)

Where 𝜓 represents the Dirac spinor field that describes fundamental fermions and 𝛾𝜇 repres-

ent the four Dirac matrices that obey the rules of the Clifford algebra,

{𝛾𝜇, 𝛾𝜈} ≡ 2𝜂𝜇𝜈 (7)

Here, 𝜂𝜇𝜈 is the metric tensor of flat space [4]. The components 𝜇 = {0, 1, 2, 3} are coordinates

in spacetime, with 0 representing the time coordinate and 1, 2, 3 the spacial coordinates. To

ensure the Dirac equation describes the wavefunction 𝜓 of a spin-1/2 particle of mass 𝑚, it is

required that 𝛾0 be Hermitian with the other elements being anti-Hermitian. Finding suitable

real and imaginary matrices for the Dirac matrices implies that 𝜓must be a complex field with

an associated, and different, complex conjugate 𝜓∗ that also satisfies the Dirac equation. In

the language of quantum field theory, particles generated by a field 𝜙 would annihilate with

particles generated by the complex conjugate field 𝜙∗.

Ten years after Paul Dirac first published his famous equation, Ettore Majorana posed the

question, would it be possible to obtain a real Dirac spinor field that would thus be its own

complex conjugate, generating particles that are their own antiparticle [5]? Majorana indeed

found four purely imaginary matrices satisfying the Clifford algebra,

̃𝛾0 = 𝜎2 ⊗ 𝜎1

̃𝛾1 = 𝑖𝜎2 ⊗ 1

̃𝛾2 = 𝑖𝜎3 ⊗ 1

̃𝛾3 = 𝑖𝜎2 ⊗ 𝜎2 (8)

With these matrices, Dirac’s equation may be reduced to Majorana’s equation, describing a
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real Dirac spinor field ̃𝜓 that generates a spin-1/2 particle that is its own antiparticle.

(𝑖 ̃𝛾𝜇𝜕𝜇 −𝑚) ̃𝜓 = 0 (9)

These particles are thus known as the Majorana fermions. There are several examples of

particles which are their own antiparticles; most notably the photon which has spin 1, and

neutral pions which are spin 2 particles. However, the obstacle which exists for spin-1/2

particles in achieving this symmetry is their charge. Under charge conservation, these particles

cannot simply annihilate with another particle of the same charge. Thus, antiparticles of spin-

1/2 particles always have opposite charges, making them distinct from their particle counter-

parts. A chargeless spin-1/2 particle would be a prime candidate for being a Majorana fermion.

At the time of writing, fundamental particles with the behaviour of a Majorana fermion have

not been detected. There is some discussion about the possibility of right-handed neutrinos

being a candidate for exhibiting the behaviour of a Majorana fermion, but there is no exper-

imental evidence supporting this hypothesis [6]. Majorana fermions however do appear as

Bogoliubov quasiparticles on the surfaces and vertex cores of topological superconductors,

and obey non-Abelian statistics, notably distinct from bose and fermi statistics [7]. Their

potential in topological quantum computation is a source of research interest in the QCMT

community [8].

2.2.2 Mathematical Construction of Majorana Fermions

Venturing away from the relativisic nature of the theory of theDirac equation, we seek a repres-

entation of the Majorana fermions in QCMT. When constructing the operators for Majorana

fermions, denoted by 𝛾𝑖, it is imperative they follow the correct anticommutation relations as
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described by the Clifford algebra, this time in a non-relativistic setting.

{𝛾𝑖, 𝛾𝑗} = 2𝛿𝑖𝑗

𝛾†𝑖 = 𝛾𝑖

𝛾2𝑖 = 1 (10)

The above relationships highlight the key properties of Majorana fermions; they are self-

adjoint Hermitian operators that annihilate with themselves and anticommute. Majorana

operators are related to the canonical fermionic creation and annihilation operators via the

linear transformation,

̂𝑐𝑖 =
𝛾2𝑖−1 + 𝑖𝛾2𝑖

2 , ̂𝑐†𝑖 =
𝛾2𝑖−1 − 𝑖𝛾2𝑖

2 (11)

It is evident that for every 𝑁 fermions present in a system, 2𝑁 Majoranas are required to

describe them. Majorana operators also hold another unique quality; the product of an odd

number of Majorana fermions also obey the Clifford algebra, and thus are also considered

Majorana fermions. In particular, the set {𝑖𝛾𝑖𝛾𝑗𝛾𝑘} behave exactly likeMajorana fermions, where

they are multiplied by a factor 𝑖 to ensure the set obeys the Clifford algebra [9]. This property

is crucial to achieving the non-linear canonical transformations discussed later.

When constructing the explicit matrix form of aMajorana fermion, the above relationships

must all be considered. One way to construct them which ensures they obey the Clifford al-

gebra is the Jordan-Wigner transformation which transforms spin-1/2 systems into fermions

(and vice versa) which not only preserves the correct anticommutation relations and operator

algebra, but also the dimensionality of the Hilbert space [10]. By utilizing this transform and

the connection between fermionic operators and Majoranas, we are able to construct Major-

anas as tensor products of the Pauli spin matrices [11],

̂𝛾2𝑛−1 =
𝑛−1
∏
𝑖=1

𝜎𝑧𝑖 𝜎𝑥𝑛 ̂𝛾2𝑛 =
𝑛−1
∏
𝑖=1

𝜎𝑧𝑖 𝜎
𝑦
𝑛
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It is also possible to decompose spin-1/2 operators into Majorana fermions via the Martin

transformation [12], which preserves the SU(2) algebra of the spin operators.

̂𝑆𝑥 = − 𝑖
2𝛾𝑗𝛾𝑘

̂𝑆𝑦 = − 𝑖
2𝛾𝑘𝛾𝑖

̂𝑆𝑧 = − 𝑖
2𝛾𝑖𝛾𝑗 (12)

2.3 Interacting Fermionic and Spin Models

2.3.1 The Hubbard Model

One of the simplest and most famous cases of an interacting model in QCMT is the Hubbard

model, which comprises a tight-binding fermionic lattice, with strong on-site Coulomb repul-

sion (the long-range Coulomb interaction is neglected) [13]. For the general Hubbard model,

the Hamiltonian reads as follows,

𝐻̂ = 𝜖 ∑
𝜎=↑,↓

∑
𝑖

̂𝑛†𝑖𝜎 + 𝑈∑
𝑖

̂𝑛𝑖↑ ̂𝑛𝑖↓ − 𝑡 ∑
𝜎=↑,↓

∑
<𝑖,𝑗>

̂𝑐†𝑖𝜎 ̂𝑐𝑗𝜎 (13)

The 𝜖 term corresponds to the single-particle potential energy of each site on the lattice, and

a kinetic term 𝑡 arises from fermions tunnelling to nearest neighbour sites. A Coulomb repul-

sion term 𝑈 describe from two opposite-spin fermions occupying the same site. Physically,

given this is an interaction between two different fermions, it makes sense why this Cou-

lomb term is quartic in terms of the fermionic operators. Specifically, in this short range case

where two opposite spin fermions interact with each other in the same site, it is also called

the Hubbard interaction. Without this interacting term, the Hubbard model would simply de-

scribe a tight-binding model which can be easily solved using a set of linear transformations

on the fermionic operators. The Hubbard model is useful in investigating the Mott transition

between conducting and insulating systems driven by electronic interactions, such as in trans-

ition metal oxide materials [14]. This may be seen by focusing on the half-filled case, where
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Figure 1: Schematic of the 2D Hubbard model. A Hubbard interaction 𝑈 is present in sites containing
two anti-aligned fermions, with a tunnelling parameter 𝑡 to account for fermions hopping to neigh-
bouring sites [15].

there is approximately one fermion per site on average which may be either up or down spin.

Known as particle-hole symmetry (P-H symmetry), this is the case wherein ⟨ ̂𝑛𝑖⟩ = 1, arising

for 𝜖 − 𝑈
2
. In the case where 𝑈 ≪ 𝑡, the kinetic term dominates and fermions more freely

tunnel to neighbouring sites, generating phenomena such as particle-hole excitations called

excitons and magnetic excitations known as magnons. In this regime, the system is said to

be in a metallic phase. In contrast, in the insulating phase, we have 𝑈 ≫ 𝑡. Any tunnelling

into neighbouring atoms generates a large Coulomb interaction𝑈 , an extremely unfavourable

energy level. The lifetimes of any doubly occupied states are very short as a result.

2.3.2 The Heisenberg Model

Another interacting model of interest is the Heisenberg model, written in terms of spin oper-

ators. The system describes a set of 𝑁 spins which interact with their nearest neighbour via

an exchange coupling parameter 𝐽 [16]. The Heisenberg Hamiltonian simply reads,

𝐻̂ = 𝐽 ∑
<𝑖,𝑗>

⃗̂𝑆𝑖 ⋅ ⃗̂𝑆𝑗 (14)
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Considering a 1D chain of N spins, the Hamiltonian may thus be re-expressed as,

𝐻̂ = 𝐽
𝑁−1
∑
𝑖=1

[ ̂𝑆𝑧𝑖 ̂𝑆𝑧𝑖+1 +
1
2 (

̂𝑆+𝑖 ̂𝑆−𝑖+1 + ̂𝑆−𝑖 ̂𝑆+𝑖+1)] (15)

The ̂𝑆𝑧𝑖 operators represents a magnetic interaction between two neighbouring spins, which

may prefer to be anti-aligned (antiferromagnetic) for 𝐽 > 0 or aligned (ferromagnetic) for 𝐽 < 0.

The second term with the ̂𝑆+𝑖 and ̂𝑆−𝑖 operators encode spin flips, in which two neighbouring

anti-aligned spins may switch positions in a quantum fluctuation. In the antiferromagnetic

phase, the Heisenberg model acts as an effective low energy description of the Hubbard model

in the insulating phase where 𝑈 ≫ 𝑡 [17]. In this regime, the coupling constant 𝐽 is related to

the Hubbard constants by 𝐽 = 4𝑡2/𝑈 .

A more interesting case, the triangular lattice, may also be considered. In its simplest case,

with three spins oriented in a triangle, the Hamiltonian becomes,

𝐻̂ = 𝐽 ( ⃗̂𝑆1 ⋅ ⃗̂𝑆2 + ⃗̂𝑆3 ⋅ ⃗̂𝑆1 + ⃗̂𝑆2 ⋅ ⃗̂𝑆3) (16)

In this case, for 𝐽 > 0, the system experiences magnetic frustration as it becomes impossible

to satisfy simultaneously all antiferromagnetic bonds. In other words, with two anti-aligned

spins, or a valence bond, the third site will always be aligned with one of them. This produces

a large degeneracy in the ground state of the system.

Figure 2: Heisenberg model for three spins oriented in a triangular lattice.
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2.4 The Local Canonical Group in theMajorana Representation

Canonical transformations are those which are able to change the Fock structure of a Hilbert

space while preserving the fermionic anticommutation relations [18]. In other words, this

group of transformations may take us from one set of fermionic operators describing the de-

grees of freedom of the system { ̂𝑐𝜎}, to another set { ̂𝑑𝜎} which acts on the same Hilbert space.

The group of transformations that correctly preserve the fermionic anticommutation relations

is referred to as the Local Canonical Group (LCG), given by,

𝑆𝑈(2𝑛−1) ⊗ 𝑆𝑈(2𝑛−1) ⊗ 𝑈(1) ⊗ ℤ2 (17)

The transformations performed must remain consistent for all of the elements of the Clifford

algebra given below, for 𝑁 unique fermions,

Γ(0) ∶1

Γ(1) ∶𝛾1, … , 𝛾2𝑁

Γ(2) ∶𝛾1𝛾2, … , 𝛾1𝛾2𝑁 , … , 𝛾2𝑁−1𝛾2𝑁

⋮

Γ(2𝑁) ∶𝛾1 …𝛾2𝑁 (18)

Where Γ(𝑘) represents all the different independent combinations of 𝑘 Majoranas accessible

from a selection of 𝑛 total Majoranas. In terms of the Majorana fermions, the ℤ2 component

of the transformation simply just refers to a sign change of an odd number of the linear set

of Majoranas in Γ(1). Linear transformations are encapsulated in the 𝑆𝑈(2𝑛−1) ⊗ 𝑆𝑈(2𝑛−1)

component of the LCG. This transformation, parameterised by an angle 𝜒, generates a new

set of Majoranas {𝛼𝑖} given by,

𝛼𝑖 = 𝑒−
𝜒
2 𝛾𝑗𝛾𝑘𝛾𝑖𝑒

𝜒
2 𝛾𝑗𝛾𝑘 (19)
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Evidently, this rotor may be re-expressed as 𝑒
𝜒
2 𝛾𝑗𝛾𝑘 = cos(𝜒/2) − 𝛾𝑗𝛾𝑘 sin(𝜒/2).

2.4.1 Non-Linear Canonical Transformations

The 𝑈(1) component of the LCG represent the non-linear transformations that may be per-

formed on the elements of the Clifford algebra. Problems in QCMT, such as strongly correlated

electron systems, require analysis beyond the original electron degrees of freedom and Laun-

dau’s theory [18]. By utilizing these non-linear basis transformations instead of the typical

linear basis transformations that are performed to solve problems in QCMT, the original de-

grees of freedom associated with the system become less relevant. The door is opened to

describing these correlated systems in terms of customized quantum coordinates.

Non-linear transformations in terms of fractionalized Majorana fermions are possible be-

cause of their aforementioned property wherein the elements of the Clifford algebra in Γ(𝑘)

for odd 𝑘 are themselves Majorana fermions and obey the Majorana anticommutation rela-

tions when multiplied by an appropriate imaginary factor. Valid transformations on the Ma-

jorana basis must still ensure that the Majoranas fulfill the anticommutation relations in (10)

and must be consistent for all elements in the Clifford algebra. One such non-linear canonical

transformation would be one that mixes the elements in Γ(1) and Γ(3) in what is called a Hodge

rotation [18]. A rotation of this form would generate a new set of Majorana fermions {𝜇𝑖} in

the following way,

𝜇𝑖 = 𝑒−𝑖
𝜒
2 𝛾𝑗𝛾𝑘𝛾𝑙𝛾𝑚𝛾𝑖𝑒𝑖

𝜒
2 𝛾𝑗𝛾𝑘𝛾𝑙𝛾𝑚 (20)

We may define from here the Hodge rotation function 𝑅(𝜒) = 𝑒𝑖
𝜒
2 𝛾𝑗𝛾𝑘𝛾𝑙𝛾𝑚 . Similarly to

the 𝑆𝑈(2𝑛−1) ⊗ 𝑆𝑈(2𝑛−1) component of the LCG, the Hodge rotation may be written as

𝑒𝑖
𝜒
2 𝛾𝑗𝛾𝑘𝛾𝑙𝛾𝑚 = cos(𝜒)𝛾𝑗 + 𝑖 sin(𝜒)𝛾𝑘𝛾𝑙𝛾𝑚.

2.5 Third Quantization

Pioneered by Tomaž Prosen, third quantization is a formalism which has been used to solve

the Linblad master equations associated with quadratic open systems [19]. The theory works
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in the language of operator commutator space, with the commutator being built in directly in

the construction of the theory.

To understand the formalism of third quantization, recall that any operator ̂𝑋 may be

decomposed in terms of an orthonormal basis |𝑛⟩ of the appropriate Hilbert space,

̂𝑋 = ∑
𝑛𝑚

|𝑛⟩ ⟨𝑛| ̂𝑋 |𝑚⟩ ⟨𝑚| = ∑
𝑛𝑚

⟨𝑛| ̂𝑋 |𝑚⟩ |𝑛⟩ ⟨𝑚| (21)

Entering the language of third quantisation, the Hilbert-Schmidt inner product, also known

as the operator inner product, is defined as,

( ̂𝐴| ̂𝐵) = 𝑡𝑟( ̂𝐴† ̂𝐵)
2𝑁 (22)

Where we divide by 2𝑁 , the dimension of the Hilbert space, to normalise the inner product

such that ( ̂𝐴| ̂𝐴) = 11 [11]. Using this inner product, we have that (|𝑛⟩ ⟨𝑚| | ̂𝑋) = ⟨𝑛| ̂𝑋| |𝑚⟩.

This allows us to write the operator decomposition in our new, generalised Dirac vector space

notation,

| ̂𝑋) = ∑
𝑛𝑚
(|𝑛⟩ ⟨𝑚| | ̂𝑋)| |𝑛⟩ ⟨𝑚|) (23)

In third quantization, the degrees of freedom of the system may be represented in an operator

basis consisting of the elements of the Clifford algebra described in (18). A vector Γ⃗ may be
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constructed, encoding all possible basis operators of the system,

Γ⃗ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝟙

𝛾1
𝛾2
⋮

𝛾2𝑁
𝛾1𝛾2
⋮

𝛾2𝑁−1𝛾2𝑁
⋮

𝛾1𝛾2 …𝛾2𝑁−1𝛾2𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(24)

Using the operator inner product, it becomes clear why the elements of Γ⃗ form an orthonormal

basis, since they fulfill the property that (Γ𝑖|Γ𝑗) = 𝛿𝑖𝑗 .

The transition Hamiltonian ℋ is constructed using the operator inner product and the

orthonormal basis operators,

ℋ𝑖𝑗 = (Γ𝑖| [𝐻̂, Γ𝑗]) (25)

The transition Hamiltonian is an adjacency matrix that provides a deeper insight into the

structures and correlations of a corresponding Hamiltonian. It can be thought of as a unique

fingerprint, which when transformed into a matrix plot, provides an interesting topology that

reflects details about the individual model or Hamiltonian that we are working with. Each

element ℋ𝑖𝑗 details how Γ𝑖 and Γ𝑗 connect to one another under the action of the Hamilto-

nian. The transition Hamiltonian gets its name from the fact that it also encodes all possible

transitions between the eigenstates of the Hamiltonian [11].

Furthermore, in the Heisenberg picture the time derivative of an operator that does not
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carry explicit time dependence is solely dependent on the commutators [20].

𝑑 ̂𝐴
𝑑𝑡 = �

�
���
0

𝜕 ̂𝐴
𝜕𝑡 + 𝑖[ ̂𝐻, ̂𝐴] (26)

Hence, it is clear from the definition of ℋ that its elements also provide insight into the de-

composition of time derivatives of the basis operators in terms of other basis operators of the

system. Such applications of this would be investigating the decomposition of the time deriv-

ative of number operators ̇̂𝑛 in a given Majorana basis. Hence,ℋ provides an expanded view

of the dynamics of its associated Hamiltonian.

3 Performing Non-Linear Transforms on Interacting

Models

3.1 Hubbard Atom in the Particle-Hole Symmetric Case

As a premiere example for exploring the utility of NLCTs in transforming interacting Hamilto-

nians to a non-interacting form, the single-site case of the Hubbard model described in (13) is

investigated, otherwise known simply as the Hubbard atom. We may further direct focus to

the Hubbard atom under P-H symmetry, with 𝜖 = −𝑈/2. In this specific case, the Hamiltonian

simplifies to,

𝐻̂ = −𝑈2 ( ̂𝑐†↑ ̂𝑐↑ + ̂𝑐†↓ ̂𝑐↓ − 2 ̂𝑐†↑ ̂𝑐↑ ̂𝑐†↓ ̂𝑐↓) (27)

Clearly, this Hamiltonian is quartic in terms of the creation and annihilation operators, and

is thus an interacting problem requiring the diagonalization of a 22 × 22 matrix to solve. The

aim becomes to reduce the complexity of this Hamiltonian by employing NLCTs.

The first step is to introduce an auxiliary orbital to the system as in Figure 3. The auxili-

ary orbital is a completely decoupled site from the Hubbard atom, and thus cannot affect the

observables of the original Hubbard site in any way. The introduction of this auxiliary orbital
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Figure 3: Schematic of the single Hubbard site described by the operators ̂𝑐†↑, ̂𝑐↑, ̂𝑐†↓, and ̂𝑐↓ and the
decoupled auxiliary orbital described by the operators ̂𝑓† and ̂𝑓.

introduces an extra set of fermionic operators ̂𝑓†0 and ̂𝑓0 that act upon it to the Hamiltonian of

the Hubbard model. As this is totally decoupled with our system of interest, it can be treated

as a gauge degree of freedom and its energy 𝜖𝑓 can be set to be 0 at the end (or indeed, start)

of our NLCTs. The Hamiltonian for the overall system including this new auxiliary site is,

𝐻̂ = −𝑈2 ( ̂𝑐†↑ ̂𝑐↑ + ̂𝑐†↓ ̂𝑐↓ − 2 ̂𝑐†↑ ̂𝑐↑ ̂𝑐†↓ ̂𝑐↓) + 𝜖𝑓 ̂𝑓† ̂𝑓 (28)

A change of representation from the fermionic operators to the Majorana operators is then

performed,

̂𝑐↑ =
𝛾1 − 𝑖𝛾2

2 , ̂𝑐↓ =
𝛾3 − 𝑖𝛾4

2 , ̂𝑓 = 𝛾5 − 𝑖𝛾6
2

̂𝑐†↑ =
𝛾1 + 𝑖𝛾2

2 , ̂𝑐†↓ =
𝛾3 + 𝑖𝛾4

2 , ̂𝑓† = 𝛾5 + 𝑖𝛾6
2

(29)

The Hamiltonian thus becomes,

𝐻 = −𝑈4 (1 + 𝛾1𝛾2𝛾3𝛾4) +
𝜖𝑓
2 (1 + 𝑖𝛾5𝛾6) (30)

Employing a Hodge rotation to obtain a new set of Majoranas, {𝜇𝑖}, where 𝜇𝑖 = 𝑅† (𝜋
2
) 𝛾𝑖𝑅 (

𝜋
2
),

and 𝑅 (𝜒) = exp (− 𝑖
2
𝜒𝛾2𝛾3𝛾4𝛾5), the Hamiltonian becomes,

𝐻 = −𝑈4 (1 + 𝑖𝜇1𝜇5) +
𝜖𝑓
2 (1 − 𝜇2𝜇3𝜇4𝜇6) (31)
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By setting 𝜖𝑓 = 0, the Hamiltonian becomes effectively quadratic in terms of the Majorana

operators. We may then return to the fermionic operator basis by defining a new fermionic

operator based on 𝜇1 and 𝜇5,

̂𝑑 = 𝜇1 + 𝑖𝜇5
2 , ̂𝑑† = 𝜇1 − 𝑖𝜇5

2 (32)

Which reduces the Hamiltonian to a much simpler form, 𝐻 = −𝑈
2

̂𝑑† ̂𝑑, with a much more

straightforward solution. The Hubbard site is now simply unoccupied, with energy 0, or occu-

pied, with energy −𝑈/2. The question may be asked as to what detail is lost in this situation.

It may first appear as if we have managed to reduce the degrees of freedom of the system, only

describing the Hamiltonian with one pair of fermionic operators instead of two. However, this

is not the full picture.

Prior to transformation, by simple analysis it is evident that the eigenstates of the single

Hubbard-site under P-H symmetry are simply the ground states |↑⟩, |↓⟩with energy𝐸 = −𝑈/2

and the excited states |0⟩, |↑↓⟩ with energy 𝐸 = 0. The ground and excited states are hence

both doubly degenerate. Introducing the auxiliary orbital doubles the possible eigenstates of

the system as the auxiliary may be unoccupied or occupied. Setting 𝜖𝑓 = 0, two states with

identical quantum numbers only differing betweenwhether the auxiliary orbital is occupied or

unoccupied will both have the exact same energy eigenvalue, as seen in Table 1. This increases

the degeneracy of the system further, with the energy of the ground state and first excited state

now being quadruply degenerate.

To seewhat happens after transformation, we explicitly write out the transformedHamilto-

nian in the fermionic representation, now including the terms associated with the auxiliary

site. Defining ̂𝑓1 =
1
2
(𝜇2 + 𝑖𝜇3) and ̂𝑓2 =

1
2
(𝜇4 + 𝑖𝜇6), we get,

𝐻̂ = −𝑈2
̂𝑑† ̂𝑑 + 𝜖𝑓(2 ̂𝑓†1 ̂𝑓1 ̂𝑓†2 ̂𝑓2 − ̂𝑓†1 ̂𝑓1 − ̂𝑓†2 ̂𝑓2 + 1) (33)

The auxiliary Hilbert space is now of dimension four instead of two, all contributing the

same energy once 𝜖𝑓 is set to 0. In contrast, the Hilbert space associated with the Hubbard
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Pre-Transformation Post-Transformation
Eigenstate Energy Eigenstate Energy
|0, 0⟩

0

|0, 00⟩
0

|0, 1⟩ |0, 01⟩
|↑↓, 0⟩ |0, 10⟩
|↑↓, 1⟩ |0, 11⟩
|↑, 0⟩

-𝑈
2

|1, 00⟩
-𝑈
2

|↑, 1⟩ |1, 01⟩
|↓, 0⟩ |1, 10⟩
|↓, 1⟩ |1, 11⟩

Table 1: Table explicitly detailing the energy eigenstates and eigenvalues of the Hamiltonian, before
and after a non-linear transformation is performed. The comma separates the quantum numbers asso-
ciated with the Hubbard sites from those associated with the auxiliary orbital. The unoccupied orbitals
are denoted by 0, while the occupied sites are denoted by either 1 or an ↑/↓, depending on their nature.

atom and the Coulomb interaction were originally 4-dimensional but are now only described

by two states (associated with whether the effective 𝑑-orbital is occupied or unoccupied). This

transformation can thus be seen as the degeneracy shifting from the Hubbard atom over to the

auxiliary, which becomes responsible for the all of the system’s degenerate eigenstates. How-

ever, both before and after transformation, there are eight overall eigenstates of the system,

seen clearly in Table 1.

3.1.1 Other Configurations of the Hubbard Model

Venturing out of P-H symmetry for the Hubbard site, the picture becomes more complicated.

Remaining in the single-site case, the Hamiltonian becomes,

𝐻̂ = 𝜖( ̂𝑛†↑ + ̂𝑛†↓) + 𝑈 ̂𝑛↑ ̂𝑛↓ + 𝜖𝑓 ̂𝑓† ̂𝑓 (34)

Written in the Majorana representation,

𝐻̂ = 𝜖
2(2 + 𝑖𝛾1𝛾2 + 𝑖𝛾3𝛾4) +

𝑈
4 (1 + 𝑖𝛾1𝛾2 + 𝑖𝛾3𝛾4 − 𝛾1𝛾2𝛾3𝛾4) +

𝜖𝑓
2 (1 + 𝑖𝛾5𝛾6)

= 𝜖 + 𝑖 (2𝜖 + 𝑈
4 ) (𝛾1𝛾2 + 𝛾3𝛾4) +

𝑈
4 (1 − 𝛾1𝛾2𝛾3𝛾4) +

𝜖𝑓
2 (1 + 𝑖𝛾5𝛾6)

(35)
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By transforming the set of Majoranas by the same rotor 𝑅(𝜒 = 𝜋/2) = exp (− 𝑖𝜋
4
𝛾2𝛾3𝛾4𝛾5) in

an effort to again reduce the quartic term connected to the Coulomb repulsion into a quadratic

one, the Hamiltonian becomes,

𝐻̂ = 𝜖 + 𝑖 (2𝜖 + 𝑈
4 ) (𝑖𝜇1𝜇3𝜇4𝜇5 + 𝜇3𝜇4) +

𝑈
4 (1 − 𝑖𝜇1𝜇5) +

𝜖𝑓
2 (1 − 𝜇2𝜇3𝜇4𝜇6) (36)

Evidently, there are terms that are still quartic in terms of the Majorana operators. Further

rotations will only shift which term is quartic in theMajoranas away from P-H symmetry. The

introduction of more auxiliary orbitals has been explored, encountering the same problem of

shifting complexity within the terms related to the Hubbard atom. As of writing, there is no

known rotation which will render the Hubbard atom quadratic in the Majoranas.

Similarly, we explore the Hubbard dimer, the 2-site case of the Hubbard model, under P-H

symmetry. The Hamiltonian with respect to the fermionic operators is written as,

𝐻̂ = −𝑈2 ( ̂𝑛†1↑+ ̂𝑛†1↓+ ̂𝑛†2↑+ ̂𝑛†2↓)+𝑈( ̂𝑛1↑ ̂𝑛1↓+ ̂𝑛2↑ ̂𝑛2↓)+𝑡( ̂𝑐†1↑ ̂𝑐2↑+ ̂𝑐†2↑ ̂𝑐1↑+ ̂𝑐†1↓ ̂𝑐2↓+ ̂𝑐†2↓ ̂𝑐1↓)+𝜖𝑓 ̂𝑓† ̂𝑓

(37)

Again in the Majorana representation,

𝐻̂ = −𝑈4 (2 + 𝛾1𝛾2𝛾3𝛾4 + 𝛾5𝛾6𝛾7𝛾8) +
𝑖𝑡
2 (𝛾2𝛾5 − 𝛾1𝛾6 + 𝛾4𝛾7 − 𝛾3𝛾8) +

𝜖𝑓
2 (1 + 𝛾9𝛾10) (38)

Performing two rotations 𝑅1(𝜋/2) = 𝑒
𝑖𝜋
4 𝛾2𝛾3𝛾4𝛾9 and 𝑅2(𝜋/2) = 𝑒

𝑖𝜋
4 𝜒𝛾5𝛾7𝛾8𝛾10 to reduce the

Figure 4: Illustration of the Hubbar dimer with an accompanying auxiliary orbital. A new kinetic term
𝑡 permits tunnelling between sites.
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Coulomb interaction into a quadratic form returns,

𝐻̂ = − 𝑖𝑈
4 (2 + 𝜇1𝜇9 − 𝜇6𝜇10) −

𝜖𝑓
2 (1 − 𝑖𝜇2𝜇3𝜇4𝜇5𝜇7𝜇8)

+ 𝑖𝑡
2 (−𝜇3𝜇4𝜇9𝜇7𝜇8𝜇10 + 𝜇1𝜇6 + 𝜇9𝜇2𝜇3𝜇8𝜇10𝜇5 − 𝜇4𝜇9𝜇2𝜇10𝜇5𝜇7)

(39)

Similar to the Hubbard atom away from P-H symmetry, the complexity is merely shifted from

one term to another as the kinetic term becomes sextic in the Majorana fermions. Again,

further non-linear transformations on this Hamiltonian to shift complexity onto the auxiliary

orbital also transfers complexity to either the Coulomb or the kinetic terms. It remains a

noteworthy result to recognise that the interacting term is no longer the Coulomb repulsion,

but the kinetic term that permits site hopping. Thus, the interpretation of this Hamiltonian

has effectively changed.

In the insulating phase where 𝑈 ≫ 𝑡 such that 𝑡 ∼ 0, we are still able to render this a non-

interacting Hamiltonian using the same methods as in the P-H symmetric single Hubbard

case. Even as the number of sites increase, we still only require a single auxiliary orbital for

this technique to work. This is easily shown with the example of three Hubbard sites, with

the Coulomb interaction in two sites already having been transformed into quadratic terms,

𝐻̂ = −𝑖𝑈4 (2 + 𝜇1𝜇13 − 𝜇6𝜇14 − 𝑖𝜇9𝜇10𝜇11𝜇12) +
𝜖𝑓
2 (1 − 𝑖𝜇2𝜇3𝜇4𝜇5𝜇7𝜇8) (40)

Wemay use any one of theMajorana fermions that have been shifted to the auxiliary orbital for

the Hodge rotation to turn 𝐻̂ quadratic. Arbitrarily choosing 𝜇2 and performing the rotation

𝑅(𝜒 = 𝜋/2) = exp (− 𝑖𝜋
4
𝜇10𝜇11𝜇12𝜇2) to define a new set of {𝛼𝑖} operators,

𝐻̂ = −𝑖𝑈4 (2 + 𝛼1𝛼13 − 𝛼6𝛼14 + 𝛼9𝛼2) −
𝜖𝑓
2 (1 − 𝛼10𝛼11𝛼12𝛼3𝛼4𝛼5𝛼7𝛼8) (41)

Hence, we observe that in the insulator phase, for every site we reduce to quadratic in terms

of the Majorana fermions, we obtain three new operators with which we may use to perform

Hodge rotations to reduce more sites to quadratic forms. Thus, only one auxiliary orbital is

necessary at the start, independent of system size in this limit 𝑈 ≫ 𝑡.
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Performing these Hodge rotations by hand can become tedious with increasing consecut-

ive rotations. A formalism is sought to perform these transformations immediately, with an

accompanied diagnosis of whether the transformed Hamiltonian is non-interacting.

4 Third Quantization

4.1 The Transition Hamiltonian Matrix

Consider a simple Hubbard atom away from P-H symmetry, without an additional auxiliary

orbital. The system may be described by four Majorana operators,

𝐻̂ = 𝜖
2(2 + 𝑖𝛾1𝛾2 + 𝑖𝛾3𝛾4) +

𝑈
4 (1 + 𝑖𝛾1𝛾2 + 𝑖𝛾3𝛾4 − 𝛾1𝛾2𝛾3𝛾4) (42)

A matrix plot of the transition Hamiltonian for this 𝐻̂ is constructed and plotted in Figure 5. A

non-zero entry in the ijth element of the matrix, depicted in the matrix plot by a black square,

indicates some connection between Γ𝑖 and Γ𝑗 under the action of the Hamiltonian. The matrix

is divided into different blocks, separated by the order of Majoranas that are connecting to

one another. Entries in block 𝐴(𝑘) indicate how elements in Γ(𝑘) connect to Majoranas of the

same order. For example, in the 𝐴(1) block lies the elements of the transition Hamiltonian

where linear Majoranas connect to other linears, and in the 𝐴(2) block is where the bilinear

Majoranas (product of two Majorana operators) connect to other bilinears.

The entries in the 𝐵(𝑘𝑙) blocks represent how combinations of Majoranas connect to other

products of Majoranas of different order. For example, the entries in 𝐵(13) block detail how lin-

ear Majoranas connect to trilinear Majoranas. These off block-diagonal entries are especially

of interest, as they are a way of diagnosing whether a Hamiltonian is in an interacting form.

Non-interacting Hamiltonians are quadratic with respect to the Majorana operators, hence

we do not expect any connections to exist between linear Majoranas to higher order products

of Majoranas. In the following results discussed, a non-interacting Hamiltonian will be dia-

gnosed when there exists only zero entries in the 𝐵(1𝑘) block, with 2𝑁 ≥ 𝑘 > 1. Equivalently,
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Figure 5: Matrix plot for the transition Hamiltonian of the Hubbard atomwithout P-H symmetry. Non-
zero entries are filled in black. The matrix is segmented into separate blocks. Along the block diagonal,
block 𝐴(𝑘) represents where the Γ(𝑘) elements of the Clifford algebra connect with other elements in
Γ(𝑘). Off the diagonal, the entries in 𝐵(𝑘𝑙) represent where elements in Γ(𝑘) connect with elements in
Γ(𝑙).

the 𝐵(𝑘1) blocks may be considered.

Already captured by this ℋ is charge conversation, with the 𝐵(12) block being empty in-

dicating no connections existing between linear and bilinear Majoranas. This observation

makes sense; if non-linear canonical transformations can swap out products of odd numbers

of Majoranas for linear ones, then a connection present in the 𝐵(1𝑘) block for even 𝑘 would

indicate that a transformation is possible that would produce a single fermionic operator in

the Hamiltonian that would thus signify a disruption of charge conservation.

The transition Hamiltonian may be symmetric by a more careful construction of Γ⃗, where

we multiply different subsets of the Clifford algebra Γ(𝑘) by an appropriate imaginary factor.

This is not strictly necessary as all non-zero entries appear on the matrix plot the same, rep-

resented by a black square, as we are mostly only interested in whether a connection between

Γ𝑖 and Γ𝑗 exists at all (not its magnitude). Hence, the matrix plots generated are effectively

symmetric. By performing a Hodge rotation and applying it to all elements in Γ⃗ to generate a

new set of matrices Μ⃗, we are able to generate a newℋ in the basis of operators in Μ⃗.
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(a) Auxiliary orbital added (b) Invoking P-H symmetry (c)𝑅 (𝜋/2) = exp (− 𝑖𝜋
4
𝜒𝛾2𝛾3𝛾4𝛾5)

Figure 6: ℋ for the Hubbard site. An auxiliary orbital added to the system in (a), and P-H symmetry is
imposed in (b), A Hodge rotation is then performed on Γ⃗, leaving only zero entries on the off-diagonal
blocks. The Hamiltonian is now non-interacting.

4.2 Theℋ of the P-H symmetric Hubbard Site

Following the same steps that turned this interacting Hamiltonian into an effectively non-

interacting form in Section 3.1 and only focusing on eliminating non-zero entries in the 𝐵(1𝑘)

block, an auxiliary orbital is introduced. The addition of two Majoranas quadruples the size of

Γ⃗, and hence the dimensions of ℋ. By invoking P-H symmetry, some terms along the block

diagonal become zero, however there still exists non-zero terms in the off-diagonal blocks.

Performing the same Hodge rotation as before, 𝑅 (𝜒) = exp (− 𝑖
2
𝜒𝛾2𝛾3𝛾4𝛾5), we arrive at

a block diagonalised ℋ. In the basis of operators in Μ⃗, there are no connections between

the linear Majorana operators with higher order products of Majoranas. We deduce that this

transformation on the Majoranas have reduced the Hamiltonian to a non-interacting form.

4.3 Theℋ of the Hubbard Site without P-H symmetry

Performing the same Hodge rotation with 𝛾2𝛾3𝛾4𝛾5 as before, now removing the condition that

𝜖 = −𝑈
2
, non-zero terms outside of the block diagonal re-appear. An example of three consec-

utive rotations are performed on the system in Figure 7, transforming from a representation

in {𝛾𝑖} to {𝜇𝑖}, then {𝛼𝑖}, and finally {𝛽𝑖}. However, non-zero terms continue to persist outside

of the block-diagonal, indicating that the Hamiltonian in this basis is still interacting. It is



4.4 Theℋ of the Hubbard Dimer 24

(a) {𝜇𝑖} basis (b) {𝛼𝑖} basis (c) {𝛽𝑖} basis

Figure 7: ℋ for the Hubbard site the transformations 𝑅1(𝜋/2) = 𝑒
𝑖𝜋
4
𝛾2𝛾3𝛾4𝛾5 , 𝑅2(𝜋/2) = 𝑒

𝑖𝜋
4
𝜇1𝜇3𝜇4𝜇6

and 𝑅3(𝜋/2) = 𝑒
𝑖𝜋
4
𝛼1𝛼2𝛼3𝛼5 are performed.

interesting to watch the vastly different topologies of ℋ in different operator bases. Notably,

represented with the {𝛽𝑖} fermions, the achieved ℋ is empty in its block diagonals. The to-

pology of this graph thus reflects how the Hamiltonian in the basis of the {𝛽𝑖} Majoranas, all

terms are quartic in the Majorana fermions.

4.4 Theℋ of the Hubbard Dimer

In Figure 8a we plot ℋ for the Hubbard dimer with an added auxiliary orbital (see in (38)).

It involves twelve individual Majorana operators leading to a ℋ of dimension 1024 × 1024.

The structure ofℋ for the dimer is significantly different to the Hubbard atom with the single

site due to the addition of a kinetic term generating new connections. Non-zero entries on

the off-block diagonal entries corroborate that this is an interacting system. Performing the

same two Hodge rotations as done in Section 3.1.1 drastically changes the structure ofℋ. The

non-zero entries now collect towards the edges of the matrix plot, associated with connections

between the linear Majoranas to products of five Majoranas. This is what is expected of the

Hamiltonian when written in the basis of the transformed 𝜇𝑖 Majoranas, which is sextic in the

Majorana operators as seen in (39).

In the insulating phase, and approximating 𝑡 ∼ 0, we observe from Figure 8c the expected

block-diagonal structure that indicates that no connections exist between linear and non-linear
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(a) ℋ for the Hubbard dimer under
P-H symmetry

(b) 𝑅1(𝜋/2) = 𝑒
𝑖𝜋
4
𝛾2𝛾3𝛾4𝛾9

and 𝑅2(𝜋/2) = 𝑒
𝑖𝜋
4
𝜒𝛾5𝛾7𝛾8𝛾10

(c) Insulating phase𝑈 ≫ 𝑡

Figure 8: ℋ for the Hubbard dimer in P-H symmetry.

Majoranas. We have again visually determined the Hamiltonian is written in a basis where it

is non-interacting using the transition Hamiltonian.

4.5 Theℋ for the Heisenberg Model

The Heisenberg spin chain containing two sites may be expressed in two different ways. Dir-

ectly relating the spins to the Majorana fermions as in (12), the Hamiltonian may be written

as,

𝐻̂ = −𝐽
4 (𝛾2𝛾3𝛾5𝛾6 + 𝛾3𝛾1𝛾6𝛾4 + 𝛾1𝛾2𝛾4𝛾5) (43)

The transition Hamiltonian matrix now has a significantly different form than it took for the

Hubbard dimer. The non-zero entries indicate connections between the Γ(1) and Γ(3) sets and

Γ(2) and Γ(4) sets. Unintuitively, the entries in the block diagonal are all zero, including the

𝐴(2) block. This is possibly due to an underlying symmetry of the system, presumably SU(2)

spin symmetry.

Expressing the Hamiltonian given in (15) in terms of the fermionic creation and annihila-

tion operators,

𝐻̂ = 𝐽
2 (

1
2( ̂𝑛1↓ − ̂𝑛1↑)( ̂𝑛2↓ − ̂𝑛2↑) + ̂𝑐†1↑ ̂𝑐1↓ ̂𝑐†2↓ ̂𝑐2↑ + ̂𝑐†1↓ ̂𝑐1↑ ̂𝑐†2↑ ̂𝑐2↓) (44)
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Figure 9: ℋ for the Heisenberg 2-site model using the Martin ttransformation. All blocks are clearly
defined to highlight its block diagonal structure.

Which then in the Majorana representation becomes,

𝐻̂ = 𝐽/16(𝛾1𝛾3𝛾7𝛾5 + 𝛾1𝛾3𝛾8𝛾6 − 𝛾1𝛾4𝛾7𝛾6 + 𝛾1𝛾4𝛾8𝛾5 + 𝛾2𝛾3𝛾7𝛾6 − 𝛾2𝛾3𝛾8𝛾5

+ 𝛾2𝛾4𝛾7𝛾5 + 𝛾2𝛾4𝛾8𝛾6 − 𝛾1𝛾2𝛾5𝛾6 + 𝛾1𝛾2𝛾7𝛾8 + 𝛾3𝛾4𝛾5𝛾6 − 𝛾3𝛾4𝛾7𝛾8) (45)

While this does capture the physics of the problem, the Hilbert space for this site is larger than

necessary, as it includes the possibility of having unoccupied or doubly occupied sites, which

need not be considered in the Heisenberg model. However, it now has the same dimensions as

the Hubbard dimer, allowing us to compare both of their transition Hamiltonians together. A

variation ofℋ is constructed, taking the absolute value of the Hilbert-Schimdt inner product

in order to determine the magnitude of connection between Γ𝑖 and Γ𝑗 . This comparison is of

interest following the theory in Section 2.3.2, where we discuss how the Heisenberg model

is an effective low energy description of the Hubbard model. Evaluating ℋ for the Hubbard

dimer with 𝑈 ≫ 𝑡 and the Heisenberg model with 𝐽 = 𝑡2/𝑈 we see the topology of both

plots are inherently different, with most of the entries in the Heisenberg ℋ being close to

zero, while large terms persist in the Hubbard dimer.
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(a) Heisenberg (b) Hubbard

Figure 10: ℋ for the Hubbard and Heisenberg models for two sites in the limit 𝑈 ≫ 𝑡 with 𝑈 = 1000,
𝑡 = 1 and 𝐽 = 0.001. Note the different largely different magnitude gradients for both matrix plots.

We may also look at the Hamiltonian of the Heisenberg triangular lattice in terms of the

Majorana fermions, obtained again by the Martin transformation, given by,

𝐻̂ = 𝐽/4(𝛾1𝛾2𝛾4𝛾5 + 𝛾1𝛾2𝛾7𝛾8 + 𝛾2𝛾3𝛾5𝛾6 + 𝛾2𝛾3𝛾8𝛾9 + 𝛾3𝛾1𝛾6𝛾4 + 𝛾3𝛾1𝛾9𝛾7

+ 𝛾4𝛾5𝛾7𝛾8 + 𝛾5𝛾6𝛾8𝛾9 + 𝛾6𝛾4𝛾9𝛾7) (46)

The matrix plot of ℋ is plotted in Figure 11. We again observe zero entries along the block

Figure 11: Matrix plot ofℋ for the Heisenberg model with a triangular lattice.
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diagonal of ℋ. This again is a possible imprint left by the SU(2) symmetry present in the

Heisenberg model.

5 Discussion

The nature of interacting problems in QCMT is called into question with the arrival of NLCTs.

These transformations are able to shift the very structure and interpretation of Hamiltonians.

Utilizing auxiliary orbitals as a gauge freedom, we have rendered the Hubbard atom in P-H

symmetry effectively non-interacting, opening the doors to other possible interacting systems

which may be reduced to effectively non-interacting forms via these strange NLCTs. This

method can be straightforwardly extended to the insulating phase of the Hubbard model in

P-H symmetry for any number of sites using only one auxiliary orbital. It is not known as of

yet what other systems exist that may be rendered effectively non-interacting in a similar way

via these NLCTs. Prime candidates of possible systems that could be transformed into non-

interacting models are the transverse Ising field model, and other systems with degeneracies

in the eigenstates such as the magnetically frustrated Heisenberg triangular lattice, as we saw

how the degeneracy of the system itself seemed to be transferred from the Hubbard atom to

being captured by the auxiliary orbital.

However, this ability to perform NLCTs also has interesting consequences for perturbation

theory. Since transformations on the Hubbard model may render the Coulomb repulsion term

non-interacting at the expense of introducing quartic or even sextic terms to the kinetic term,

this changes the nature of the problem when doing perturbation theory or mean-field theory

around some reference state. This might prove helpful for dealing with models where the

natural reference state can be simplified by NLCTs.

The formalism of third quantization also shows much promise in understanding these in-

teracting systems in a more fundamental light in the face of non-linear transformations. We

have shown how the transition Hamiltonian’s topology changes with performing non-linear

transformations on its basis operators, theMajorana fermions and all possible product combin-

ations. We show that ℋ is able to visually determine that we have a non-interacting system
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after repeating the same transformations that renders the Hubbard model in P-H symmetry

and in the insulating phase to a non-interacting form. We discuss how it allows us to see where

the connections between the basis operators that construct Hamiltonians themselves lie, and

how the matrix describes the deeper dynamics of the system due to it being constructed using

the operator commutator between the Hamiltonian and the basis operators that represent the

degrees of freedom of the system. We investigate how problems with similar physics, such as

the antiferromagnetic Heisenberg model and the Hubbard model in the insulating phase, and

see how the topology of their ℋ matrices are completely different. The structure of ℋ also

signals certain symmetries, such as charge symmetry in the fermionic systems, and possibly

SU(2) symmetry in the Heisenbergmodel where the block diagonal entries are all unintuitively

zero.

Further research may be done to study other interacting systems under this framework

of third quantization. Hamiltonians with similar features of degeneracy to the insulating P-

H symmetric Hubbard model may be investigated to see if these are also possible candidates

for reducing to non-interacting forms. Transformations on the level of ℋ and not just it’s

elements may also provide a strategy to block diagonalising thesematrices, in order to produce

a non-interacting model.
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