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QUANTUM CRITICALITY

Tunable quantum criticality and
super-ballistic transport in a
“charge” Kondo circuit
Z. Iftikhar1, A. Anthore1,2, A. K. Mitchell3, F. D. Parmentier1*, U. Gennser1, A. Ouerghi1,
A. Cavanna1, C. Mora4, P. Simon5, F. Pierre1†

Quantum phase transitions (QPTs) are ubiquitous in strongly correlatedmaterials. However,
the microscopic complexity of these systems impedes the quantitative understanding of
QPTs.We observed and thoroughly analyzed the rich strongly correlated physics in two
profoundly dissimilar regimes of quantum criticality.With a circuit implementing a quantum
simulator for the three-channel Kondo model, we reveal the universal scalings toward
different low-temperature fixed points and along the multiple crossovers from quantum
criticality. An unanticipated violation of the maximum conductance for ballistic free
electrons is uncovered.The present charge pseudospin implementation of a Kondo impurity
opens access to a broad variety of strongly correlated phenomena.

C
ontinuous second-order quantum phase
transitions (QPTs)—which take place at
absolute zero temperature as a control
parameter such as the magnetic field is
tuned—are accompanied by the develop-

ment of a highly correlated quantum critical
state. With increasing temperature, this state
extends over a broadening range of parameters
further away from the critical point. In this re-
gime of quantum criticality, the properties of the
systemobey scaling laws determined by the QPT
universality class and do not depend on micro-
scopic details. Although QPTs are ubiquitous in
contemporary theoretical physics and have been
observed in amultitude of highly correlatedma-
terials (1), it remains challenging to realize them
in simple, well-controlled experimental systems.
Tunable nanostructures provide a path to a

microscopic understanding of QPTs that cir-
cumvents the complexity of real-world highly
correlated materials. So far, however, the rare
examples that exhibit a second-order QPT (2–6)
demonstrate only a single quantum critical point
(associated with the two-channel Kondo effect,
described below); although it is a non-Fermi
liquid, this critical point can be treated with a
perturbative approach in the low-temperature

limit (7, 8). By contrast, we realized and char-
acterized completely a circuit that embodies the
three-channel Kondomodel, with three fully tun-
able channels connected to amagnetic impurity
emulated by the charge states of a metallic is-
land. Within the same nanostructure, this gives
us access to two universality classes of quantum
criticality (associated with the two-channel and
three-channel Kondo effects) that manifest pro-
foundly dissimilar physics. For instance, the
quantum critical point for two symmetric Kondo
channels can be understood in terms of free
electrons andMajorana fermions (7, 8), whereas
for three symmetric channels, it involves (ℤ3)
parafermions with irreducibly strong interac-
tions (9). The demonstrated high-precision im-
plementation qualifies our device as an analog
quantum simulator, providing quantitative exper-
imental solutions for the three-channel Kondo
model.

The multichannel Kondo model

Themultichannel Kondo model, which is a gen-
eralization of the original (one channel) Kondo
model, gives rise to archetypal QPTs and collec-
tive, non-Fermi liquid behaviors from aminimal
Hamiltonian. Although introduced to account for
the different atomic orbitals inmetals (10–12), it
has developed over the years into a central test-
ing ground for strongly correlated and quantum
critical physics and is a benchmark for many-
body theoretical methods (7, 11–19). The model
describes a local Kondo spin S (of 1/2 here) cou-
pled antiferromagnetically toN independent free-
electron continua (Fig. 1A, N = 3)

HNCK ¼
XN

i¼1

Jisi � SþHcontinua ð1Þ

whereHNCK is theN-channelKondoHamiltonian,
si is the local spin density of electron contin-
uum (channel) i at the Kondo spin S location,
Ji > 0 is the coupling strengths (here assumed
isotropic), andHcontinua is the free-electron continua
Hamiltonian. The conventional single-channel
model (N = 1) exhibits universal scaling but no
second-order QPT or non-Fermi liquid physics.
As the temperature T is reduced, the electrons
progressively screen the Kondo spin, resulting
for T→ 0 in an idle spin-singlet (11). By contrast,
forN ≥ 2, there is a competition between channels
to screen the S = 1/2 Kondo impurity, which
develops into second-order QPTs. Each number
of identical channels corresponds to a different
class of quantum criticality (16), with specific
non-Fermi liquid physics (12) and collective
excitations revealed by, for example, a diver-
gent specific heat coefficient c/T as T→ 0. The
marginal two-channel case corresponds to a log-
arithmic c/T divergence (12), whereas power law
c/T divergences are predicted for N ≥ 3 (12).

Kondo “charge” pseudospin
implementation

Experimentally, Kondo nanostructures are usu-
ally small quantum dots (20–23), in which co-
herent electron cotunneling merges the distinct
electrical contacts into oneKondo channel (24, 25)
[except in the two-channel devices in (2, 5, 26, 27)].
By contrast, in the recently demonstrated (6)
“charge”Kondo approach (14, 28, 29), the charge
Kondo impurity S is not a magnetic spin but a
pseudospin-1/2 (Fig. 1B, red arrow) built from
the macroscopic quantum states describing
the overall charge Q of a small metallic island
(Fig. 1B, red disk). We extended this concept to
three independent Kondo channels. In the most
straightforward case of a weakly connected
island whose charge is well quantized (30), the
Kondo spin S= {↓, ↑} directlymaps on the island’s
two charge states of lowest energy {Q,Q + e}. All
the other charge configurations are indeed fro-
zen out and can be ignored at low temperatures
T ≪ EC=kB (EC = e2/2C is the charging energy, e is
the electron charge, C is the island geometric
capacitance, and kB is the Boltzmann constant).
The charge pseudospin energy degeneracy is ob-
tained by tuning (with a gate voltage Vg) the de-
vice at the degeneracy point between the charge
statesQ andQ+ e. DetuningVg away from charge
degeneracy is completely analogous to applying
a magnetic field on usual magnetic Kondo im-
purities (28). The island charge Kondo pseudo-
spin S is, however, not coupled to the real spin
of electrons. Instead, it is flipped by transfer-
ring electrons in and out of the island, through
the connected electrical channels (Fig. 1B, red
dashed lines). Thismechanism takes the formof
a Kondo (pseudo-) spin-exchange coupling: Intro-
ducing an electron pseudospin s (Fig. 1B, blue
arrow), which corresponds to the electron localiza-
tion inside (s = ↓) or outside (s = ↑) of the island,
the tunneling of an electron flips both its localiza-
tion pseudospin s as well as the island overall
charge pseudospin S. A well-developed Kondo
effect requires a continuum of electronic states
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for both localization pseudospins. This implies a
continuous density of states in the metallic is-
land (in contrast with small quantum dots). The
different conduction channels constitute here sep-
arate Kondo channels. Also, the same physics is
predicted at T ≪ EC=kB for arbitrary connection
strengths (14, 31, 32), except perfectly ballistic
contacts, despite the coexistence ofmany charge
states in a quantum superposition near the
ballistic limit (30). In practice, we found from
numerical renormalization group (NRG) calcula-
tions performed over a broad range of coupling
strengths that T ≲ EC=20kB ensures negligible
deviations from universal Kondo physics (32).
Each of theKondo/conduction channels passes

through a different quantum point contact (QPC)
individually formed and tuned by means of field
effect in ahigh-mobilityGa(Al)As two-dimensional
electron gas (32). Single channels, polarized in real
electron spin, are obtained by immersing the de-
vice into a large magnetic field (B ≃ 2:7 T, corre-
sponding to the regime of the integer quantum
Hall effect at filling factor n = 3). The Kondo
channel couplings Ji (i ∈ {1, 2, 3}) are individually
characterized by the “intrinsic” (unrenormalized
byKondo or Coulomb effects) transmission prob-
ability ti across the single open transport channel
ofQPCi. Themicrometer-scale separationbetween
QPCs enables independent fine tuning (~0.1%)
and high-precision characterization [≲2%, with a
large dc bias voltage suppressingKondo/Coulomb

renormalization (32)] of the Kondo channels,
over the full range ti ∈ [0, 1]. Such fine tuning of
the connected channels to identical couplings is
crucial for approaching the frustrated, symmet-
ric Kondo critical points. The two-channel Kondo
(2CK) configurations are implemented by set-
ting t1 ≃ t3 ≡ t and t2 = 0, whereas for the three-
channel Kondo (3CK) configurations t1 ≃ t2 ≃
t3 ≡ t. With the charging energyEC ≃ kB � 0:3K
(separately obtained from Coulomb diamond
measurements) and high-precision shot-noise
thermometry (33), the device is completely char-
acterized. The knowledge of these parameters
allows for a full quantitative microscopic under-
standing (19, 28, 29). In practice, Kondo physics
is observed through the renormalized QPC con-
ductancesGimeasured in situ. Because the sym-
metry between channels is found preserved by
renormalization (at an experimental accuracy
of ~0.003e2/h), we generally display the averages
G1;3 ≡ ðG1 þ G3Þ=2 andG1;2;3 ≡ ðG1 þ G2 þ G3Þ=3
when investigating the symmetric 2CK and 3CK
configurations, respectively.
The high-precision implementation/quantum

simulation of the chargeKondomodel is validated
in Fig. 1, C and D, and the different two-channel
and three-channel Kondo behaviors are qualita-
tively illustrated. The renormalized conductance
across channels tuned to “intrinsic”t ≃ 0:90 (Fig. 1,
C and D, squares) or 0.68 (Fig. 1, C and D, tri-
angles) is displayed forT ≃ 7:9and 29mKwhile

sweeping the gate voltage Vg. The charge de-
generacy point is identified as the conductance
peak (dVg = 0). The good match, without any fit
parameters, between the conductance data and
the quantitative predictions of the charge Kondo
model derived analytically for two near ballistic
channels at low temperature (Fig. 1C, contin-
uous line) (29, 32) attests to the accurate device
characterization and to its precise implementa-
tion of the model for arbitrary Kondo pseudo-
spin energy splitting (19, 32). At large dVg, the
conductance is systematically reduced upon low-
ering T as usually expected from plain charge
quantization. At dVg = 0 and for two or three
symmetric channels set to t ≃ 0:68, we observed
instead a conductance increase with T owing
to the Kondo renormalization of weakly con-
nected channels. At the larger t ≃ 0:90, 2CK
and 3CK exhibit qualitatively different con-
ductance renormalizations at dVg = 0, with
opposite signs.

Observation of an intermediate
nontrivial fixed point

The above findings corroborate the theoretical
expectations for the different 2CK and 3CK low-
temperature conductance fixed points (29, 34).
Both 2CK and 3CK quantum critical fixed points
are associated with an intermediate value of the
renormalizedKondocoupling 0 < jJ j < 1 (10, 12).
In previous experiments on small quantum dots
(2, 5), the 2CK intermediate coupling could not
be established. Indeed, T was not low enough
with respect to the scaling Kondo temperature
TK to show a saturation; furthermore, asymme-
tries between electrical channels (15) can lead to
a trivial intermediate asymptotic value of the
measured conductance, which therefore does
not necessarily imply an intermediate coupling
in these spin Kondo devices. Moreover, the in-
termediate coupling character of the 2CK fixed
point is not entirely invariable but depends on
the choice of representation (7, 8, 14, 29). In par-
ticular, the 2CK fixed point can be described as a
noninteracting system involving two Majorana
modes [one free, one in the strong coupling limit
(7)]. This dual strong-coupling character of the
2CK fixed point also materializes in the present
charge Kondo implementation: Here, G1,3 con-
stitutes an alternative probe of the coupling
between electrons and charge Kondo impurity,
which flows not toward an intermediate value
per electrical channel but toward the maximum
free-electron quantum limit G2CK = e2/h (29). By
contrast, the genuinely intermediate character of
the interacting 3CK fixed point is predicted to
show up directly in charge Kondo circuits, as a
flow of the conductance per channelG1,2,3 toward
the nontrivial intermediate universal conduct-
ance G3CK ¼ 2sin2ðp=5Þe2=h ≃ 0:691e2=h (34).
The precise 2CK and 3CK low-temperature

universal conductance fixed points are exper-
imentally established by measuring the temper-
ature evolution of G1,3 and G1,2,3, respectively, for
a broad range of symmetric channel settings
[t ∈ (0.56, 0.985)]. For this purpose, and until
explicitly specified otherwise, the device is tuned

Iftikhar et al., Science 360, 1315–1320 (2018) 22 June 2018 2 of 6

Fig. 1. Multichannel
Kondo model and
charge implementa-
tion. (A) In the Kondo
model, a local spin
(red arrow) is
antiferromagnetically
coupled to the spin
of electrons (blue
arrows). Each Kondo
channel corresponds to
one distinct electron
continuum (three
continua are shown
here). (B) Sample
schematic realizing the
charge pseudospin
implementation of the
three-channel Kondo
model. A micrometer-
scale metallic island
(red disk) is connected
to large electrodes
(small gray disks)
through three QPCs
(green split gates),
each set to a single (spin-polarized) conduction channel (red dashed lines) indexed by i ∈ {1, 2, 3}. (C and
D) Quantum channels conductance measured versus gate voltage Vg is displayed over half a
Coulomb oscillation period D ≃ 0:7 mV (several sweeps including different consecutive peaks are
averaged). Measurements at T ≃ 7:9 and 29 mK are shown, respectively, as open and full symbols for
two (C) or three (D) symmetric channels. The squares correspond to an “intrinsic,” unrenormalized
transmission probability across the connected QPCs of t ≃ 0:90, and triangles to that of t ≃ 0:68.
The red continuous line (C) displays the T = 7.9 mK prediction for two channels both set to t = 0.90
(32). Green arrows indicate the direction of conductance change at dVg = 0 as temperature is reduced.
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at charge degeneracy (dVg = 0), where Kondo
effect is expected. Measurements of G1,3 and
G1,2,3 versus T in logarithmic scale are shown as
symbols in Fig. 2. In the 2CK configuration
(Fig. 2A), whatever the setting t, we found that
G1,3 always grows as T is reduced. This obser-
vation validates the predicted e2/h Kondo fixed
point (Fig. 2A, horizontal red line), at an exper-
imental accuracy of 0.006e2/h (6). Upon lowering
T in the 3CK configuration (Fig. 2B), G1,2,3 sys-
tematically grows when below 0.68e2/h (and for
T ≤ 40 mK) and decreases when above 0.70e2/h.
This validates the predicted 3CK universal con-
ductance fixed pointG3CK ≃ 0:69e2=h (horizon-
tal green line) at an experimental accuracy of
±0.01e2/h. This constitutes direct experimental

evidence of an intermediate non-Fermi liquid
fixed point.

Universal scalings toward
quantum criticality

First, we characterized the power-law expo-
nents when approaching the 2CK and 3CK low-
temperature fixed points and found them to be
different from the characteristic T2 for Fermi
liquids. For this purpose, the distances DG be-
tweenmeasuredG1,3 andG1,2,3 and, respectively,
the theoretically predicted fixed pointsG2CK and
G3CK are plotted in Fig. 3 versus T/TK. The con-
tinuous straight lines show the universal power-
law scalings asymptotically predicted at low T/TK
for the conductance in the present charge Kondo

implementation: DGº T for 2CK (19, 29, 35) and
DGº T2/5 for 3CK (12, 13, 32) [further discussion
is provided in (32)]. Comparing with the data
requires us to, for each t, fix the corresponding
scaling Kondo temperature TK(t). Symbols in
the Fig. 3 insets represent the experimentally
extracted values of TK versus t, which were ob-
tained for each tuning t bymatching the lowest-
temperature data point with the displayed
theoretical power law. The data-theory compar-
ison in the main Fig. 3 panel is therefore in the
conductance evolutionas temperature is increased.
We found that sufficiently close to the fixed points
(DG ≲ 0:1e2=h), the experiment is consistent with
predictions. The precision is here limited by the
increasing relative experimental uncertainty as DG
is reduced. A direct extraction of the temperature
exponents from the DG < 0.1e2/h data at T ∈ {7.9,
12} mK (satisfying the NRG universality criteria
T ≲ EC=20kB ≃ 15 mK) gives a2CK = 0.83 ± 0.08
for 2CK and a3CK = 0.42 ± 0.17 for 3CK.
We then investigated the full 2CK and 3CK

universal renormalization flows. Measurements
(symbols) are now compared in Fig. 4, A to C,
with NRG calculations spanning the whole range
of T/TK (Fig. 4, continuous black lines) (32). In
Fig. 4, A and B, respectively, G1,3 and G1,2,3 are
plotted versus log(T/TK). Following standard
procedures, the theoretical scaling Kondo tem-
perature TK was normalized so that the NRG
universal conductance takes a value equal to
half that of the Kondo fixed point at T = TK. As
in Fig. 3, the experimental TK(t) (symbols in
Fig. 4 insets) are adjusted bymatching data with
theory at T ≃ 7:9 mK. These TK(t) remain there-
fore identical to those in the insets of Fig. 3 as
long as NRG calculations and asymptotic power
laws are indistinguishable (forTK ≫ 7:9mK).We
observed a quantitative agreement between the
data and the universal NRG prediction over six
(2CK) or eight (3CK) orders ofmagnitude inT/TK.
A direct comparison of the same measurements
and predictions is shown in Fig. 4C in a scale-
invariant representation that does not involve
rescaling the temperature inunits ofTK, by display-
ing @G1,3/@log(T ) versus G1,3 and @G1,2,3/@log(T )
versus G1,2,3. In this representation, data points
correspond to experimental measurements of the
so-called b-function that determines the corre-
sponding 2CK or 3CK renormalization group
equation for the conductance. InFig. 4C, the straight
dashed lines near 2CK and 3CK fixed points (Fig.
4C, arrows) represent the predicted non-Fermi
liquid power-law behaviors discussed in the pre-
vious paragraph. Comparing with the experimental
slope therefore complements the approach in Fig. 3.
Also shown is the experimental “analog quantum
simulation” of the universal 3CK b-function at
G1,2,3 > G3CK, out of reach of NRG calculations.
Last, we explored the quantitative relationship

between scaling Kondo temperature TK and mi-
croscopicmodel parameter t (Figs. 3 and4, insets).
At small t ≲ 0:5, the same expected exponential
behavior TK ≃ ðEC=10kBÞexpð�p2=

ffiffiffiffiffi
4t

p Þ is ob-
served for 2CK and 3CK (29). At larger t, TK
appears to diverge at a specific setting tc, with
extracted TK values orders of magnitude above
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Fig. 2. Quantum critical
fixed points. (A and B)
The conductance of
(A) two or (B) three
symmetric channels
measured at the charge
degeneracy point
(dVg = 0) is plotted as
symbols versus temper-
ature on a logarithmic
scale. Each set of
identical symbols
connected by dashed
lines corresponds to the
same device setting
(t). The predicted (A)
2CK and (B) 3CK low-
temperature fixed points
for the conductance
per channel in the present
charge Kondo implemen-
tation are shown as horizontal continuous lines [G2CK = e2/h, G3CK = 2sin2(p/5)e2/h].
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Fig. 3. Non-Fermi
liquid scaling expo-
nents. The absolute
difference between
symmetric channels
conductance at charge
degeneracy and pre-
dicted Kondo fixed point
(DG ≡ jG1;3 � G2CKj and
DG ≡ jG1;2;3 � G3CKj)
is plotted as symbols
(open and solid for 2CK
and 3CK, respectively)
versus T/TK in a log-log
scale for T ∈ {7.9, 9.5,
12, 18, 29} mK. Statis-
tical error bars are
shown when larger
than symbols. The red
and green continuous straight lines display the predicted power-law scaling at T=TK ≪ 1 for the
conductance per channel in the present charge 2CK and 3CK implementations, respectively. The
scaling Kondo temperature TK is adjusted separately for each tuning t of the symmetric channels
(insets, corresponding symbols). This is done by matching the lowest-temperature data point
DGðT ≃ 7:9 mkÞ with the corresponding displayed power law. Continuous lines in insets show the
predicted power-law divergences of TK versus t for 2CK (bottom right inset) and 3CK (top left inset).
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the high-energy cutoff EC=kB ≃ 300mK (in which
case, universal Kondo physics can only be probed
at T=TK ≪ 1). For 2CK, theory predicts a diver-
gence at tc = 1 asTKð1� t ≪ 1Þº 1=ð1� tÞ, which
is displayed by the identical continuous red lines
in the insets of Figs. 3 and 4A (29) [(31, 36), the
prediction of a peaked TK(J)]. For 3CK, the ob-
served value tc ≃ 0:8 is higher than G3CKh=e2 ≃
0:69. This is caused by the conductance sup-
pression by Coulomb interaction at temperatures
T ≳ EC=kB , before the development of universal
Kondo physics at low temperatures. Assuming
theoretically that TK diverges at tc, we generally
find (32) that a low-temperature conductance
power law DGº Ta corresponds to a power-law
divergence as TKºjt� tcj�1=a. The observed close
agreement between experimental TKðjt� tcj≪1Þ
in 2CKand 3CK configurationswith, respectively,
TKºjt� 1j�1 (Figs. 3 and4A, insets, red lines) and
TKºjt� 0:8j�5=2 (Figs. 3 and 4B, insets, green
lines) therefore further establishes the predicted
non-Fermi liquidKondoexponents for two (a2CK= 1)
and three (a3CK = 2/5) symmetric channels.

Crossover from quantum criticality

As the temperature is increased [up to some
limit; here,T ≲minðTK ;EC=kBÞ], the quantum
critical regime is generally expected to span over
a larger range of system parameters, away from
the T = 0 quantum critical point (Fig. 5A). The so-
called crossover temperature Tco delimits quan-
tum criticality from below, with the critical point
itself corresponding to Tco = 0. Generically, the
crossover from quantum criticality as temper-
ature is lowered should follow universal curves
versus the reduced parameter T/Tco. Indeed, Tco

is the only relevant temperature scale, encapsu-
lating all microscopic details, provided that the
high-energy cutoff for quantum criticality is
much higher. In tunable circuits, the crossover
from 2CK quantum criticality was explored ver-
sus Kondo channels asymmetry (5, 6) and, in
the different implementation of a spin-polarized
quantum dot embedded into a dissipative cir-
cuit, versus the difference between resonant dot
level and Fermi energy (4). These experiments
corroborate the existence of a universal T/Tco
scaling, as well as the predicted quadratic in-
crease of Tco for small deviations from the 2CK
critical point (12, 15, 18).We explored the dispar-
ate universal and exotic behaviors along the
different crossovers induced by breaking the
Kondo (pseudo)spin degeneracy or the channel
symmetry, observed the development of the
quantum phase transition across the symmetric
3CK quantum critical point, and demonstrated
“super-ballistic” conductances.
In a first step, we investigated the so-far-

unexplored crossover from2CKand 3CKquantum
criticality induced by breaking the energy degen-
eracy of the Kondo impurity, with the connected
channels remaining symmetric. We established (i)
the different 2CK and 3CK power-law dependence
TcoºjDEjg for small energy splitting of the charge
pseudospinDE ¼ 2ECdVg=D ≪ EC,withD ≃ 0:7mV
being the gate voltage period; (ii) a generalized
expression of Tco for arbitrary DE; and (iii) the the-
oretical universal crossover curves ~G2CKðT=TcoÞ
and ~G3CKðT=TcoÞ, obtained analytically in (19, 29)
for 2CK and by NRG here for 3CK.
The crossover temperature Tco is defined so

that the conductance is halfway between the

quantum critical regime (≈G2CK or ≈G3CK, at
Tco ≪ T ≪ TK) and the Fermi liquid regime (≈0,
at Tco ≫ T )—that is, G1,3(DE, T = Tco) ≡ G2CK/2
or G1,2,3(DE, T = Tco) ≡ G3CK/2. In practice, we
fixed the electronic temperature T and adjusted
the energy splitting DEº dVg in order to obtain
this midway conductance value, if possible. In
Fig. 5, B and C, this corresponds to the crossings
between continuous and horizontal dashed lines,
where the experimentally extracted crossover
temperature directly readsT expt

co ðDEÞ ¼ T. Sym-
bols in Fig. 5, D and E, display T expt

co versus DE
for the settings t where Tco º DE g is expected
(32). The predicted corresponding power laws
are shown as continuous lines (TcoºDE2 for
2CK, Tcoº DE5/3 for 3CK) (12). Fitting separately,
for each t, the T expt

co ðDEÞ ≤ 12 mK data (fulfilling
the universality NRG criteria) yield the values of g
displayed as symbols in the insets of Fig. 5, D
and E. A statistical analysis of these values gives
g2CK = 2.01 ± 0.04 and g3CK = 1.69 ± 0.02 for the
crossovers from2CKand 3CK, respectively, which
is in close agreement with theory.
The theoretically predicteduniversal crossover

curves ~G2CKðTco=T Þ and ~G3CKðTco=T Þ, shown as
thick dashed lines in Fig. 5, B and C, right hand
sides, are compared with conductance data.
Continuous lines in Fig. 5, B and C, left hand
sides represent the conductance measured at
different temperatures versus gate voltage for
t1;3 ≃ 0:94(Fig. 5B) andt1;2;3 ≃ 0:82(Fig. 5C). These
settings correspond to well-developed quantum
critical regimes T ≪ TK (small DG), a necessary
condition to investigate ~G2CK and ~G3CK down to
small Tco/T. In Fig. 5, B and C, right hand sides,
the gate voltage sweeps at different temperatures
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Fig. 4. Universal renormalization flow to quantum criticality.The
measured conductance of the two or three connected, symmetric channels
is shown as symbols (open and solid for 2CK and 3CK, respectively) for
a broad range of settings t. (A and B) Data (T ∈ {7.9, 9.5, 12, 18} mK) and
predictions are plotted versus T/TK in log scale.The corresponding
experimental TK are shown in insets as symbols versus t, together with
theoretical predictions for tunnel contacts t ≪ 1 (light-blue continuous lines)
and for very large TK at jt� tcj≪ 1 [respectively, red and green continuous
lines for 2CK and 3CK in insets of (A) and (B)]. (C) Direct data-theory
comparison (no T/TK rescaling) with @G1,3/@log(T) plotted versus G1,3

and @G1,2,3/@log(T) plotted versus G1,2,3. The discrete experimental

differentiation is performed with measurements at T ∈ {7.9, 12, 18} mK. Kondo
fixed points are indicated by arrows. Black continuous lines are NRG
calculations of the universal renormalization flows [2CK in (A) and (C)
and 3CK in (B) and (C)]. Colorized dashed lines shown at low T/TK

[(A) and (B)], and close to the Kondo fixed points (C), display the
predicted low-temperature power laws for 2CK [red in (A) and (C)] and
3CK [green in (B) and (C)]. Light blue dashed lines shown at large T/TK

[(A) and (B)], and for small channels conductance (C), represent the
predicted high-temperature logarithmic scaling proportional to

log�2ðgT=TK ≫ 1Þ, with the slightly different 2CK and 3CK prefactors
and g here used as fit parameters.
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(continuous lines) fall on top of one another
when plotted versus calculated Tco/T, demon-
strating the predicted universal character of the
crossover from quantum criticality. Moreover,
we found a precise match between experimental
universal curves and theoretical predictions ~G2CK

and ~G3CK . Tco is obtained from experimental pa-
rameters by using generalized expressions that
remain valid for arbitrary gate voltage beyond
the power law at small detuning. For the charge
2CK device with near ballistic channels, the full
quantitative expressionderived in (29)wasused in
Fig. 5B:Tco ≃ 1:444ECð1� t1;3Þsin2ðpdVg=DÞ. The
data- ~G2CK comparison in Fig. 5B is therefore
without any fit parameter. For 3CK, we expect
from NRG calculations the similar generalization
Tco = l3CKsin

5/3(pdVg/D) (32), which was used in
Fig. 5C. Because the prefactor l3CK(t, EC) is not
known, the value l3CK = 36mKwas freely adjusted
in the data-~G3CK comparison shown in Fig. 5C.
In a second step, the development of the

3CK QPT driven by the channels’ competition
to screen the Kondo spin is plainly observed
through the conductance renormalization flow
of asymmetric channels upon lowering temper-
ature (Fig. 6). The Kondo charge pseudospin is
energy degenerate (dVg = 0), QPC1,3 are tuned
symmetric (t1 ≃ t3), and t2 is adjusted separately.
Displayed in Fig. 6 as colored lines with arrow-
heads is the temperature evolution of the mea-
sured conductances G2 (vertical axis) and G1,3

(horizontal axis) from 55 to 7.9 mK (arrowhead
at lowest T); each line corresponds to a dif-
ferent device setting. In total, 15 × 14 settings of

ft2; t1 ≃ t3g were measured, with t1,2,3 picked
among 14 fixed values ranging from 0.1 to 0.985
(32) and including also t2 = 0. The data closest to
the Fig. 6 diagonal gray line correspond to three
channels tuned symmetric (t1 ≃ t2 ≃ t3 ). Below
the diagonal, where t2 < t1 ≃ t3 , the data flow
toward the predicted 2CK fixed point (Fig. 6, red
disk, at G1,3 = e2/h and G2 = 0). Above the di-
agonal, where t2 < t1 ≃ t3 so that a flow toward
the 1CK fixed point involving QPC2 is expected
(blue disk, at G1,2,3 = 0), we observed a monot-
onous decrease of the conductance G1,3 across
the less strongly coupled QPCs. By contrast, G2

first rises, markedly oversteps the free-electron
quantum limit e2/h (up to +25%), and then de-
creases toward the zero conductance 1CK fixed
point as T is further reduced.
The nonmonotonous behavior of G2 when

higher thanG1,3 might appear counterintuitive.
A flow toward the low-temperature 1CK “strong
coupling” fixed point is expected, which corre-
sponds to a renormalized Kondo coupling grow-
ingmonotonously (J2→1). However, J2 connects
with the tunnel coupling/hopping integral of elec-
trons across QPC2 in the charge Kondomapping,
and free-electron theory predicts a nonmonoto-
nous dependence of the conductance with the
hopping integral [with a maximum for the value
that best preserves translational invariance, and
G2(J2 →1) = 0]. By contrast, the present mea-
surement of a conductance that exceeds the
maximumpossible value for noninteracting elec-
trons in the ballistic limit is highly nontrivial and
was not anticipated (although reproduced by our

NRG calculations). Such a super-ballistic con-
ductance, also in an intermediate temperature
range and of similar amplitude, was coincidently
observed in clean graphene constrictions (37)
and explained as a collective viscous flow of the
electronic fluid induced by electron-electron
collisions (38). We speculate that the electron-
electron interactions mediated by the Kondo
impurity within the electronic channel across
QPC2, expected to be particularly strong near the
turning point where G2 is maximum, might also
result in such a viscous electronic fluid behavior.
One specificity of our system is that the super-
ballistic magnitude and the temperature range
in which it takes place can be controlled in situ,
by separately adjusting the channels.
The experimental findings are comparedwith

NRG calculations of the universal crossover flow
from 3CK quantum criticality, induced by an
initially minute asymmetry between G2 and G1,3

(32). These are displayed in Fig. 6 as two thick
gray lines originating from the 3CK fixed point,
with arrows pointing toward lower temperatures.
For G1,3 > G2, NRG predicts a monotonous cross-
over flow from 3CK to 2CK conductance fixed
points that closely matches the nearby data. For
G2 >G1,3, the universal NRG crossover flow from
3CK to 1CK reproduces the observed nonmonot-
onous behavior, confirms the naively expected
vanishing of G2 at the 1CK fixed point, and es-
tablishes that a super-ballistic conductance ex-
ceeding by ~20% the free-electron maximum
limit follows from the 3CK model, which is in
quantitative agreement with the experiment.
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Fig. 5. Crossover from quantum criticality
by pseudospin degeneracy breaking.
(A) Quantum criticality extends as T rises.
It is delimited from below by the crossover
temperature Tco, which increases as a
power law for small parameter-space distances
from the critical point (for example, charge
pseudospin energy splitting DE º dVg, channels
asymmetry Dt). Along the crossover, theory
predicts universal T/Tco scalings [for example,

GiðT;DEÞ ¼ ~GðT=TcoÞ]. (B and C) The conduct-
ance of (B) two and (C) three symmetric
channels set, respectively, to t1;3 ≃ 0:94 and
t1;2;3 ≃ 0:82, are plotted as continuous lines
versus jdVgj (left side) and Tco/T (right side) for
T ∈ {7.9, 9.5, 12, 18, 29, 40, 55} mK. Colored
thick dashed lines (gray dash-dotted lines) shown
in right sides display the theoretical universal

crossover curves ~G2CK and ~G3CK (the predicted
Tco=T ≪ 1 power laws). The only fit parameter
is an unknown fixed prefactor for the 3CK
crossover scale Tco [no fit parameters in (B)].
(D and E) Experimental crossover temperatures

Texpt
co are plotted as symbols in a log-log scale

versus DE, for (D) two and (E) three symmetric
channels. Each set of symbols connected by
dashed lines represents one device setting t1,3
or t1,2,3 (insets). Full symbols correspond to

Texpt
co ≤ 12 mK. Straight continuous lines display the predicted power laws Tco º DEg, with g = 2 for 2CK and g = 5/3 for 3CK. Fitting Texpt

co ðDEÞ ≤ 12 mK
separately for each t yields the values of g shown as symbols in the insets with the fit standard error.
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Although experimental and NRG flows point
to the same direction near 3CK and 1CK fixed
points, clear crossings are also visible in inter-
mediate regimes above the diagonal, including
between different experimental device settings.
These mostly take place between flows involv-
ing opposite renormalization directions of G2,
as expected from the nonmonotonous relation-
ship between G2 and Kondo coupling J2 that
specifically shows up above the diagonal.

Outlook

The observation of super-ballistic conductance
opens a research path for low-power electronics.
Although the present implementation has no
clear application potential, it forms a powerful
platform from which to understand the under-
lying mechanisms of behaviors that arise in di-
verse clean systemswith strong electron-electron
interactions. We anticipate that similar metal-
semiconductor hybrids will form building blocks

for a wide range of investigations of the strong-
ly correlated electron physics, and in particular
the emergence of exotic parafermion quasi-
particles (7, 9, 35).Measurements of complemen-
tary observables—such as charge susceptibility,
fluctuations, and heat current—as well as inves-
tigations of the dynamical and out-of-equilibrium
responses could unveil yet hidden facets of the
exotic underlying physics. Furthermore, direct
generalizations of the present charge Kondo im-
plementation should grant access to quantita-
tive investigations of many thus-far-inaccessible
strongly correlated phenomena (16, 39), includ-
ing the nanoengineered competition between
Kondo channels, dissipation [specific proposal
in (40)], fractional quantumHall effect, andmul-
tiple impurities.
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Fig. 6. Three-channel Kondo renormalization flow with super-ballistic conductances. Each
colored line with an arrowhead displays the measured channels’ conductance at T = 55, 40, 29, 18,
12, and 7.9 mK (arrowhead is shown at lowest T) for a fixed device tuning (t1 ≈ t3, t2) at charge
degeneracy (dVg = 0). The lines’ colors reflect the direction (the angle) of the vector connecting
lowest- and highest-temperature data points, to improve readability. Because QPC1 and QPC3

are set symmetric [t1 ≈ t3 tuned among 14 values from 0.1 to 0.985 (32)], only the renormalized
average G1,3 is shown on the horizontal axis. QPC2 is separately adjusted to a coupling t2 selected
among the same 14 values and also t2 = 0. For the solid lines and solid arrows, the experimental
standard error of G2h/e

2 and G1,3h/e
2 is below 0.05 (usually well below). For the dashed lines

and open arrows, the standard error of G2h/e
2 is between 0.05 and 0.1. The green, red, and blue

disks correspond, respectively, to the predicted 3CK, 2CK, and 1CK low-temperature fixed points.
The thick gray lines represent NRG calculations of the universal crossover flows from 3CK (32),
with arrows pointing to lower temperatures. The conductance G2 can markedly exceed the
maximum free electron limit e2/h.
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Materials and Methods

1 Sample and setup
Sample. The sample was nanostructured by standard e-beam lithography in a Ga(Al)As
two-dimensional electron gas located 105 nm below the surface, of density 2.5 1011 cm−2

and mobility 106 cm2V−1s−1. The ohmic contact between the micrometer-scale metallic
node/‘island’ and the buried two-dimensional electron gas was realized by thermal diffusion
into the semiconductor of a metallic multilayer of nickel (30 nm), gold (120 nm) and ger-
manium (60 nm). The typical energy spacing between electronic levels in the central metallic
island is δ ≈ kB× 0.2µK. The measurements were performed under a strong magnetic field
B ≈ 2.7 T, in the regime of the integer quantum Hall effect at filling factor ν = 3. This spe-
cific choice was driven by the need to have simultaneously three well-behaved QPCs, without
sharp resonances over the full range τ ∈ [0, 1], as well as very low temperatures (vibrations in
our setup increase the temperature at high field, see (33)) and good ohmic contacts between
the outer edge channel and the metallic island. The interface quality between metallic island
and two-dimensional electron gas is characterized by a residual reflection probability lower
than 4 10−4 for each of the outermost quantum Hall edge channels originating from the three
QPCs. The charging energy EC = e2/2C ≈ kB× 299± 5 mK ≈ 25.8± 0.5µeV is obtained
from the half-height in drain-source dc bias voltage of measured Coulomb diamonds (not
shown, the uncertainties are rough estimates based on four different measurements).

Experimental setup. The device was installed in a dilution refrigerator including multiple
filters along the electrical lines and two shields at the mixing chamber. Details on the fridge
wiring and on the sample holder are provided in (33). Conductance measurements were
carried out by standard lock-in techniques at low frequencies, below 200 Hz (see sample
micrograph with a schematic measurement setup in Fig. S1). The amplification gains and
injected signals are precisely calibrated on-chip, from the signal measured with the QPCs
closed (τ = 0). Noise measurements for the electronic thermometry were performed in the
MHz range using a homemade cryogenic amplifier. Details on a very similar noise measure-
ment setup can be found in the supplementary materials of (41).

2 Experimental methods
Electronic temperature. Below 50 mK, the electronic temperature was extracted on-chip
using quantum shot-noise primary thermometry (33). Above 50 mK, T is given by a stand-
ard (RuO2) thermometer thermally anchored to the mixing chamber of the dilution refri-
gerator. From shot-noise thermometry, we obtain for the data points used in the paper
T = {7.9 ± 0.1, 9.5 ± 0.2, 12.1 ± 0.2, 18 ± 1, 28.9 ± 0.8, 40.1 ± 0.4}mK with the un-
certainty corresponding to the standard error on the mean value of T determined from the
statistical analysis of several temperature measurements (typically 10). From RuO2 thermo-
metry, we obtain T = {40.3±0.2, 55.1±0.3, 75.4±0.6}mK with the displayed uncertainty
corresponding to the temperature drift during the measurements. Note the good agreement

2



between the two thermometry methods at 40 mK.

Quantum point contact characterization. As generally observed in the integer quantum
Hall regime, the conductance across each QPC shows a broad and very well defined e2/h
plateau when varying the corresponding split gate voltage (see inset in Fig. S2E for a gate
voltage sweep of QPC2 including several plateaus). Tuning the QPC to a conductance below
e2/h corresponds to partially opening a single (spin polarized) electronic channel. We extract
its ‘intrinsic’ transmission probability τ essentially by applying a large dc bias voltage (∼
50µV) that suppresses the Kondo and Coulomb conductance renormalizations, such that
τ ' Gh/e2.

The precise procedure is now described in more details. For characterizing QPCi (i ∈
{1, 2, 3}), we close QPCj 6=i (Gj 6=i = 0) and tune a continuous lateral gate on the other side
of the metallic island in the middle of a very broad conductance plateau for which two edge
channels are perfectly transmitted (the orange gate in Fig. S1 for i ∈ {1, 3}, the uncolor-
ized gate for i = 2). Note that the small capacitive crosstalk effect on the characterized
QPC is compensated (see next section). A very well defined and voltage independent (in
the probed range) h/2e2 resistor is therefore in series with QPCi, as schematically repres-
ented in Fig. S2A. Applying a dc voltage Vdc across the whole device suppresses the low
bias dynamical Coulomb blockade reduction of Gi (see e.g. (42) for a theoretical description
of dynamical Coulomb blockade), as can directly be seen Fig. S2B. The ‘intrinsic’ trans-
mission probability τi is here identified with the differential conductance Gi measured at
large bias voltage (compared to EC/e). The corresponding Gi(Vdc) data at T = 18 mK
are shown as continuous lines in Fig. S2B for the different device settings (black, red, blue
for i = 1, 2, 3, respectively). In practice, we extract τi from the average of Gi(Vdc) in the
range |Vdc| ∈ [45, 51]µV (grey bands in Fig. S2B). This choice reflects a good compromise
between completely suppressing the dynamical Coulomb blockade renormalization (large
enough |Vdc|) and making sure that the energy dependence of the intrinsic τi remains neg-
ligible (small enough |Vdc|). Note that the symmetry between QPCs was finely adjusted
directly from the conductances measured in the 3CK configuration at the specific temper-
ature T = 18 mK. At large |Vdc| & 20µV, visible differences develop both between QPCs
as well as between opposite voltages for the same QPC. We attribute these differences to
the small but non-negligible energy dependence of τi, which effectively results in an exper-
imental uncertainty on the determination of its absolute value. The corresponding uncer-
tainty is estimated from the standard error ∆τ on the mean value τ determined from the six
measurements G1,2,3(Vdc ∈ ±[45, 51]µV) (three QPCs tuned symmetric at low bias, each
measured separately for large positive and negative bias voltages). The mean τ are shown
as horizontal dashed lines in Fig. S2B. The extracted values of τ1,2,3, τ and ∆τ are recapitu-
lated in the table shown Fig. S2C. Figure S2D,E,F display τ1,2,3 as symbols versus the voltage
V qpc
1,2,3 applied on one side of the split gate controlling QPC1,2,3, respectively. In order to illus-

trate the regular gate voltage dependence, continuous traces in the same panels display gate
voltage sweeps of the corresponding QPC conductance, with an essentially suppressed dy-
namical Coulomb blockade renormalization (short-circuiting the island in panels D,E; with
a dc voltage of −50µV in panel F).
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Capacitive crosstalk corrections. Each QPC is slightly impacted by the gate voltages ap-
plied to control the other QPCs. Thanks to a distance of several microns this capacitive
crosstalk is relatively small. Typically, changing the voltage on the other QPCs’ split gates
has an effect 100 times smaller than directly changing the voltage of the split gate used to
form the considered QPC. Although small (the effect on τ is at the most, and generally well
below, 0.05), these capacitive crosstalk corrections were straightforwardly calibrated and
systematically corrected for, in order to best preserve the QPCs symmetry. Typically, span-
ning τ on one QPC amounts to gate voltage variations below 0.1 V, resulting in crosstalk
corrections smaller than 1 mV on the other QPCs split gate.

Renormalized channel conductance. Here we detail the relation between individual QPC
conductances and the currents and voltages across the whole ‘charge’ Kondo device. Apply-
ing a small voltage V1 (eV1 < kBT/2) on the large voltage biased electrode feeding QPC1

(see Fig. S1), we measure the current I1 flowing through QPC1 toward the large groun-
ded electrodes on the other sides of QPC2 and QPC3. From Kirchoff’s laws, I1/V1 =
1/(1/G1 + 1/(G2 + G3)). Repeating the same procedure for the three QPCs (in practice
this is done simultaneously using lock-in techniques), allows us to extract the individual
values of G1, G2 and G3 as long as the three conductances are non-zero, in the 3CK con-
figurations. Note that in the 2CK configurations (G2 = 0), the redundant measurements
I1/V1 = I3/V3 ≡ G1,3/2 do not allow us to extract separately G1 and G3.

Data reproducibility. The experimental data shown in Fig. 2, 3, 4 and 6 are extracted
from the average of the conductance at degeneracy (δVg = 0) obtained from many Cou-
lomb peaks. Considering only the symmetric 2CK and 3CK device configurations, a total
of 6074 conductance peaks were measured, corresponding in average to 27 peaks per dis-
played data point. This allowed for the automatic detection and exclusion of statistically
anomalous measurements (of statistical probability . 1% assuming a gaussian distribu-
tion). The excluded measurement artifacts and the automatic procedure are illustrated in
Fig. S3. Symbols represent measurements of the maximum peak conductance (at δVg = 0)
across the whole device when the current is injected from the electrode connected to QPC2

(g2−13 ≡ 1/(1/G2 + 1/(G1 + G3)). The data points obtained by sweeping the gate voltage
(Vg) at T ' 12 mK and τ ' 0.1 are plotted versus Vg at the position of the consecutive peak
maximums. The same sweep was performed twice with a 15h time interval. While in the first
sweep (full symbols) all the maximum peak conductances are at similar values, the second
sweep (open symbols) shows a pronounced dip of the measured conductance maximums for
Vg ∈ [−0.402,−0.393] V. Such non-reproducible experimental artifacts are attributed to the
activation of charge fluctuators in the device vicinity. In order to discard such dip artifacts,
we automatically remove all peak measurements whose conductance is more than six times
the expected standard deviation (from instrumental noise, separately calibrated) below the
highest measured value. The highest value and the corresponding lower threshold are shown
in Fig. S3 as a black dashed line and a red continuous line, respectively.
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Power-law exponent of crossover temperature. This section concerns the experimental
determination of the power-law exponent γ describing the increase of the crossover tem-
perature Tco versus the charge pseudospin energy splitting ∆E (Fig. 5D,E). We provide
here the explicit device settings criteria used to restrict the analysis where such power-law
behavior is expected. Two additional criteria complement the already mentioned low tem-
peratures corresponding to the universality regime (T ≤ 12 mK < EC/20 ' 15 mK): (i)
The power-law dependence only applies in the limit of small energy splitting ∆E, as dir-
ectly seen from the generalized expression of Tco for the crossover from 2CK quantum
criticality given by Eq. S7. In practice, we only considered the settings of τ for which
∆E < EC/3 ' kB × 100 mK (corresponding to a maximum of 9% relative deviation
of Tco from the power-law dependence). (ii) The Kondo temperature must be sufficiently
high with respect to T . Indeed, a universal crossover flow is generally expected only in
the limit T, Tco � TK. Specifically, a too large difference between G1,(2,)3(δVg = 0)
and G2(3)CK (which occurs if TK is not large enough compared to T ) results in a non-
negligible gate voltage shift of the crossing point G1,(2,)3(δVg) = G2(3)CK/2. As the gate
voltage at the crossing point is used to extract Tco(∆E), such a shift would translate into
an experimental error. In practice, we therefore only considered the settings of τ for which
|1−G1,(2,)3(δVg = 0, T )/G2(3)CK| < 0.25.

Supplementary text

3 Model, predictions and super-ballistic observation
Multichannel ‘charge’ Kondo model. The mapping of the circuit Hamiltonian in the weak
coupling limit to an anistropic Kondo model is here made explicit, following (28). The
circuit Hamiltonian for a metallic island coupled through N single-channel point contacts to
N different leads is usually written (28,31):

H = HI +
N∑
i=1

(HLi +HQPCi) + EC

(
Q̂

e
− Q0

e

)2

, (S1)

with HI (HLi) the Hamiltonian describing the electron continuum in the island (in the lead
i), Q̂ the island charge operator, Q0 a gate voltage dependent charge offset, and HQPCi the
Hamitonian describing the electron transfers between island and lead i (across QPCi):

HQPCi = ti
∑
k,k′

c+Iik′cLik +H.c., (S2)

where cIik′(Lik) is the electron annihilation operator in the island (lead) associated with the
conduction channel across QPCi and ti the coupling coefficient (here assumed independent
of Lik and Iik′). Introducing the electrons’ ‘localization pseudospin-1/2’ (si) between is-
land (pseudospin state ↓) and lead i (pseudospin state ↑), and regarding the island’s charge Q̂
as an independent macroscopic quantum degree of freedom (which is valid in the continuous

5



density of states limit, see e.g. (31) for a specific discussion), the circuit Hamiltonian reads
(see (19,28,31) and also (43)):

H = HI +
∑
i

[
HLi +Neti(S

+s−i + S−s+i )
]

+ EC

(
Q̂

e
− Q0

e

)2

, (S3)

with S± =
∑

Q |Q± 1〉 〈Q|, s+i = (1/Ne)
∑

k,k′ c
+
LikcIik′ , Ne ≡

√∑
k,k′ the effective num-

ber of electrons, and s−i = (s+i )†. For small enough coupling coefficients ti, the term pro-
portional to EC in eqs S1 and S3 effectively freezes out all island’s charge states in the limit
T � EC/kB, except for the two of lowest energy (tuned at degeneracy in the Kondo regime).
In this low-temperature limit, the charge states of the island therefore reduce to a pseudospin
S of 1/2, which is flipped by tunneling onto or off the island at each of the QPCs. The terms
of the form S+s−i in Eq. S3 indeed describes a spin exchange between the Kondo impurity
charge pseudospin-1/2 and the localization pseudospin-1/2 of the electrons in continuum
i. Note that the Kondo exchange is here proportional to ti, in contrast with spin Kondo
devices based on small quantum dots where spin flips result from virtual, second-order pro-
cesses. Furthermore, the last term in Eq. S3 reduces to a Zeeman splitting ∆E of the charge
pseudospin of 1/2, with an effective magnetic field that is simply proportional to the gate
voltage detuning δVg from charge degeneracy (∆E = 2EC|δVg|/∆, for |δVg| < ∆/2 with
∆ the gate voltage period of Coulomb oscillations) (28). Note that the corresponds to the
anisotropic Kondo model, since there is no component Szszi (in contrast to Eq. 1, where the
coupling coefficient J is assumed identical for the x, y and z components). This anisotropy
of the coupling is irrelevant in the renormalization group sense as it disappears in the low-
temperature limit (12). At T ∼ EC/kB, the thermal activation of additional charge states
effectively breaks the charge pseudospin-1/2 mapping, and thereby provides a high energy
cutoff for Kondo physics (for a specific NRG study, see section “charge’ Kondo universality’
and Fig. S4). Note finally that the experimentally probed electrical conductances across the
charge Kondo electronic channels are connected, in usual Kondo language, to two-particle
correlation functions (see (34,35) and also (43–45)). Those correlation functions were cal-
culated exactly at the fixed point by Ludwig and Affleck using conformal field theory (13)
and, for the 2CK model, as a full function of temperature via NRG in (19). In contrast,
for previous spin 2CK nanostructures based on small quantum dots (2,5) the conductance is
proportional to the single-particle T matrix (15).

Multichannel Kondo physics with strongly coupled contacts. Beyond weakly coupled
QPCs, quantum fluctuations compete with the freezing of higher energy charge states, which
can break the direct mapping of the two lowest energy charge states on a Kondo pseudospin
S = 1/2 (note that charge quantization breakdown is found and predicted only close to
the ballistic limit, see (30) for an experimental exploration). Nevertheless, even for nearly
ballistic contacts, where many charge states coexist in a quantum superposition, the low-
temperature physics at the degeneracy point (δVg = 0) as well as the crossover flow from
quantum criticality should be universal, indistinguishable from what one expects from the
standard S = 1/2 multichannel Kondo model. This was shown in (14), in particular by map-
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ping the circuit Hamiltonian derived for two nearly ballistic channels onto the Hamiltonian
obtained by Emery and Kivelson (7) for the anisotropic two-channel Kondo model in the
Toulouse limit (see below Eq. 53 of (14)). It is also attested by the identical expression for
the universal conductance flow G̃2CK(T/Tco) for the crossover from 2CK quantum criticality
(given by Eq. S4 with T/TK = 0) derived analytically in both the opposite tunnel and nearly
ballistic limits (Eq. 6 in (19) and Eq. 38 in (29), respectively). Besides these limits, the gen-
eral case of arbitrary coupling strength was studied numerically (see e.g. (19,31) and section
“charge’ Kondo universality’), further corroborating the robust Kondo character including in
the presence of strongly coupled contacts.

Non-Fermi liquid temperature exponents. For N ≥ 2 Kondo channels and a Kondo
impurity of spin S = 1/2, observables are naively expected to display the dominant temper-
ature power-law T 2/(N+2) in the vicinity of theNCK fixed point (see e.g. (12) and references
therein). This is however not necessarily the case: different power laws can arise e.g. for
observable involving operators in the charge or spin sectors (12) or due to a vanishing first
order development near the fixed point.

For 2CK (N = 2), the Kondo channels conductance in the present ‘charge’ implement-
ation is predicted to scale linearly (∆G ∝ T ), and not as the naively expected

√
T . This

prediction was obtained both analytically in the case of a nearly ballistic channel (see Eq. A9
in (29), the specific discussion in Methods of (6), and Eq. S4 with Tco = 0), and from recent
NRG calculations starting from the opposite limit of a tunnel contact (19). Note the differ-
ence with the conductance in previous spin 2CK implementations with small quantum dots,
where the naively expected

√
T was predicted and observed (2,5). Indeed, the conductance

in these spin Kondo devices is proportional to the single-particle T matrix (15), whereas
in the ‘charge’ implementation it relates to two-particle correlation functions (see (35) and
also (43, 45), or Eq. S10). After submission of this manuscript, three new works calculating
the 2CK power law dependence of the conductance in the ‘charge’ Kondo implementation
with different methods appeared (see (35) and also (43, 45)): a linear behavior is also found
in (35) and (43,45) (a different T 2 scaling initially obtained in the published article (45) was
subsequently corrected in an Erratum and also in the second arXiv version).

For 3CK (N = 3), the naively expected T 2/5 is precisely reproduced by the new NRG
calculation of the universal ‘charge’ Kondo conductance curve shown Fig. 4B,C. This is
best seen by plotting in a log-log scale the difference ∆G between this NRG curve and the
predicted 3CK fixed point G3CK = 2 sin2(π/5)e2/h, as shown Fig. S5. Note that the new
preprint (43) finds a different power law T 4/5. However, the general prediction T 4/(N+2)

of (43) for arbitrary N also seems in contradiction with previous calculations in the large
N limit of the frequency dependence at zero temperature ω2/(N+2) (see eqs D30 and D11
in appendix D of (44)), which instead correspond to the naively expected power law also
predicted here by NRG for N = 3. In practice, we chose in the manuscript to keep using the
NRG prediction T 2/5, that precisely matches the naive expectation. From an experimental
stand point, although the data is closer to T 2/5, it does not allow to unambiguously rule out
T 4/5 due to the relatively large uncertainty combined with the possibility that observing T 4/5

requires approaching even closer of the fixed point.
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ZN parafermions. As a guide to the reader, we point out the particularly accessible dis-
cussion in the last paragraph of (43), which complements the original works (7,9). The
authors of (43) relate the non-Fermi liquid character of the N -channel Kondo fixed point
(N ≥ 2) to the ZN parafermionic theory describing the renormalization flow at the gener-
alized Toulouse point. The parafermion charge e × (2N − 2)/(N + 2) is mentioned and
a connection is made with the zero temperature residual entropy at the NCK fixed point
(S = ln (2 cos [π/(N + 2)]), as indicated in e.g. (12) and as also explicitly confirmed in the
present context by our NRG calculations).

2CK conductance in near ballistic, low temperature limit (kBT � EC, 1 − τ1,3 � 1).
Here, we provide the theoretical expression used to calculate the conductance displayed as
a continuous line in Fig. 1C and the universal crossover curve G̃2CK(T/Tco) shown as a
thick dashed line in Fig. 5B. In addition, one can derive from this formula the quantitative
theoretical expression of Tco for the crossover from 2CK quantum criticality for arbitrary
δVg at 1− τ � 1 (used in Fig. 5B), and also the 2CK non-Fermi liquid scaling exponent for
the conductance ∆G ∝ T/TK at δVg = 0 and τ1 = τ3 ≡ τ (Fig. 3), together with the tested
functional form TK ∼ EC/(1 − τ) (bottom right inset of Fig. 3). The analytical prediction
of eqs 38, 26 and A9 in (29) give for the overall conductance g1-3 across the two connected
QPC1,3 both set to be nearly ballistic, but not necessarily to identical tunings, and for low
temperatures T � EC/kB:

g1-3 = 1/(1/G1 + 1/G3) =
e2

2h

[
1− T

T ?K
−
∫ ∞
0

cosh−2(x)

1 + (2xT/Tco)2
dx
]
, (S4)

with

T ?K =
16EC/

(
kBπ

3 exp(C)
)

2− τ1 − τ3 + 2
√

(1− τ1)(1− τ3) cos(2πδVg/∆)
, (S5)

Tco =
2 exp(C)EC

π2kB

(
2− τ1 − τ3 − 2

√
(1− τ1)(1− τ3) cos(2πδVg/∆)

)
, (S6)

where C ' 0.5772 is the Euler-Mascheroni constant and ∆ the gate voltage period of Cou-
lomb oscillations. Note that the numerical prefactor for the scaling Kondo temperature T ?K
in Eq. S5 does not precisely correspond to the convention used in the main article, which is
based on the knowledge of the full renormalization flow only accessible through NRG meth-
ods (see next section for further discussion). For two symmetric channels τ ≡ τ1 = τ3 and at
charge degeneracy δVg = 0, one finds Tco = 0 and T ?K ∝ EC/(1− τ). The low temperature
criteria T � EC/kB therefore implies that Eq. S4 is valid only in the asymptotic regime
T � T ?K, where ∆G ∝ T . The universal 2CK crossover curve for the conductance per chan-
nel G̃2CK(T/Tco) (thick dashed line in Fig. 5B) corresponds to 2g1-3 as given by Eq. S4 in
the limit of negligibly small T/T ?K. Importantly, the universal character of G̃2CK is attested
by the fact that the exact same expression was obtained in the opposite limit of tunnel con-
tacts τ1,3 � 1 (Eq. 6 in (19)). For two symmetric channels τ ≡ τ1 = τ3 at arbitrary charge
degeneracy δVg, the crossover temperature simplifies into:

Tco = 8 exp(C)EC(1− τ) sin2(πδVg/∆)/(kBπ
2), (S7)
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which was used to plot the data versus Tco/T in the right side of Fig. 5B. Note that the gen-
erically expected quadratic dependence of Tco with the parameter-space distance to the 2CK
quantum critical point is recovered for both small δVg � ∆ and small ∆τ ≡ τ1 − τ3 �
1 − 〈τ1,3〉. The continuous line in Fig. 1C corresponds the conductance G1,3 = 2g1-3

calculated with eqs S4, S5, S6 using the separately characterized values τ1 = τ3 = 0.9,
T = 7.9 mK, EC = kB × 0.3 K and ∆ = 0.7 mV, without any fit parameters.

Kondo temperature versus model parameters. Here, we discuss the relationship between
scaling/Kondo temperature and microscopic model parameters τ and EC, with a specific
focus on the existence of a power-law divergence at a critical setting τ = τc. The first
characteristic of the Kondo temperature TK is that it corresponds to the scaling temperature
in the universal renormalization flow regime. With such a definition alone, the multiplicative
factor of TK(τ, EC) is an arbitrary constant value. Following standard practice (46), this
factor is set such that G1,(2,)3(T = TK) = G2(3)CK/2. The Kondo temperature therefore also
corresponds to the characteristic temperature scale at which Kondo physics develops when
starting with a weak Kondo coupling (e.g. τ � 1). Beyond initially weak Kondo couplings,
G2(3)CK/2 may not be within the explored range of renormalized conductances (e.g. for
large τ ). However, the scaling Kondo temperature TK can always be adjusted by matching
the data in the universality regime (T � EC/kB) with the full universal curve obtained
by NRG starting from a weak tunnel coupling. The definition of TK as the scaling Kondo
temperature allows for values possibly much larger than EC/kB. In such cases, TK does
not correspond to the temperature scale at which Kondo physics develops since the universal
Kondo regime only takes place well below the high-energy cutoffEC. For 2CK, Matveev and
Furusaki predict in (29) that TK(1− τ � 1, EC) ∝ EC/(1− τ), where τc = 1 (see previous
section). Note that a peaked Kondo temperature at a specific Kondo coupling setting was
subsequently predicted for 2CK in (31,36). In general (beyond 2CK), the power-law scaling
of TK at |τ − τc| � 1 can be obtained assuming that the Kondo temperature TK diverges at
a critical transmission probability τc (in agreement with experimental observation, see insets
in figs 3 and 4B). Expanding linearly the channels conductance for |τ − τc| � 1, one finds
at T � EC/kB:

Gi(T ) = GNCK × (1 + A(τ − τc)(kBT/EC)α) , (S8)

with A a multiplicative factor of order 1, GNCK the NCK low-temperature conductance fixed
point, and α the temperature exponent for the conductance when approaching the Kondo
fixed point (α = 1 for 2CK , α = 2/5 for 3CK). Comparing with the low-temperature Kondo
scaling Gi(T ) − GNCK ∝ (T/TK)α, where all microscopic parameters are encapsulated in
TK, directly gives

TK(|τ − τc| � 1) ∝ EC|τ − τc|−1/α. (S9)

This prediction, which is novel for 3CK, is shown as continuous lines in the insets of Fig. 3
using the corresponding theoretical values of α. A close agreement is observed with the data.

Asymptotic crossover limit G̃NCK(Tco/T � 1). Here we derive the asymptotic func-
tional form at Tco/T → 0 (close to quantum criticality) of the universal conductance curve
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G̃(Tco/T ) describing the crossover from NCK Kondo quantum criticality induced by break-
ing the degeneracy of the charge Kondo pseudospin (∆E 6= 0, ∆τ = 0, T � TK). These
asymptotic functional forms are shown for 2CK and 3CK as grey dash-dotted lines in the
right side of Fig. 5B and Fig. 5C, respectively. The limit Tco/T → 0 corresponds to very
small gate voltage detuning δVg/∆ � 1 (∆ being the gate voltage period). Although the
physics is dominated by non-Fermi liquid scalings induced by the NCK quantum critical
point, the expansion at T 6= 0 of the physical conductance observable with respect to δVg is
regular (analytic), as finite temperature regularizes infrared divergences in the corresponding
coefficients. From the even symmetry between positive and negative detunings δVg, the first
term in this expansion is quadratic in δVg. In the presently considered regime T � TK, this
reads ∆G ≡ G(δVg → 0) − GNCK ∝ δV 2

g . On the other hand, we generally know that
G(T � TK, δVg) can be reduced to a universal function G̃NCK of the rescaled temperature
T/Tco (for Tco � TK). Moreover, using the analogy between Zeeman splitting of a mag-
netic impurity and charge pseudospin energy detuning (∆E ∝ δVg), conformal field theory
predicts that the crossover temperature scales as Tco ∝ δV

(N+2)/N
g in the limit of small δVg

(see e.g. (12)). By direct identification, one immediately deduces the power-law asymptotic
behavior G̃NCK(Tco/T � 1)− GNCK ∝ (Tco/T )2N/(N+2). At 2CK, this expression reduces
to a linear asymptotic scaling G̃2CK(Tco/T � 1) − e2/h ∝ (Tco/T ), in agreement with the
full analytical prediction (Eq. S4, see right side of Fig. 5B). At 3CK, the above asymptotic
expression reduces to G̃3CK(Tco/T � 1) − G3CK ∝ (Tco/T )6/5, in agreement with novel
NRG calculations (see right side of Fig. 5C).

Super-ballistic conductance. NRG calculations directly show that the emergence of a
super-ballistic single-channel conductance follows from the Kondo model. It arises along
the non-monotonous renormalization flow towards the 1CK fixed point, when considering
the conductance observable in the present ‘charge’ implementation. Note that a similar ob-
servation (although less substantial) was previously made when investigating the ‘charge’
Kondo renormalization flow with two channels (see Methods in (6) for a specific discus-
sion). Experimentally, the opening of a second channel across QPC2 could, in principle,
provide a simple explanation for the measurement of a conductance G2 above e2/h. How-
ever this simple explanation can be directly ruled out, without the need to invoke the NRG
confirmation. Firstly, the second and third (inner) quantum Hall edge channels that could
possibly be transmitted across QPC2 (the experiment is performed at filling factor ν = 3) are
completely reflected, by a large margin, when the first (outer) quantum Hall edge channel is
partially transmitted. This is evidenced by the very broad (0.25 V in split gate voltage V qpc

2 )
and very flat e2/h plateau, which separates the full opening of the first channel from the point
where the second channel starts to open (see inset of Fig. S2E). Secondly, this e2/h plateau
is very robust up to energies much higher than the charging energy EC ' 26µeV that sets
an upper bound for Coulomb and Kondo effects: We checked the plateau robustness up to
a dc voltage of Vdc ' 70µV applied directly across QPC2 (we did not try higher values),
and found that the plateau remains very precisely at G2 = e2/h. Moreover, we find that a
QPC initially completely closed stays closed even in the presence of the charge Kondo effect
(here with two symmetric channels as shown with the G2 = 0 data in Fig. 6, and also with
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two asymmetric channels in the previous ‘charge’ Kondo experiment described in (6)). In
fact, the conductance of a channel that is initially (at high T ) less coupled to the island than
the other ones is found and predicted to be systematically further suppressed as temperature
is reduced (e.g. an hypothetical weakly transmitted second channel across QPC2, despite
the above evidences that there is no such second channel). In contrast, we observe here a
large G2 overshoot, of up to +0.25e2/h above the free electron quantum limit e2/h. We
now list the specific QPC tunings of τ1,2,3 for which we found a super-ballistic conductance
G2 in Fig. 6 (in the explored temperature range, only including data points for which the
statistical uncertainty on G2 is smaller than 0.1e2/h, and with the discrete settings of τ2 in
the indicated ranges as given Fig. S2C): at τ1,3 ' 0.1 for τ2 ∈ [0.79, 0.94]; at τ1,3 ' 0.20 for
τ2 ∈ [0.64, 0.98]; at τ1,3 ' 0.34 for τ2 ∈ [0.68, 0.98]; at τ1,3 ' 0.48 for τ2 ∈ [0.74, 0.98];
at τ1,3 ' 0.56 for τ2 ∈ [0.79, 0.98]; at τ1,3 ' 0.64 for τ2 ∈ [0.82, 0.98]; at τ1,3 ' 0.68
for τ2 ∈ [0.85, 0.98]; at τ1,3 ∈ {0.74, 0.79} for τ2 ∈ [0.90, 0.98]; at τ1,3 ∈ {0.82, 0.85} for
τ2 ∈ {0.94, 0.98}; at τ1,3 ∈ {0.89, 0.94} for τ2 ' 0.98.

4 Numerics
Numerical renormalization group calculations. Numerical calculations of the univer-
sal 2CK and 3CK conductance presented in figs 4,5,6 were performed using a variant of
Wilson’s numerical renormalization group (NRG) technique (see e.g. (17) and (47)), ad-
apted to treat the multichannel charge-Kondo Hamiltonian, Eq. S1, in the limit where the
island charging energy EC is the largest energy scale in the problem (including the conduc-
tion electron half-bandwidth D; the effect of EC < D is discussed in the next section). In
this case, the two charge states of the island of lowest energy form a pseudospin-1/2, while
the other charge states can be ignored whatever the QPCs’ connection strengths. The res-
ulting anisotropic multichannel Kondo model (Eq. S3 including only the two lower charge
states) is solved non-perturbatively with NRG. The conduction electron density for each
of the N channels is discretized logarithmically and the system is then mapped onto a 1-
dimensional model in which the Kondo pseudospin is connected to one end of the bundle
of N semi-infinite ‘Wilson chains’. The renormalization group character of the problem is
revealed by iterative diagonalization of the chain: the physics at successively lower energy
scales is probed at each step as high-lying states are iteratively eliminated. The computa-
tional complexity of an NRG calculation scales exponentially with the number of channels,
N . Consequently, although standard NRG methods could still be used for 2CK (Fig. 4A,C),
the charge-3CK model would have been essentially intractable (large symmetries are broken
due to the spin anisotropy inherent to the charge-Kondo setup, and further reduced in the
vicinity of the critical point by channel asymmetry and gate detuning of charge degeneracy).
This limitation was overcome by using for the 3CK calculations (shown figs 4B,C, 5C and
6) the recently-developed ‘interleaved NRG’ (iNRG), which makes use of a modified dis-
cretization to combine the N Wilson chains into a single generalized chain (48, 49). The
experimental quantity of interest is the linear response dc differential conductance, whose
accurate calculation requires further modification of the standard NRG procedure, as now
briefly described. To the Hamiltonian Eq. S1 we add a time-dependent bias term to lead i,
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Hbias = eViN̂Li cos(ωt), where N̂Li =
∑

k c
+
LikcLik is the total electron number operator for

lead i. Measurement of the resulting current into lead j allows determination of elements of
the conductance tensor Gij(T, Vi) = d〈Îj〉T/dVi. Within linear response Vi → 0, we employ
the Kubo formula (50),

Gij(T ) =
e2

h
lim
ω→0

[
2π~2 ImKij(ω, T )

~ω

]
, (S10)

where the limit ω → 0 yields the desired dc conductance. Kij(ω, T ) is the Fourier trans-
form of the retarded current-current correlator, Kij(t, T ) = iθ(t)〈[ṄLj(t), ṄLi(0)]〉, where
ṄLα = d

dt
N̂Lα. In NRG, Kij(ω, T ) is obtained directly on the real axis as an entire func-

tion of ω for any T . It is calculated using the full density matrix, established on a complete
basis (51). However, straight application of this approach is plagued by numerical instabil-
ities: Kij(ω, T ) must be determined very accurately to avoid the spurious divergence of
K(ω, T )/ω on taking the ω → 0 limit. Instead, we exploit the identity ImKij(ω, T )/ω =

ωIm K̃ij(ω, T ), which we derived from equations of motion, where K̃ij(t, T ) = iθ(t)〈[N̂Lj(t), N̂Li(0)]〉.
This trick is found to drastically improve the accuracy of the conductance calculation in
NRG. It is especially important in the three channel case, whose fixed point conductance
takes a nontrivial intermediate value (see (34) and also (43, 44)). The true ‘universal’ renor-
malization flow of the conductance is obtained formally in the scaling limit kBTK/D → 0.
In practice, we use ρt = 0.025 (ρ ≡ Ne/2D, t ≡ t1,(2,)3) yielding TK ∼ 10−15D/kB. For
2CK NRG calculations, we used a discretization parameter (47) Λ = 3, retainedNs = 10000
states at each step, and averaged the results of Nz = 4 calculations. For 3CK iNRG calcula-
tions, we used Λ = 3, Ns = 38000, and Nz = 3. The three spinful channels, each with U(1)
conserved charge, were interleaved, and global U(1) spin symmetry was exploited (note the
inherent spin-anisotropy of the charge-Kondo setup).

‘Charge’ Kondo universality. To what extent does one recover universal Kondo physics
at low temperature in the present ‘charge’ implementation: Does it depend on the channels
coupling strength or on the ratio EC/D? How small does the temperature need to be in
practice? We systematically find, based on 2CK NRG calculations, that the universal Kondo
scaling curve for the conductance is accurately recovered for T . min(EC, D)/20kB, in-
cluding when the deduced scaling temperature TK is large with respect to EC/kB or D/kB.
Previous calculations in (19) investigated the non-universal behavior resulting from the finite
conduction electron bandwidth D, which was assumed to be much smaller than EC. In that
case, whatever the temperature and coupling strengths, only two charge states are accessible
and need to be included in the calculation. Here we consider the effect of a finite island
charging energy EC in Eq. S1, which requires going beyond the spin-1

2
Kondo paradigm. In

practice, 20 charge states are taken into account in the calculations. In Fig. S4, the full uni-
versal 2CK conductance scaling curve (black dashed line; two charge states, tunnel contacts)
is plotted versus T/TK and compared to NRG calculations at finite EC (colored continuous
lines; EC = 0.1D in panel A, EC = 0.01D in panel B) for different values of the normal-
ized QPCs coupling ρt ∈ {0.075, 0.10, 0.14, 0.23}, with ρ the electronic density of states per
unit energy (ρ ≡ Ne/2D) and t defined eqs S2,S3. The identical scaling observed for all
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values of t at low enough T/TK, systematically seen also in the opposite regime D � EC

(not shown), shows that there exists a temperature Tuni(t,D,EC) below which the measured
channels conductance Gi(T ) collapses to the same universal Kondo curve when rescaled
by TK – independently of TK/D, TK/EC, EC/D or ρt. Defining Tuni as the temperature
below which deviations from universality are smaller than 0.01e2/h, we find numerically
kBTuni ∼ EC/20 for EC < D, and more generally kBTuni ∼ min(EC, D)/20. Vertical
arrows in Fig. S4 indicate the position of EC/20kB in rescaled temperature, with the same
color code as the corresponding finite EC NRG calculation. Note that the pronounced devi-
ations from universality at higher temperature strongly depend on the ratio EC/D as well as
on the number of charge states included in the calculation. While we naively expect a sim-
ilar universality criterion for 3CK, it should be noted that in this case two different universal
curves exist on approaching from below (τ < τc) or above (τ > τc) because the critical 3CK
fixed point conductance takes an intermediate value (0 < G3CK < e2/h).

3CK-Fermi liquid crossover. We address the crossover from 3CK quantum criticality in-
duced by an energy splitting ∆E ∝ δVg of the ‘charge’ Kondo impurity. Is the universal
character of the crossover curve G̃3CK(Tco/T ) preserved over the full range of gate voltage
detuning δVg, like at 2CK (for 2CK see Eq. S4, derived for near ballistic channels such that
TK � EC/kB � Tco)? If it is the case, what is the generalized, periodic expression of
Tco versus arbitrary detuning δVg (for 2CK, see Eq. S7)? Here, we detail NRG calculations
that establish the experimental observation of a robust universality for G̃3CK(Tco/T ), for
any gate voltage detuning, as well as the generalized expression for the crossover temperat-
ure Tco ∝ sin5/3(πδVg/∆) (see Fig. 5C). First, the universal form G̃3CK(T/Tco) shown in
Fig. 5C was obtained in the standard Kondo limit (retaining just two charge states, and with
Tco � TK). Second, we focus on the more challenging numerical study of the relationship
between Tco and arbitrary δVg. This requires to directly calculate the correct form of the full
Coulomb peaks (see Fig.1 and Fig. 5B,C), for which one must simulate the effect of finite δVg
over an entire charging period. This involves including many charge states in the calculation
(as in the previous section), beyond the standard Kondo model description restricted to the
two lower charge states. From analysis of the temperature-dependence of the conductance
for a given gate voltage δVg within these NRG calculations, the crossover scale Tco(δVg)
could be extracted directly. For 3CK, we find a robust power law Tco ∝ δV

5/3
g for small

δVg, as expected from conformal field theory. But for larger δVg, we find marked deviations,
which follow the generalized periodic form Tco ∝ sin5/3(πδVg/∆), to within a numerical ac-
curacy better than 0.5%. This is reminiscent of the periodic variation of the crossover scale
in the 2CK model near perfect transmission, as derived analytically by Matveev. We note,
however, that no such analytical predictions as yet exist for 3CK, since the critical point is
irreducibly interacting. Interestingly, the data (both experimental and numerical) over the
entire range of δVg, when rescaled in terms of this crossover scale Tco, fit to the universal
form G̃3CK(T/Tco) – analogous to the behaviour in the 2CK case. This novel finding extends
and strengthens the notion of universality in the 3CK system.
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B 1 µm

QPC2

QPC3

QPC1

Vg

Figure S1: Colored micrograph of the sample, with measurement schematic. The central
metallic island (bright) is connected to the circuit through QPCs formed by field effect in
a buried two-dimensional electron gas (dark grey) using surface split gates (green). The
voltage Vg, used to tune the metallic island at charge degeneracy, is applied to a capacitively
coupled plunger gate (yellow). Note that the voltages applied to the two lateral gates (yellow
and uncolored) are sufficiently negative to deplete the two-dimensional electron gas under-
neath (except for electronic thermometry and characterization purposes). Due to the strong
perpendicular magnetic field B = 2.7 T, the current propagates along spin-polarized edge
channels (red lines) of the integer quantum Hall effect (only the relevant outermost edge
channel is shown).
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Figure S2: QPCs characterization. A, Schematic circuit used to determine τ1,2,3: a large bias
voltage is applied to the characterized QPC in series with a known resistance h/2e2. B, Con-
ductance of the QPCs measured at T = 18 mK versus dc voltage (continuous lines, black for
QPC1, red for QPC2 and blue for QPC3), in the configuration shown in (A) with the series
resistance subtracted. The low bias conductance dips result from the dynamical Coulomb
blockade, while the high bias plateaus correspond to the ‘intrinsic’ transmission probabil-
ities τ1,2,3. C, The ‘intrinsic’ transmission probabilities τ1,2,3 at the experimental set points
used in the main text are defined as the average of the QPCs conductance on the large bias
ranges ±[45µV, 51µV] (grey areas in (B)). The individual transmission probabilities τ1,2,3
are averaged to give τ (horizontal colored dashed lines in (B)) and the estimated uncertainty
∆τ (the standard error on the mean value τ calculated from six measurements, at negative
and positive bias voltage for the three QPCs). D, E, F, The ‘intrinsic’ transmissions τ1,2,3
of the QPCs are plotted as symbols versus the voltage V qpc

1,2,3 applied on one side of the cor-
responding split gate. The continuous lines are measured using the lateral characterization
gates to short-circuit the metallic island for (D),(E), or with h/2e2 in series (see (A)) at an
applied bias voltage Vdc = −50µV for (F). The inset in (E) shows QPC2 conductance over
a larger gate voltage range including several plateaus, which illustrates the broad separation
between channels.
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Figure S3: Data analysis. The device conductance through QPC2 (g2−13 ≡ 1/(1/G2 +
1/(G1 +G3)), measured at charge degeneracy (δVg = 0) for τ1,2,3 ≈ 0.1 and T ≈ 12 mK, is
plotted as symbols versus gate voltage Vg at the consecutive peak maximums. The same Vg
sweep (a 1h long measurement) is repeated twice with a 15h time interval. The data points
below the statistical threshold shown as a red continuous line are automatically discarded.
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Figure S4: Universality criterion at finite EC and arbitrary QPC couplings. NRG calcula-
tions of the 2CK channels conductance G1,3 are plotted versus rescaled temperature T/TK.
The universal conductance curve shown as a black dashed line (calculated in the regime
kBTK � D � EC, i.e. with two charge states and tunnel contacts) is compared to finite
EC calculations (colored continuous lines; EC = 0.1D in panel (A), EC = 0.01D in panel
(B); including twenty charge states of the metallic island in NRG) for different settings of
the normalized QPC coupling coefficient tρ (with t defined Eqs. S2,S3, and ρ the ‘effective’
electronic density of states). The universality criterion kBTuni ≡ EC/20 is pointed out with
vertical arrows of the same color as the corresponding NRG calculation at finite EC.
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Figure S5: 3CK non-Fermi liquid power-law. The T 2/5 power-law (straight dashed line)
naively expected near the 3CK fixed point is compared with the 3CK universal conduct-
ance curve calculated by NRG, as a function of the rescaled temperature T/TK in a log-log
scale. The black continuous line displays the difference ∆G between NRG calculation and
predicted fixed point G3CK = 2 sin2(π/5)e2/h.
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