The Mott transition as a topological phase transition

Andrew Mitchell with Sudeshna Sen and Patrick Wong University College Dublin PRB 102, 081110(R) (2020)

IRISH RESEARCH COUNCIL An Chomhairle um Thaighde in Éirinn

Mott topology

Mott transition:

Metal-insulator transition in the Hubbard model and self-energy structure

PRB 102, 081110(R) (2020)

Topological phase transitions:

Su-Schrieffer-Heeger (SSH) model, boundary Green's functions, and domain walls

Auxiliary field mapping:

Exact dynamics reproduced in a fully non-interacting system

Topological properties of the auxiliary system: Exact dynamics reproduced in a fully non-interacting system

Mott transition

Metal-insulator transition driven by electronic interactions

PRB 102, 081110(R) (2020)

See e.g. RMP 70, 1039 (1998); Nature Comms 7, 12519 (2016)

Hubbard Model

Local Coulomb repulsion competes with tunneling

Andrew Mitchell, UCD

Hubbard Model

Local Coulomb repulsion competes with tunneling

$$H = \sum_{i,j,\sigma} \left[t_{ij} c^{\dagger}_{i,\sigma} c_{j,\sigma} \right] + U \sum_{j} c^{\dagger}_{j,\uparrow} c_{j,\uparrow} c^{\dagger}_{j,\downarrow} c_{j,\downarrow}$$

PRB 102, 081110(R) (2020)

t<<U : insulating

Hubbard Model: metallic phase

t>>U: Treat interaction as a perturbation to tight-binding model

$$H = \sum_{i,j,\sigma} \left[t_{ij} c^{\dagger}_{i,\sigma} c_{j,\sigma} \right]$$

PRB 102, 081110(R) (2020)

Hubbard Model: metallic phase

t>>U: Treat interaction as a perturbation to tight-binding model

$$H = \sum_{i,j,\sigma} \left[t_{ij} c^{\dagger}_{i,\sigma} c_{j,\sigma} \right] + H'$$

PRB 102, 081110(R) (2020)

Hubbard Model: insulating phase

U>>t : Treat hopping as a perturbation to "atomic limit"

$$H = U \sum_{j} c_{j,\uparrow}^{\dagger} c_{j,\uparrow} c_{j,\downarrow}^{\dagger} c_{j,\downarrow}$$

Andrew Mitchell, UCD

$$G_{loc}(\omega) = \frac{1}{\omega^{+} + \mu - \Sigma(\omega)}$$
$$\Sigma(\omega) = \frac{U}{2} + \frac{(U/2)^{2}}{\omega^{+} + \mu - U/2}$$

Hubbard Model: insulating phase

U>>t : Treat hopping as a perturbation to "atomic limit"

$$H = U \sum_{j} c_{j,\uparrow}^{\dagger} c_{j,\uparrow} c_{j,\downarrow}^{\dagger} c_{j,\downarrow} + H'$$

PRB 102, 081110(R) (2020)

Mott transition

U~t: Non-perturbative

$$H = \sum_{i,j,\sigma} \left[t_{ij} c^{\dagger}_{i,\sigma} c_{j,\sigma} \right] + U \sum_{j} c^{\dagger}_{j,\uparrow} c_{j,\uparrow} c^{\dagger}_{j,\downarrow} c_{j,\downarrow}$$

metal-insulator transition!

PRB 102, 081110(R) (2020)

Dynamical Mean Field Theory (DMFT)

One-band Hubbard model on the infinite-dimensional Bethe lattice

$$H = \sum_{i,j,\sigma} \left[t_{ij} c^{\dagger}_{i,\sigma} c_{j,\sigma} \right] + U \sum_{j} c^{\dagger}_{j,\uparrow} c_{j,\uparrow} c^{\dagger}_{j,\downarrow} c_{j,\downarrow}$$

Local self-energy DMFT

PRB 102, 081110(R) (2020)

PRL 62, 324 (1989)

Dynamical Mean Field Theory (DMFT)

Hubbard model mapped to a single-impurity Anderson model

PRB 102, 081110(R) (2020)

See e.g. RMP 68,13, (1996); Physics Today 57, 53 (2004)

Numerical Renormalization Group (NRG)

Impurity problem solved numerically-exactly using NRG

PRB 102, 081110(R) (2020)

See e.g. RMP 55, 583 (1983); RMP 80, 395 (2008); PRL 83, 136 (1999)

Lattice problem:

$$G_{latt}(\omega) = [\omega^{+} - \epsilon - \Sigma_{latt}(\omega) - t^{2}G_{latt}(\omega)]^{-1}$$
Self-
consistency:

$$G_{latt}(\omega) = G_{imp}(\omega)$$

$$\int_{Latt}(\omega) = G_{imp}(\omega)$$

$$\Sigma_{latt}(\omega) = \Sigma_{imp}(\omega)$$

PRB 102, 081110(R) (2020)

NRG provides accurate $\Sigma_{imp}(\omega)$ for a given $\Delta_{imp}(\omega)$ \Rightarrow zero temperature, high resolution, real frequency

U/t = 0.0

PRB 102, 081110(R) (2020)

U/t = 1.0

PRB 102, 081110(R) (2020)

U/t = 2.0

ω

PRB 102, 081110(R) (2020)

U/t = 3.0

ω

PRB 102, 081110(R) (2020)

U/t = 4.0

ω

PRB 102, 081110(R) (2020)

U/t = 5.0

ω

PRB 102, 081110(R) (2020)

U/t = 5.5

ω

PRB 102, 081110(R) (2020)

U/t = 5.86

ω

PRB 102, 081110(R) (2020)

U/t = 5.9

ω

PRB 102, 081110(R) (2020)

U/t = 6.0

PRB 102, 081110(R) (2020)

ω

U/t = 7.0

ω

PRB 102, 081110(R) (2020)

U/t = 8.0

ω

PRB 102, 081110(R) (2020)

U/t = 9.0

PRB 102, 081110(R) (2020)

High energies: Hubbard bands

Andrew Mitchell, UCD

High energies: Hubbard bands

ω

PRB 102, 081110(R) (2020)

Andrew Mitchell, UCD

Approaching transition from metallic side: Self-energy develops double peak structure As $U \rightarrow U_c^-$: peaks sharpen and coalesce $-t \operatorname{Im} \Sigma(\omega \rightarrow 0) \sim (\omega/Z)^2$ with $Z \rightarrow 0$

PRB 102, 081110(R) (2020)

Su-Schrieffer-Heeger (SSH) model

Paradigmatic model of a 1d topological insulator

Non-interacting!

Bulk is a band insulator with gap $\delta = |t_A - t_B|$

Phys. Rev. Lett. 42, 1698 (1979); Asbóth, Oroszlány, Pályi, Springer (2016)

Andrew Mitchell, UCD

SSH boundary Green's function

Andrew Mitchell, UCD

SSH boundary Green's function

SSH boundary Green's function

Boundary localized state

Domain Walls

Localized states on the boundary and at domain walls States hybridize and gap out: $\Delta \epsilon \sim e^{-n_{dw}/\xi}$

PRB 102, 081110(R) (2020)

Domain Walls

PRB 102, 081110(R) (2020)

Bands of topological states

PRB 102, 081110(R) (2020)

Moment Expansion method

ω

Vishwanath & Müller Springer(1994)

Andrew Mitchell, UCD

Problem: What is the CFE of a composite spectrum $A(\omega) = \frac{1}{N} \sum_{i} w_i A_i(\omega)$ given the CFE's of individual elements? $\mu_k = \frac{1}{N} \sum_{i} w_i \mu_{i,k}$ with $\mu_{i,k} = \int d\omega \, \omega^k A_i(\omega)$

$$t_n^2 = X_n(n)$$
, where $X_k(n) = \frac{X_k(n-1)}{t_{n-1}^2} - \frac{X_{k-1}(n-2)}{t_{n-2}^2}$
with $X_k(0) = \mu_{2k}, X_k(-1) = 0$, and $t_{-1}^2 = t_0^2 = 1$

Domain wall states

PRB 102, 081110(R) (2020)

Topological phase?

Andrew Mitchell, UCD

Scattering from e-e interactions can be reproduced exactly by coupling to auxiliary non-interacting dof's

Scattering from e-e interactions can be reproduced exactly by coupling to auxiliary non-interacting dof's

Scattering from e-e interactions can be reproduced exactly by coupling to auxiliary non-interacting dof's

$$G_{latt}(\omega) = [\omega^{+} - \epsilon - \Sigma_{latt}(\omega) - t^{2}G_{latt}(\omega)]^{-1}$$

$$G_{latt}(\omega) = [\omega^{+} - \epsilon - \Delta_{0}(\omega) - t^{2}G_{latt}(\omega)]^{-1}$$

$$\Delta_{0}(\omega) = V^{2}G_{aux}^{0}(\omega)$$

PRB 102, 081110(R) (2020)

Example: Hubbard atom

$$H = U\left(c_{\uparrow}^{\dagger}c_{\uparrow} - \frac{1}{2}\right)\left(c_{\downarrow}^{\dagger}c_{\downarrow} - \frac{1}{2}\right)$$

$$G_{cc}(\omega) = \frac{1}{\omega^{+} + U/2 - \Sigma(\omega)} \equiv \frac{1}{\omega^{+} - \frac{(U/2)^{2}}{\omega^{+}}}$$

$$\Sigma(\omega) = \frac{U}{2} + \frac{(U/2)^{2}}{\omega^{+}} \equiv \Delta_{0}(\omega)$$

$$C$$

1.2

U

PRB 102, 081110(R) (2020)

10

Example: Hubbard atom

Andrew Mitchell, UCD

$$H = U\left(c_{\uparrow}^{\dagger}c_{\uparrow} - \frac{1}{2}\right)\left(c_{\downarrow}^{\dagger}c_{\downarrow} - \frac{1}{2}\right)$$

$$G_{cc}(\omega) = \frac{1}{\omega^{+} + U/2 - \Sigma(\omega)} \equiv \frac{1}{\omega^{+} - \frac{(U/2)^{2}}{\omega^{+}}}$$

$$\Sigma(\omega) = \frac{U}{2} + \frac{(U/2)^{2}}{\omega^{+}} \equiv \Delta_{0}(\omega)$$

$$H_{map} = \frac{U}{2}\left(c^{\dagger}f + f^{\dagger}c\right)$$

PRB 102, 081110(R) (2020)

1.2

Example: Anderson dimer

$$H = U\left(c_{\uparrow}^{\dagger}c_{\uparrow} - \frac{1}{2}\right)\left(c_{\downarrow}^{\dagger}c_{\downarrow} - \frac{1}{2}\right) + t\sum_{\sigma}\left(c_{\sigma}^{\dagger}d_{\sigma} + d_{\sigma}^{\dagger}c_{\sigma}\right)$$

PRB 102, 081110(R) (2020)

 \boldsymbol{I}

d

Example: Anderson dimer

$$H = U \left(c_{\uparrow}^{\dagger} c_{\uparrow} - \frac{1}{2} \right) \left(c_{\downarrow}^{\dagger} c_{\downarrow} - \frac{1}{2} \right) + t \sum_{\sigma} \left(c_{\sigma}^{\dagger} d_{\sigma} + d_{\sigma}^{\dagger} c_{\sigma} \right)$$

PRB 102, 081110(R) (2020)

$$H_{map} = t\left(c^{\dagger}d + d^{\dagger}c\right) + \frac{U}{2}\left(c^{\dagger}f_{1} + f_{1}^{\dagger}c\right) + 3t\left(f_{1}^{\dagger}f_{2} + f_{2}^{\dagger}f_{1}\right)$$

Non-linear canonical transformation

$$H = U \left(c_{\uparrow}^{\dagger} c_{\uparrow} - \frac{1}{2} \right) \left(c_{\downarrow}^{\dagger} c_{\downarrow} - \frac{1}{2} \right) + \epsilon_{g} g^{\dagger} g + \epsilon_{f} f^{\dagger} f$$

$$gauge degrees of freedom$$

Majorana representation:

$$c_{\uparrow}^{\dagger} = \frac{1}{2}(\gamma_1 + i\gamma_2)$$
 $c_{\downarrow}^{\dagger} = \frac{1}{2}(\gamma_3 + i\gamma_4)$ $g^{\dagger} = \frac{1}{2}(\gamma_5 + i\gamma_6)$ $f^{\dagger} = \frac{1}{2}(\gamma_7 + i\gamma_8)$

PRB 102, 081110(R) (2020)

$$H = -\frac{U}{4}\gamma_1\gamma_2\gamma_3\gamma_4 - \frac{\epsilon_g}{2}i\gamma_5\gamma_6 - \frac{\epsilon_f}{2}i\gamma_7\gamma_8$$

Non-linear canonical transformation

$$H = -\frac{U}{4}\gamma_{1}\gamma_{2}\gamma_{3}\gamma_{4} - \frac{\epsilon_{g}}{2}i\gamma_{5}\gamma_{6} - \frac{\epsilon_{f}}{2}i\gamma_{7}\gamma_{8}$$

NLCT: $\mu_{j} = \widehat{R}^{\dagger}\gamma_{j}\widehat{R}$ with, $\widehat{R} = exp\left[-i\frac{\theta}{2}\gamma_{2}\gamma_{3}\gamma_{4}\gamma_{5}\right]$

 $\mu_{2} = -i\gamma_{3}\gamma_{4}\gamma_{5}$ $\mu_{3} = +i\gamma_{2}\gamma_{4}\gamma_{5}$ $\mu_{4} = -i\gamma_{2}\gamma_{3}\gamma_{5}$ $\mu_{5} = +i\gamma_{2}\gamma_{3}\gamma_{4}$ $H = -\frac{U}{4}i\gamma_{1}\mu_{5} - \frac{\epsilon_{g}}{2}\mu_{2}\mu_{3}\mu_{4}\gamma_{6} - \frac{\epsilon_{f}}{2}i\gamma_{7}\gamma_{8}$ Bazzanella, Nilsson, arXiv:1405.5176

PRB 102, 081110(R) (2020)

Non-linear canonical transformation

$$H = -\frac{U}{4}i\gamma_{1}\mu_{5} - \frac{\epsilon_{g}}{2}\mu_{2}\mu_{3}\mu_{4}\gamma_{6} - \frac{\epsilon_{f}}{2}i\gamma_{7}\gamma_{8}$$

Gauge choice: $\epsilon_{g} = 0$ and $\epsilon_{f} = \frac{U}{2}$

$$H = -\frac{U}{4}i(\gamma_{1}\mu_{5} + \gamma_{7}\gamma_{8})$$
Refermionization: $\alpha^{\dagger} = \frac{1}{2}(\gamma_{1} + i\gamma_{8})$
 $\beta^{\dagger} = \frac{1}{2}(\gamma_{7} + i\gamma_{5})$

$$H = \frac{U}{2}(\alpha^{\dagger}\beta + \beta^{\dagger}\alpha)$$
 $G_{cc(\omega)} = G_{\alpha\alpha}(\omega)$

Andrew Mitchell, UCD

Scattering from e-e interactions can be reproduced exactly by coupling to auxiliary non-interacting dof's

 $H_{\rm int} \rightarrow H_{\rm aux} + H_{\rm hyb}$

PRB 102, 081110(R) (2020)

Our strategy for the Hubbard model: find the self-energy using DMFT-NRG map to auxiliary 1d chains analyze the properties of the auxiliary system

$$\Sigma(\omega) \rightarrow \Delta_{0}(\omega) = V^{2}G_{aux}^{0}(\omega) = V^{2}$$
Continued
Fraction
Expansion
$$V^{2}$$

$$z - \frac{t_{1}^{2}}{z - \frac{t_{2}^{2}}{z - \frac{t_{3}^{2}}{z -$$

PRB 102, 081110(R) (2020)

Continued Fraction Expansion of self-energy:

$$\Sigma(\omega) \to \Delta_0(\omega)$$

$$\Delta_n(\omega) = t_n^2 / [\omega^+ - \Delta_{n+1}(\omega)]$$

$$t_n^2 = -\frac{1}{\pi} \operatorname{Im} \int d\omega \, \Delta_n(\omega)$$

PRB 102, 081110(R) (2020)

Andrew Mitchell, UCD

SSH model in the topological phase with hopping perturbations

 $t_n \stackrel{n\delta/D\gg 1}{\sim} \frac{1}{2} [D + (-1)^n \delta]$

PRB 102, 081110(R) (2020)

SSH model in the topological phase with hopping perturbations

n

PRB 102, 081110(R) (2020)

Metal (fermi liquid)

Generalized (pseudogap) SSH model in the trivial phase

PRB 102, 081110(R) (2020)

Topological phase transition?

No bulk gap closing across Mott transition! Double-peak structure in self-energy near the transition!

Topological phase transition?

Double peaks coalesce across transition

Andrew Mitchell, UCD

Topological phase transition?

Peaks not poles!

PRB 102, 081110(R) (2020)

Low-energy pseudogap gives additional 1/n envelope

Topological phase transition

Andrew Mitchell, UCD

Toy model for the transition

Andrew Mitchell, UCD

$$t_n^2 = \frac{D^2}{4} \left[1 - \frac{2}{n+d} (-1)^n \right] \times \left[1 - \beta \cos\left(\frac{2\pi n}{\lambda} + \phi\right) \right]$$

Topological integral invariant?

Luttinger integral

$$\begin{split} I_{\rm L} &= \frac{2}{\pi} \Im \int_{-\infty}^{0} \mathrm{d}\omega \ G(\omega) \frac{\mathrm{d}\Sigma(\omega)}{\mathrm{d}\omega} \\ &= \begin{cases} 0 \quad \forall U < U_c & \text{Fermi liquid} \\ 1 \quad \forall U > U_c & \text{Mott insulator} \end{cases} \end{split}$$

- \blacktriangleright *I*_{*L*} plays the role of the topological invariant
 - Finite (*integer*) value in topological phase
 - Zero in trivial phase
 - Similar form to Volovik-Essin-Gurarie invariant
- ► I_L dependent upon Σ
 - Topology is encoded in Σ

D. E. Logan and M. R. Galpin, J. Phys.: Condens. Matter 28, 025601 (2015)

Summary

Self-energy of Hubbard model mapped to auxiliary non-interacting chain of generalized SSH type

Metallic phase: "Pseudogap" SSH chain in trivial phase. No localized states.

Near Mott transition: Domain wall formation and dissociation

Mott insulator:

SSH chain in the topological phase with a single boundary localized Mott pole state

PRB 102, 081110(R) (2020)

Outlook

Multi-orbital Hubbard model or cluster DMFT:

Momentum-dependent self-energy:

Non-equilibrium dynamics:

Superconducting phase:

coupled SSH chains

D-dim physical lattice gives (D+1)-dim auxiliary lattice

Melting Mott insulator via interaction quench

Auxiliary Kitaev chain with Majoranas???

Andrew Mitchell, UCD