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Generalized quantum impurity models – which feature a few localized and strongly-correlated
degrees of freedom coupled to itinerant conduction electrons – describe diverse physical systems,
from magnetic moments in metals to nanoelectronics quantum devices such as quantum dots or
single-molecule transistors. Correlated materials can also be understood as self-consistent impurity
models through dynamical mean field theory. Accurate simulation of such models is challenging,
especially at low temperatures, due to many-body effects from electronic interactions, resulting in
strong renormalization. In particular, the interplay between local impurity complexity and Kondo
physics is highly nontrivial. A common approach, which we further develop in this work, is to
consider instead a simpler effective impurity model that still captures the low-energy physics of
interest. The mapping from bare to effective model is typically done perturbatively, but even this
can be difficult for complex systems, and the resulting effective model parameters can anyway be
quite inaccurate. Here we develop a non-perturbative, unsupervised machine learning approach to
systematically obtain low-energy effective impurity-type models, based on the renormalization group
framework. The method is shown to be general and flexible, as well as accurate and systematically
improvable. We benchmark the method against exact results for the Anderson impurity model, and
provide an outlook for more complex models beyond reach of existing methods.

In the field of condensed matter physics, the micro-
scopic Hamiltonian describing a quantum many-body
system (the bare model) is in many cases well known.
However, for interacting systems, the complexity of these
models grows quickly with the number of quantum de-
grees of freedom (for example orbitals or spins), such
that a brute force solution becomes analytically and/or
numerically intractable for many realistic scenarios of in-
terest. The challenge in many-body theory is therefore
not in writing down the bare model, but rather in solv-
ing it. However, in many situations it is not necessary to
consider the entire configuration space of the system, be-
cause only a (relatively) small active subspace controls
the phenomena of interest [1]. Thus, effective models
can be devised, that faithfully capture the phenomena of
interest, while only keeping the active part of the con-
figuration space. Such effective models have a reduced
complexity and increased expressiveness. The challenge
in many-body theory can therefore be restated as one of
finding the best solvable model that describes approxi-
mately but accurately the physics of interest.

As an example, it is often more convenient to analyse
an effective lattice model in second quantized form than
the ab initio treatment involving an all-orbital descrip-
tion of the constituent atoms [2, 3]. Methods such as the
constrained random-phase approximation [4, 5], coupled
cluster downfolding [6], density matrix downfolding [7] or
the Pariser-Parr-Pople model for molecules [8] were de-
vised to systematically eliminate inactive degrees of free-
dom and account for them with renormalized parameters
of a reduced model.
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These methods have in common that they require
some prior knowledge about the bare model to derive
the effective model. This situation shares some similar-
ity with that of the inverse problem [9] encountered in
statistical inference or machine learning [10], that seeks
to infer a probabilistic model from observed data. Re-
cently machine learning techniques have been explored
to construct effective Hamiltonians from simulated data
[11–14] or from experimentally measured data [15–17].
Another field where the inference of Hamiltonians has
gained considerable relevance, is in the analogue simu-
lation of quantum Hamiltonians on quantum hardware
[18–20]. Indeed, machine learning inspired process- and
Hamiltonian-tomography methods have been developed
to infer the precise Hamiltonian that NISQ devices actu-
ally simulate, given hardware imperfections [21–26].

FIG. 1. Schematic of the simplest bare (blue) and effective
(orange) impurity models, together with an illustrative com-
parison of their impurity entropies after optimization.
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To derive a good effective Hamiltonian, it is not enough
to infer a model with the desired properties – it must also
be meaningfully simpler than the bare model. The canon-
ical method to systematically eliminate degrees of free-
dom and obtain effective models is the renormalization
group (RG) [27–29]. On the level of the thermal density
matrix a single RG transformation acts as the partial
trace over the high energy degrees of freedom [30]. In
the context of quantum physics, a central concept from
information theory is that thermal states encode the cor-
responding Hamiltonian [31], such that comparing the
ensemble of thermal states from two systems is equiva-
lent to comparing the two Hamiltonians. This provides
a way to measure the ‘difference’ between a Hamiltonian
before and after renormalization. By minimizing the dis-
tance in Hamiltonian space, one can therefore in principle
optimize a simplified effective model to best approximate
some more complicated bare Hamiltonian after renormal-
ization. We rigorously derive such an approach in this
paper for a specific class of systems known as ‘quantum
impurity’ models [32]. These models involve localized in-
teracting quantum degrees of freedom coupled to one or
more continuum baths of noninteracting conduction elec-
trons. Generalized quantum impurity models comprise
the microscopic description of semiconductor quantum
dot devices [33] and complex single-molecule junctions
[34]. They also underpin the theoretical understanding of
correlated materials through dynamical mean field the-
ory [35]. Developing a strategy for systematically and
accurately deriving simple effective models to better un-
derstand and simulate complex systems is the ultimate
application of this work.

In particular, a prerequisite for the design and use of
complex quantum nanoelectronics devices with advanced
functionality beyond the classical paradigm, is a fun-
damental understanding of their low-temperature corre-
lated electron physics and quantum transport properties.
However, this is a notoriously difficult theoretical chal-
lenge because of the subtle interplay between the orbital
and spin complexity of the nanostructure, determined by
its structure and chemistry; strong electron interactions
due to quantum confinement; and the coupling to ∼ 1023

conduction electrons in the external circuit. This re-
sults in nontrivial quantum phenomena such as Coulomb
blockade [36], various forms of Kondo effect [34, 36, 37],
and quantum interference [38, 39] – all of which strongly
affect low-temperature electronic conductance through
the device, and hence its functionality. As with coupled
quantum dot devices [40–42], entangled spin and charge
degrees of freedom can give rise to new physics in single
molecule junctions. It is therefore a formidable task to
derive simplified effective models that can still describe
this range of physics in these kinds of quantum device.

A perturbative approach to this problem in the con-
text of molecular electronics [34] maps the microscopic
model of a single-molecule junction to an effective two-
channel Kondo model. This method captures simulta-
neously the effect on quantum transport from quantum

interference and Kondo physics – but is inevitably ap-
proximate. Since thermodynamic observables flow under
RG and the bare and effective model are defined at differ-
ent energy scales, it is also not a priori clear whether such
minimal Kondo models are sufficiently general to repro-
duce local observables of interest in the bare model [43].
In this paper we show how an RG analysis of effective in-
teraction terms can be used to determine thermodynamic
observables that are comparable across different energy
scales. This allows us to introduce a novel machine learn-
ing (ML) methodology to derive accurate effective models
for complex quantum impurity problems, that works by
optimizing generalized (minimally constrained) models,
and ensuring that local observables are correctly repro-
duced. We show by way of explicit examples that the low-
energy Kondo physics is simultaneously captured. The
parameters of the effective model are optimized by min-
imizing the Kullback-Leibler divergence (KLD) [44] that
compares its ensemble of thermal states to that of the
bare model. Information on the target is extracted from
a numerical simulation of the system of interest. How-
ever, the full solution of the bare model is not required:
minimization of the KLD requires only an estimation of
thermal expectation values corresponding to specific lo-
cal operators at relatively high temperatures. This can
be achieved with any suitable quantum impurity solver
[45–48]. Furthermore, the KLD can be shown to be con-
vex under reasonable assumptions (see Appendix A) and
its gradient is known analytically in closed form [49],
which makes it an ideal optimization problem. We refer
to this method as unsupervised model learning (UML).
We demonstrate the efficacy of the UML method by ap-
plication to the Anderson impurity model (AIM) [32]
and obtain some new non-perturbative results for this
old problem. Finally we give an outlook to the applica-
tion of this framework to more complex problems, where
the development of tractable effective models is essential
for the study of nontrivial correlated electron physics at
low temperatures.

I. METHOD

Unsupervised learning is a type of ML with the goal to
recreate the probability distribution of some target data.
Examples such as the Boltzmann machine [9] achieve
this by minimizing the distance between the probabilis-
tic ansatz, at the core of the machine, and the heuristic
estimation of the target distribution given by some sam-
ple data [10]. The distinguishability between probability
distributions can be computed using the aforementioned
KLD [44]. The KLD can be generalized for quantum
density matrices ρ̂ in form of the von Neumann relative
entropy [50, 51],

DKL [ρ̂2 : ρ̂1] = tr [ρ̂1 log(ρ̂1)]− tr [ρ̂1 log(ρ̂2)] . (1)

The generalized KLD quantifies how distinguishable ρ̂1
is from ρ̂2. The thermal density matrix ρ̂ = 1

Z e
−βĤ
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is fully defined by the system Hamiltonian Ĥ (and in-
verse temperature β). Thus, the thermal density matrix
can be seen as a proxy for its defining Hamiltonian, and
the KLD as a measure of distinguishability between two
Hamiltonians. To emphasize this we denote the KLD

for two thermal density matrices ρ̂1 = 1
Z1
e−βĤ1 and

ρ̂2 = 1
Z2
e−βĤ2 as DKL[Ĥ2 : Ĥ1].

Given the target Hamiltonian Ĥbare, we seek to opti-
mize the simpler effective model

Ĥeff(θθθ) =
∑

i

θiĥi , (2)

by minimizing DKL[Ĥbare : Ĥeff(θθθ)] with respect to θθθ for

a set of operators {ĥi}. The minimization yields the op-

timal couplings θθθ∗ to represent Ĥbare with Ĥeff(θθθ
∗). To

achieve this we represent the impurity thermal density

matrix ρ̂imp = trbath

[
e−βĤ/Z

]
as a classical probabil-

ity distribution which can be used to evaluate the KLD.
Using the hybridization perturbation expansion one can
write the partition function of Ĥbare as a summation of
the weights of all impurity occupation diagrams x, which
is subdivided into a summation over all corresponding
diagrams in terms of impurity eigenstates {α}x [52]

Z = Zbath

∑

x

∑

{α}x

w({α}x) ,

w({α}x) = e−⟨Ĥimp⟩{α}xΛ{α}x
det(∆x) ,

(3)

where w({α}x) is the weight of a distinct Feynman
diagram labelled by the eigenstate diagram {α}x, ∆x

is the antiperiodic hybridization matrix, Λ{α}x
the se-

quence of impurity operators comprising the diagram
{α}x while being projected onto the eigenbasis of Ĥ imp

and ⟨Ĥ imp⟩{α}x
is the average value of the impurity

Hamiltonian over the diagram {α}x.
From Eq. 3 we extract the distribution

P ({α}x) = (Zbath/Z)w({α}x) ,

which can be interpreted as a classical probability dis-
tribution provided that w({α}x) > 0. This distribu-
tion acts as a proxy for the impurity density matrix and
hence also for the impurity Hamiltonian. As with the
classical Boltzmann machine, the probability distribu-
tion P is in the form of an energy-based model, with
the weights w({α}x) here distributed according to the

impurity Hamiltonian, Ĥ imp. We can therefore evaluate
the KLD

DKL[Ĥbare : Ĥeff(θθθ)] =
∑

x

∑

{α}x: ad

Pbare({α}x) log
[
Pbare({α}x)
Peff({α}x)

]
,

(4)

where we have used the term admissible (ad) to denote

diagrams that involve eigenstates of Ĥ imp
bare for which Ĥ

imp
eff

has analogues eigenstates. To minimize the distinguisha-
bility between Ĥbare and Ĥeff(θθθ) we use gradient descent
(GD) methods [10]. For this, we have the analytic gradi-
ent of the KLD in closed form

∇θDKL[Ĥbare : Ĥeff(θθθ)] =

β⟨Ω̂†
ad∇θĤeffΩ̂ad⟩bare − β⟨∇θĤeff⟩eff ,

(5)

where the admissibility operator Ω̂ad connects the effec-
tive and bare Fock space, by mapping the effective eigen-
states to analogous bare eigenstates (see Sec. II for a de-
tailed derivation) and thus, eliminates all non-admissible
states from the bare thermal average, while on the effec-
tive Hilbert space it holds that

⟨Ω̂ad⟩eff = ⟨1̂⟩eff = 1 . (6)

From this form of the gradient (Eq. 5) it follows imme-
diately that the minimum is found when the impurity
observables match

⟨Ω̂†
adĥiΩ̂ad⟩bare = ⟨ĥi⟩eff (7)

for all effective impurity operators ĥi of the effec-
tive model (from now on we simplify the notation

⟨Ω̂†
adĥiΩ̂ad⟩bare → ⟨ĥi⟩bare). Thus follows that according

to Eq. 4 the optimal low-energy effective model Ĥeff, for
a given bare model Ĥbare, matches the thermodynamic

expectation values of all effective impurity operators ĥi
in the bare model.
The second order derivative of the KLD corresponds

to the second order derivative of the effective free energy

Feff(θθθ) = −1/β log tr
[
exp(−βĤeff(θθθ))

]
which, provided

that all operators {ĥi} mutually commute, becomes con-
vex (as shown in Appendix A). It is important to note
that the gradient obtained from the KLD Eq. 5 is equiva-
lent to the gradient of the thermodynamic entropy, which
is the loss-function in terms of the maximum entropy
principle. The application of the maximum entropy prin-
ciple to Hamiltonian tomography was recently proposed
by Anshu et al. [21] in similar spirit as the here pre-
sented method with a great focus on convex problems,
while here the focus lies on the RG analysis of the terms
constituting Ĥeff .
Given the convexity of Eq. 4 we can make some notes

about the complexity of the optimization of Eq. 4. The
complexity of the optimization depends on the method
used to compute the observables comprising the gradient
Eq. 5. The most expensive step is to calculate the ob-

servables ⟨ĥi⟩bare in the bare model. However, this needs
to be done just once (e.g. with QMC methods [45, 53]).

On the other hand, multiple calculations of ⟨ĥi⟩eff are re-
quired during the optimization. But these are performed
on the simplified effective model, and are therefore in-
expensive (they can be done with e.g. the NRG [46–48]
(NRG) method). For the results presented in the follow-
ing, we have used CT-QMC and NRG to calculate the
observables and the Adagrad or Adam GD method [54].
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II. EFFECTIVE HAMILTONIANS

For the UML method, it is not necessary to assume a
certain type of impurity Hamiltonian, be it in ab-initio
or tight-binding form. However, for illustrative purposes
and without loss of generality we assume that the molecu-
lar impurity Hamiltonian is akin to a Pariser-Parr-Pople
[55] Hamiltonian

Ĥ imp =
∑

i,j,σ

λij d̂
†
iσd̂jσ+

∑

i

Uin̂i↑n̂i ↓+
∑

i>j

U ′
ij n̂in̂j , (8)

where d̂†iσ (d̂iσ) creates (annihilates) a spin-σ electron

in orbital i of the molecule, while n̂iσ = d̂†iσd̂iσ and
n̂i =

∑
σ n̂iσ are number operators. Properties of the

molecule, like the thermodynamic average charge ⟨Q̂⟩ ≡
Q can be controlled externally by means of a gate volt-
age Ĥgate = Vg

∑
i n̂i at a temperature T . We denote the

collection of all bare Hamiltonian couplings with

{λ11, λ12, .., U1, U2, .., U
′
11, U

′
12, .., V11, V12, .., Vg} ≡ C .

In general, the molecule can be coupled to any number of

non-interacting fermionic baths Ĥbath =
∑

k,σ ϵk ĉ
†
kσ ĉkσ.

However, for simplicity we consider here only one
such bath, to which the molecule couples as Ĥhyb =∑

i,k,σ Vi(d̂
†
iσ ĉσk + h. c. ). Although, instead of the mo-

mentum space representation, we represent the bath a
semi-infinite tight-binding chain using Wilson chain map-
ping [46]

Ĥbath → Ĥbath
disc =

∑

σ

∞∑

i=0

ti(ĉ
†
σi+1ĉσi + ĉ†σiĉσi+1)

Ĥhyb →
∑

i,σ

Vi(d̂
†
iσ ĉ

†
σ0 + h. c. ) ,

(9)

where we assume a particle hole symmetric, metallic bath
of half-bandwidth D. For that choice the hopping behaves
like tn ∝ DΛ−n/2 for large n. Thus, the complete bare
Hamiltonian reads

Ĥbare = Ĥ imp + Ĥgate + Ĥbath
disc + Ĥhyb .

By means of Vg the molecule can be tuned in a specific
charge sector, which can host a degenerate GS (of energy
EGS) manifold of half-integer or integer spins (we exclude
the trivial case S = 0). Assuming Eex,1 is the energy of
the first excited state then, when temperature is less than
the energy gap T < Eex,1 − EGS the only active part of

the molecule Fock space Himp
bare is the GS manifold. Thus,

the entire molecule can be represented by a spin Ŝ and
we map

Himp
bare → Himp

eff , (10)

which allows for an immense reduction in complexity of
the bare molecule Fock space, by replacing it with the

effective Fock space Himp
eff . The spin Ŝ replaces a degen-

erate GS manifold, which represents degrees of freedom
to which the bath can couple. Thus, the effective Hamil-
tonian is structured as

Ĥeff(θθθ) = Ĥbath + Ĥne−imp
eff (θθθ) .

The effective impurity Hamiltonian Ĥne−imp
eff (θθθ) consists

of effective interactions

Ĥne−imp
eff (θθθ) =

∑

i

θiĥi[{ĉσi}ni=0, {ĉ†σi}ni=0, {Ŝ}] , (11)

that involve the spin Ŝ and a number of bath opera-

tors {ĉ(†)σi }ni=0. This structure of the Hamiltonian cor-
responds to a Kondo-type interaction, allowing for spin-
flip assisted scattering of the impurity spin with the bath
electrons.

A crucial aspect of the GD optimization of Eq. 4 is
to compare bare and effective physical observables. The
point of an effective model is to reproduce the bare quan-
tities in the most faithful manner, thus bare and effec-
tive quantities need to be compared in a meaningful way.
In the case of dynamic quantities, like GFs, this can be
achieved by rescaling [56]. But for static quantities, like
thermodynamic expectation values, a map between bare
and effective eigenstates is required. That map is the ad-
missibility operator Ω̂ad. Effective model operators are
only defined on the effective model Fock space thus, to
apply them to a state in the bare Fock space the admissi-
bility operator is required to relate a given bare state to
the corresponding effective state. We can construct the
admissibility operator by labelling the bare and effective
eigenstates with QNs of symmetries {S1,S2, . . . } that are
common to both models

Ĥ imp |n⟩ = En |n⟩ 7→ Ĥ imp |Q,q;mQ,q⟩
= EQ,q;mQ,q

|Q,q;mQ,q⟩ ,

where Q = (Q1, Q2, . . . ) denotes a vector of non-abelian
quantum numbers and q = (q1, q2, . . . ) is a vector of
abelian quantum numbers. By using QNs we can define
which bare states are admissible (”ad” for short) or not:
Any state that is labelled with a QN combination that
exists in the effective model Fock space is an admissible
state. The label mQ,q ∈ {1, 2, . . . ,MQ,q} denotes an
index which distinguishes multiplets with the same set of
QNs. MQ,q is the number of such multiplets in a given
sector, which is in general smaller in the effective model
than in the bare model Meff ≤Mbare. This is required in
order to have a meaningful reduction in complexity. For
simplicity we assume that Meff = 1, which allows us to
define the admissibility operator

Ω̂ad =
∑

Q,q:ad

[
|Q,q⟩eff ×

Mbare∑

mQ,q=1

⟨Q,q;mQ,q|bare

]
,

(12)
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where the notation Q,q : ad indicates that the sum runs
only over the quantum numbers that label the eigenstates

of Ĥ imp
eff . Thus, operators like ĥi can be meaningfully

computed in the bare Fock space, using Ω̂ad

χi = ⟨Ω̂†
adĥiΩ̂ad⟩bare . (13)

We provide specific examples for this in action shortly.
Note that the charge of the impurity Q behaves differ-
ently compared to the other quantum numbers and must
be adjusted to be comparable between bare and effective
model. In the case of the effective model being spin-1/2
based, the impurity charge is always Q = 1, which is ad-
equate for comparison with an sAIM (a special case of
Eq. 8) [57] where the S = 1/2 subspace also has Q = 1.
More complicated moieties, like for instance a six mem-
bered ring (akin to a simplified benzene molecule) host
a spin-1/2 at several different charges, Q = 7 just to list
one. To account for that we look at a fixed impurity
charge sector Q̃ that hosts at least one spin-1/2 repre-

sentation. This value Q̃ is then the reference value and
the admissible states are then defined with respect to Q̃.
When the bath sites are attached, the quantum num-
ber Q̃ is the reference charge relative to which the new
charge quantum numbers in the bare extended impurity
are measured to, thus we can simply set

Q̃→ Q = 1 .

One can take all charge sectors Q̃ that host a spin-1/2
into account by treating them as multiplets and summing
over them. Even within a single charge sector of the bare
model there can be several representations of spin-1/2,
however those can be treated as multiplets and simply
summed over. Since in our first application we are only
dealing with a simple sAIM, we do not have to sum over
different charge sectors or spin-representations.

The UML approach yields the best couplings θθθ∗ for

the chosen Hamiltonian operators {ĥi} in the effective

model, Eq. 11, given the target Hamiltonian Ĥbare, Eq. 8.

Thus, the {ĥi} have to be chosen in the most general way
possible, however we will see in the following discussion
that some physical intuition or prior knowledge is re-
quired. In general and for impurity models in particular
the RG procedure provides a systematic way to derive
minimal effective models. The Wilsonian RG map [27]

Rl for a Hamiltonian Ĥ(C) =
∑
CiX̂i, with couplings

C = (C1, C2, . . . ) and associated interaction terms {X̂i}
allows to eliminate correlations between states above and
below an energy scale exp(−l)D < D (with D being the
half bandwidth) which is iteratively becoming smaller as
the transformationRl is repeated. The RGmap produces
a new Hamiltonian that is characterized by renormalized
couplings

Rl

[
Ĥ(C)

]
= Ĥ(C′) , (14)

while leaving the free energy invariant F(C) = F(C′).
Within the Wilsonian RG approach all terms X̂i consis-
tent with the symmetries and Fock space of the system

are allowed to appear in Ĥ(C). For simplicity we make

the approximation that the set of interactions {X̂} is fi-
nite and does not change during the RG procedure. The
continuos flow of the couplings C is described by the in-
finitesimal RG-transformation

dC

dl
= lim

δl→0

1

δl
[Rl+δl(C)−C] ≡ βl(C) , (15)

with βl being the Gell-Mann–Low β-function [29].
An important property of RG is the existence of fixed

points (FP), which are characterized by a set of couplings
{K∗} that are invariant under further RG transforma-
tions

Rl

[
Ĥ(C∗)

]
= Ĥ(C∗) ≡ Ĥ∗ , (16)

we call Ĥ∗ the FP Hamiltonian. The RG transformation
can be linearised at the FP Hamiltonian

Rl[Ĥ
∗ + δĤ] = Ĥ∗ +R∗

l · δĤ +O(δĤ2) , (17)

where δĤ is a perturbation to the fixed point. The FP
can be further analysed by finding the eigensystem of
the linearized RG transformation R∗

l · Ô∗
i = λ∗i Ô

∗
i . The

eigenvalues λ∗i indicated whether the operator Ô∗
i drives

the system away from the FP if |λ∗i | > 1 or does not
impede the flow to the FP if |λ∗i | < 1. Perturbations to
the fixed point can be decomposed in to the eigensystem
of R∗

l as δĤ =
∑

i αiÔ
∗
i . If there are contributions αi

from operators with |λ∗i | > 1 the perturbation is said to
be relevant, conversely if there are only contributions of
the type |λ∗i | < 1 the perturbation is irrelevant (this is
a strongly simplified discussion, we refer to [29] for more
details).
A typical situation for non-critical FPs is that either

C∗
i = 0 or C∗

i = ∞ [29], which are trivially invariant
under rescaling. This makes the application of pertur-
bation theory straightforward and strongly simplified ef-
fective FP Hamiltonians can be identified. We refer to
these models as minimal models, as they only include
RG-relevant terms and thus the bare minimum interac-
tions required. An important example is found in the
RG-flow of the sAIM at particle-hole symmetry. The
symmetric sAIM is given by the bare Hamiltonian,

ĤA
bare =

1
2Ud(n̂

d − 1)2 (18)

+Ĥbath
disc + V

∑

σ

(d̂†σ ĉ0σ + ĉ†0σd̂σ) . (19)

It is reasonable to assume that the potential energy is
lower than the kinetic energy in realistic QIMs, mean-
ing we choose sAIM parameters with Ud/D < 1 to
keep the bandwidth the largest energy scale in the sys-
tem. However, the sAIM transforms under RG such that
Ud/D → U ′

d/D
′ ≫ 1 and thus the interaction becomes

the dominant energy scale in the system, this is known as
the local moment (LM) FP. Under these circumstances
one can perform a second order perturbation theory in
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the impurity-bath hybridization V to obtain the famous
Kondo model

ĤK
eff = Ĥbath + J Ŝd · Ŝ0 , (20)

where Ŝ0 = 1
2

∑
σ,σ′ σσσσσ′c†0σc0σ′ is the conduction elec-

tron spin density at the impurity position. The Kondo
model contains only terms that are RG-relevant to the
flow of the sAIM and it encapsulates all its physics
even for further scaling, away from the LM FP, this
is the SWT. The SWT can also be applied to the non-
renormalized theory, for which it yields JSW = 8V 2/Ud.
However, this does not account for bandwidth renormal-
ization D → Deff . An approximate form of the band-
width renormalization in the small Ud limit was found by
Haldane [58], and discussed further by Krishnamurthy et
al in [46], but still does not include subleading corrections
from finite J . Recently, the authors determined the pre-
cise form numerically for all Ud and JSW using an alterna-
tive machine learning scheme based on optimization with
respect to the partition function [43]. There it was shown
that while the J of the effective Kondo model, Eq. 20, can
be tuned to reproduce the correct low-energy physics and
Kondo scale TK, a coinciding free energy does not imply
that all local observables are simultaneously matched be-
tween bare and effective model since the RG-flow of the
bare and effective models is not the same. Therefore,
the KLD is a somewhat misleading measure of distin-
guishability as its minimum requires local observables to
match, but matching observables does not imply a match-
ing free energy or matching low-energy scales. The KLD
is only then a good measure of distinguishability if the
bare and effective model have the same RG-flow, which
is not the case when only RG-relevant terms are included
in the effective model. Therefore, in this chapter we go
beyond the minimal models, like the Kondo model and
introduce minimally constrained effective models. These
models are completely general, determined only by the
symmetries of the bare model and thus, also allow to in-
clude RG-marginal or -irrelevant terms. We show in the
following sections that such an effective model has a RG-
flow that is comparable to the bare model and it is hence
capable of reproducing a special set of local observables
as well as the universal low-energy Kondo physics.

The RG-analysis that yields the minimal model also
provides insights in the reduction of degrees of freedom of
the impurity; for sufficiently low temperatures (T ≲ Ud)
the impurity turns from a spin-full, fermionic orbital into
a spin-1/2 magnetic moment. The only aspect that we
adopt from the minimal model in the minimally con-
strained model is the effective impurity Fock space Himp

eff

that replaces the bare Fock space Himp
bare. To meaningfully

define an impurity Hamiltonian, a Fock space Himp
eff of a

spin is not enough, at least one bath site has to be added
to capture the impurity-bath coupling:

Hbath
0 ⊗Himp

eff = H1e−imp
eff ,

we refer to this as single extended impurity (1e − imp).

To systematically generalise this we consider the semi-
infinite Wilson chain Eq. 9. This allows the construction
of an n-extended impurity

Hne−imp
eff = Hbath

n ⊗Hbath
n−1 ⊗ · · · ⊗ Hbath

0 ⊗Himp
eff ,

where Hbath
i corresponds to the Fock space of Wilson site

i. Note that every site that is absorbed in the extended
impurity is removed from the bath

Ĥbath
disc 7→ ˆ̃Hbath

disc =
∑

σ

∞∑

i=n

. . . .

The enlarged Fock space permits the inclusion of high
order exchange terms with the bath and, due to the na-
ture of the Wilson chain, RG-marginal and -irrelevant
terms. It depends on the precise FP one is considering

which eigenvalues the ith bath site operator ĉ
(†)
σi has in

terms of the linearized RG transformation R∗
l (Eq. 17),

but impurity operators have in general eigenvalues with
|λ∗| > 1 and bath operators |λ∗| < 1, with |λ∗| decreasing
for increasing i. Thus, including bath sites allows one to

construct effective interactions ĥi that go beyond the FP
point physics and are closer to the bare model in terms
of the RG-flow. Thereby we systematically improve the
quality of our effective model.

Following Ref. [46] we construct the minimally con-
strained effective Hamiltonian on the n-extended impu-
rity Fock space, with the only constraints being the sym-
metries of the bare model {S1,S2, . . . }. In the following
we only consider models invariant under U(1) ≡ Q and
SU(2) ≡ S as they are most commonly encountered in
quantum impurity models and in fact also in the sAIM,
however our approach can be generalised to more sym-
metries. Since representations of Q and S on H1e−imp

eff
commute we can construct a basis on the effective Fock
space and label it with the quantum numbers S for the
non-abelian spin S quantum number, sz for the abelian
magnetic quantum number of the Cartan subalgebra of
S, and Q for the abelian charge quantum number

⟨Q,S, sz;m|Q′, S′, s′z;m
′⟩ = δQQ′δSS′δszs′zδmm′ , (21)

where m is the multiplet index, as the same representa-
tion of S and Q can be repeated several times in the same
Fock space. The multiplets are not unique: every linear
combination of a multiplet of some collection of quan-
tum numbers is again a multiplet with the same quan-
tum numbers, hence multiplets introduce a gauge degree
of freedom in the choice of the basis. Therefore, it is not
possible to compare degenerate multiplets between bare
and effective models. We show with the example of the
sAIM that we can eliminate this ambiguity and enable
meaningful analogies between bare and effective states.
For now, assume we have chosen a multiplet gauge and
thus, we can construct projectors on the quantum num-
ber subspaces

P̂QS =
∑

m

|Q,S;m⟩ ⟨Q,S;m| . , (22)
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where omitting sz implies that we have summed over all
sz = −S,−S + 1 . . . , S. These projectors form the oper-
ator basis that we use to construct the effective impurity
Hamiltonian

Ĥn−imp
eff (θθθ) =

∑

Q,S

θQSP̂QS , (23)

and according to our previous discussion, this leads to a
convex KLD as the projectors clearly all mutually com-
mute. This is the ideal case in terms of optimisation, but
it is not the most general SU(2)× U(1) Hamiltonian on

Hne−imp
eff , since different multiplets with the same QNs

are treated independently in Ĥeff , but may also be con-
nected. With the example of the sAIM we make Ĥeff

more general in the next section at the cost of the con-
vexity of the KLD. However, here we first stick with
Eq. 23. One of the advantages of the projectors P̂QS

is that Ω̂†
ad · P̂QS · Ω̂ad is trivial to compute and it makes

the observables directly comparable between bare and ef-
fective model. This is because bare and effective model
have the same symmetries by construction.

An important property of the projectors is that the
sum over all projectors gives the identity on the effective
Fock space Hne−imp

eff

1̂eff =
∑

Q,S

P̂QS , (24)

from which follows that ⟨1̂eff⟩eff = 1. But the sum over
all projectors is clearly not the identity on the bare Fock

space and therefore ⟨Ω̂†
ad · 1̂eff · Ω̂ad⟩bare ≤ 1. From this

it follows that it is impossible to demand

⟨Ω̂†
ad · P̂QS · Ω̂ad⟩bare = ⟨P̂QS⟩eff , (25)

for all Q and S combinations at the same time, as this
would amount to demanding

⟨1̂eff⟩eff !
= ⟨Ω̂†

ad · 1̂eff · Ω̂ad⟩bare , (26)

which cannot be satisfied for a meaningful reduction in
complexity of Ĥeff to Ĥbare. Therefore at least one pro-
jector (or a multiplet within a projector) must be omitted
in the Hamiltonian θQS = 0, this choice is not arbitrary
and an ideal choice can be made, as we show in Sec. IV.

III. SINGLE AND DOUBLE EXTENDED
EFFECTIVE IMPURITY MODELS

The simplest effective Hamiltonians for the AIM are
defined on a single extended (1e-imp) Fock space and the
prime example is the Kondo model. However the Kondo
model can only either reproduce the local observables
or the universal temperature scale TK and not both, as
shown recently by the authors [43]. The minimally con-
strained models get increasingly capable of reproducing

both by increasing the number of bath sites included in
the extended impurity.
The construction of the 1e-imp minimally constrained

model begins with creating the basis of the H1e−imp
eff Fock

space, which is straight forward as M = 1 for all QN
combinations. The basis states are then turned into pro-
jectors associated with Q and S

P̂0,1 = |↑,⇑⟩ ⟨↑,⇑|+ |↓,⇓⟩ ⟨↓,⇓|+ 1

2
(|↑,⇓⟩ ⟨↑,⇓|

+ |↓,⇑⟩ ⟨↓,⇑|+ |↓,⇑⟩ ⟨↑,⇓|+ |↑,⇓⟩ ⟨↓,⇑|)
P̂±1,1/2 = (|0⟩ ⟨0|+ |↑↓⟩ ⟨↑↓|)⊗ (|⇑⟩ ⟨⇑|+ |⇓⟩ ⟨⇓|)

P̂0,0 =
1

2
(|↑,⇓⟩ ⟨↑,⇓|+ |↓,⇑⟩ ⟨↓,⇑| − |↓,⇑⟩ ⟨↑,⇓|

− |↑,⇓⟩ ⟨↓,⇑|) , (27)

where we have assumed particle hole symmetry and
|ϕ, σ⟩ ≡ |ϕ⟩0 ⊗ |σ⟩d with ϕ = {0, ↑, ↓, ↑↓} for the lo-
cal bath orbital and σ = {⇑,⇓} for the impurity spin.
The corresponding projectors, that are measured in the
bare AIM must include an additional multiplier Ω̂ad =
n̂d↑+ n̂

d
↓−2n̂d↑n̂

d
↓ to project out impurity states with 0 and

2 electrons P̂QS → Ω̂ad · P̂QS · Ω̂ad. Thus, the represen-

tation of P̂QS in second quantized operators is different
for bare and effective model. The effective Hamiltonian

Ĥ1n−mol
eff = ˆ̃Hbath + θ0,1P̂0,1 + θ0,0P̂0,0 + θ±1,1/2P̂±1,1/2

reads in second quantized notation

P̂0,1 =
3

4
(n̂0↑ + n̂0↓ − 2n̂0↑n̂

1
↓) + Ŝd · Ŝ0 (28)

P0,0 =
1

4
(n̂1↑ + n̂1↓ − 2n̂1↑n̂

1
↓)− S1 · S2 (29)

P̂±1,1/2 = Îeff − n̂0↑ − n̂0↓ + 2n̂0↑n̂
0
↓ , (30)

where n̂0 =
∑

σ ĉ
†
0σ ĉ0σ. The projectors Eq. 28 combined

form the most general SU(2) and particle-hole symmet-

ric Hamiltonian on H1e−imp
eff . Recombining the projectors

yields a different parametrization with the same express-
ibility

ĤJU
eff = ˆ̃Hbath + J Ŝd · Ŝ0 +

1
2U0(n̂0 − Îeff)2 +LÎeff . (31)

This parametrization Eq. 31 is still meaningful in bare
and effective model, because of the simplicity of the AIM.
However, note that Eq. 31 includes the identity operator.
As discussed before the identity is an unmatchable ob-
servable between bare and effective model and since it
does not have any impact on the physics we set L = 0
and find J = θ0,1, U0 = 2θ±1,1/2 − 3

2θ0,1. Later in the
paper we compare in detail the performance of Eq. 31
and Eq. 28. The parametrization Eq. 31 shows that the
Ĥ1n−mol

eff is equivalent to the LM FP Hamiltonian includ-
ing the leading irrelevant perturbation, as shown in the
RG-Analysis by Krishnamurty et. al. [46]. This ex-
emplifies how the extended impurity approach allows to
include irrelevant terms in the Hamiltonian.
We can use the same procedure as for the 1e-imp to

derive the 2e-imp minimally constrained Hamiltonian.
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Constructing the Q and S basis of H2e−imp
eff one finds a

total of eight Q and S combinations, but a total of 15 sz-
multiplets. Since multiplets are arbitrary they can not
be compared between bare and effective model. Thus, we
need additional operators that commute with the repre-
sentations of Q and S such that a common eigenbasis
can be formed and then allows us to identify every mul-
tiplet. Choosing specific operators creates combinations
of multiplets that are not all equally suited to express the
physics of the problem, we want all terms in the Hamilto-
nian to commute there are no terms in the Hamiltonian
between QN subspaces. Hence one has to use physical
intuition to make a good choice for the additional opera-
tors, however if we sacrifice the convexity in parts we can
introduce terms that hybridize QN subspaces and thus
again yield the most general SU(2) symmetric Hamilto-
nian. First we consider no such terms though, thus we
introduce the hopping operator between the first and sec-
ond Wilson chain sites

T̂ =
∑

σ

(ĉ†σ0ĉσ1 + ĉ†σ1ĉσ0) . (32)

The T̂ operator has the advantage that it is supported
on the bath Fock-space and is thus comparable between
effective and bare Fock space as it does not depend on
the impurity Fock-space. Then there is a clear physical
motivation why one would want to include this term,
that is because it is also present in the bare Hamiltonian.
Forming the common eigenspaces of S, Q and now also
T̂ we find that only one multiplet remains degenerate

|0, 1
2
, 0,

1

2
; 0⟩ =

√
2

3
|↑, ↑,⇓⟩ −

√
1

6
(|↓, ↑,⇑⟩+ |↑, ↓,⇑⟩)

|0, 1
2
, 0,−1

2
; 0⟩ = −

√
2

3
|↓, ↓,⇑⟩+

√
1

6
(|↓, ↑,⇓⟩+ |↑, ↓,⇓⟩)

|0, 1
2
, 0,

1

2
; 1⟩ = 1√

2
(|↑↓, 0,⇑⟩ − |0, ↑↓,⇑⟩)

|0, 1
2
, 0,−1

2
; 1⟩ = 1√

2
(|↑↓, 0,⇓⟩ − |0, ↑↓,⇓⟩) , (33)

where we have adopted the notation |Q,S, T, sz;m⟩ with
T being the hopping eigenvalue. This last ambiguity can
be resolved by introducing on more operator

Ŵ = n̂0↑n̂
0
↓ + n̂1↑n̂

1
↓ , (34)

which we only use in the S = 1/2 and Q = 0 sub-
space. Since, the hopping eigenvalues in this sub-
space are T ∈ {−2, 0, 2} we do not introduce an ad-

ditional quantum number for Ŵ , but combine the T
and W quantum numbers to T ∈ {−2, 0, 1, 2} such that
|0, 12 , 0; 0⟩ → |0, 12 , 0⟩ and |0, 12 , 0; 1⟩ → |0, 12 , 1⟩. All
states and quantum numbers for this particular basis
are given in Appendix B. With the basis being now
complete and unique we have again a projector basis
P̂QST that allows us to build the effective Hamiltonian

Ĥ2e−imp
eff = ˆ̃Hbath +

∑
{QST}:ad θQST P̂QST while yielding

a convex KLD.

In building the 2e-imp basis we have prioritised the
convexity over generality of the Hamiltonian, we can also
prioritise generality over convexity. The generality is lim-
ited because Q,S-multiplets are not connected by any
term in the Hamiltonian despite Q and S symmetry in
principle allowing such transitions. To get the most gen-
eral Q- and S-symmetric Hamiltonian we can include the
terms

P̂QS;t,t′ = |Q,S, T = t⟩⟨Q,S, T = t′|+ h.c. , (35)

that connect states with the same Q,S but different T
and W eigenvalues. In the next section we show nu-
merical results for the 1e-imp and 2e-imp, where we also
compare the performance of the convexity prioritised and
generality prioritised 2e-imp Hamiltonians.

IV. QUANTIFYING THE LEARNING
PROGRESS

In the previous section we have introduced the KLD
loss function Eq. 4 that quantifies the distinguishability
between bare and effective model. In general ML appli-
cations, the value of the loss function is a useful metric
to judge the training progress and performance of the
model. In the case of the KLD for impurity models it
is impossible to compute the actual value and thus, the
training progress cannot be known. However, to opti-
mize the KLD it is not necessary to evaluate it: as we
know its gradient Eq. 5 we can perform a gradient descent
(GD) optimization. Since the KLD can be shown to be
convex for the minimally constrained models, the gradi-
ent vanishes only at saddle-points or global minima of
the KLD. Thus, the gradient is itself a good replacement
for the loss function to determine whether the training
of a model has converged. Due to the special form of
the gradient an optimum can only be reached when ex-
pectation values associated to the effective Hamiltonian
interactions coincide in the bare and effective system

⟨Ω̂†
ad∇θĤeffΩ̂ad⟩bare = ⟨∇θĤeff⟩eff . (36)

It is clearly a desirable property for an effective model
to reproduce bare thermodynamic observables. However
the fact that the bare and effective models are connected
through RG implies that if their free energy for a single
temperature coincides, then all other energy scales of the
system will coincide too (within the validity range of the
effective model). For impurity models such a scale would
be the Kondo temperature TK , which is crucial to infer
in order to capture the low temperature behaviour of
molecular junctions. The accuracy of the effective model
can be related to the Kondo temperature in terms of the
relative error

∆(T eff
K , T bare

K ) =

∣∣∣∣1−
max(T eff

K , T bare
K )

min(T eff
K , T bare

K )

∣∣∣∣ . (37)

We use ∆(T eff
K , T bare

K ) in the following as one of the met-
rics to quantify the performance of a trained effective
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FIG. 2. Impurity-bath spin-spin expectation value ⟨Ŝd · Ŝ0⟩
at zero temperature for the sAIM Eq. 18 (blue line) compared
with the corresponding value in the minimal model Eq. 20,
optimized by F-learning (green). The inset shows their ratio,
which captures the different renormalizations along the two
paths to the same SC fixed point. Plotted as a function of Ud

for 8V 2/Ud = 0.3.

model. Note that TK is not directly optimized dur-
ing the UML procedure, so this is a stringent and non-
trivial metric. When learning a representation for re-
alistic molecular junctions T bare

K cannot be inferred and
therefore the approximation error of calculated observ-
ables has to suffice

∆(⟨ĥi⟩eff , ⟨ĥi⟩bare) =
∣∣∣∣∣1−

max(⟨ĥi⟩eff , ⟨ĥi⟩bare)
min(⟨ĥi⟩eff , ⟨ĥi⟩bare)

∣∣∣∣∣ . (38)

While energy scales such as TK and the free energy are in-
variant under the Wilsonian RG, thermodynamic observ-
ables flow under the RG transformation. To understand
how observables flow it is instructive to interpret the RG
procedure as a reparametrization of the free energy. In
this picture the renormalization is achieved by replac-
ing the bare coordinate system with a new coordinate
system that leaves F invariant C → C′(C) (for simplic-
ity we drop the explicit dependence of the renormalized
parameters on the bare parameters from the notation).
In this picture thermodynamic observables can be inter-
preted as covariant tensors that can be transformed as
such between coordinate systems [56]

⟨ĥi⟩eff =
∂

∂θi
F(θθθ)

=
∑

j

∂θ∗j
∂θi

∂

∂θ∗j
F(θθθ∗) =

∑

j

χ∗
θj

∂θ∗j
∂θi

,
(39)

with θθθ∗ being the FP couplings and χ∗
θi

the FP expec-

tation value. The matrix
∂θ∗

j

∂θi
can be obtained from the

β-function (Eq. 15) and allows us to make a connection
between the FP value of an observable and the unrenor-
malized expectation values. Note that we have replaced
C with θθθ to emphasize the effective model parameters
(Eq. 11). Eq. 39 shows that the bare expectation value is
a linear combination of all possible FP expectation val-
ues, weighted by the dependence of the FP parameter on
the bare parameters.
As an example we consider the Kondo model, for which

it is well known that the SC FP is reached for a renor-
malized coupling of J∗ = O(1). Therefore, the electrons
in the system lock into a singlet to screen the impurity
spin. The impurity-bath spin correlator ⟨Ŝd · Ŝ0⟩ = χ∗

J
athe FP follows as:

∂JF(J∗) = χ∗
J = −3/4 .

Despite that the same mechanism dominates the bare
Kondo model, one does not measure the FP value χ∗

J
but

⟨Ŝd · Ŝ0⟩ = χ∗
J

∂J∗

∂J
.

The scaling laws of the Kondo model are known analyti-
cally from several different approaches [59], however only
to a certain order in perturbation theory and therefore
the estimation for ∂JJ

∗ vanishes as D → 0. This pro-
hibits the exact analytic calculation of ⟨Ŝd · Ŝ0⟩ from χ∗

J
(the true scaling of bare couplings is far beyond tractabil-
ity).
Despite that, it is still insightful to express the expecta-

tion values of effective interactions ĥi (or P̂i) in the bare
model in this formulation, even if in the end we evaluate
them numerically. Because the effective interactions do
not occur in the bare Hamiltonian they have to be added
by means of source terms, which we also denote with θi.
The thermodynamic expectation value can now be cal-
culated by differentiating the free energy with respect to
the source term

⟨ĥi⟩bare =
∂

∂θi
F(C; θi)

∣∣∣
θi=0

=


∂θ

∗
i

∂θi

∂

∂θ∗i
+

∑

j

∂C∗
j

∂θi

∂

∂C∗
j


F(C∗; θ∗i )

∣∣∣
θi=0

= χ∗
θi

∂θ∗i
∂θi

∣∣∣
θi=0

+
∑

j

χ∗
Cj

∂C∗
j

∂θi

∣∣∣
θi=0

,

(40)
where C∗ are the bare FP parameters. The effective
model is chosen such that as D → 0 it approaches
the same FP as the bare model. Thus, the bare FP
parametrization involves the same interactions and pa-
rameters as the effective model

⟨ĥi⟩bare =
∂

∂θi
F(C; θi)

∣∣∣
θi=0

=
∑

j

χ∗
θj

∂θ∗j
∂θi

∣∣∣
θi=0

, (41)

however here we have θ∗j (C), while in we have Eq. 39
θ∗j (θθθ). The FP expectation values χ∗

θj
are identical for
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bare and effective models, but the bare expectation value
differs from the effective one only by the different depen-
dence of the FP parameters on the source term. There-

fore, matching observables (⟨ĥi⟩bare = ⟨ĥi⟩eff) actually
means that

[
∂θ∗j
∂θi

]

eff

=

[
∂θ∗j
∂θi

∣∣∣
θi=0

]

bare

, (42)

is matched between bare and effective model. If both
models would flow in the same manner to the FP this
would imply that observables and energy scales can be
matched at the same time. However, the way in which
bare and effective model flow to the FP is not in general
the same. The bare RG-flow typically involves more FPs
than the effective RG-flow, which by construction is sim-
pler. For instance, the sAIM visits the free orbital FP,
which the Kondo model does not. As a consequence when
bare and effective observables coincide, the free energies
are not necessarily agreeing, and vice versa.

For the case of the sAIM and the Kondo model Eq. 20
acting as minimal model, it is found that the expectation
value of the effective interaction in the effective model
is upper bounded by the expectation value in the bare
model

⟨Ŝd · Ŝ0⟩eff ≤ ⟨Ŝd · Ŝ0⟩bare . (43)

We demonstrate this fact for a wide range of sAIM pa-
rameters in Fig. 2. We can rewrite this upper bound us-
ing the FP expectation value and the FP coupling deriva-
tive as

χ∗
J

[
∂J∗

∂J

]

eff

≤ χ∗
J

[
∂J∗

∂J

]

bare

(44)

and using χ∗
J = − 3

4 if follows immediately that

[
∂J∗

∂J

]

bare

/[
∂J∗

∂J

]

eff

≤ 1 , (45)

which is exactly what we observe in Fig. 2 and also for
models beyond the minimal model. In the following we
show how this discrepancy affects the ability of various
effective models to capture the Kondo temperature and
how the approximation can be improved by including
RG-irrelevant terms.

In equation Eq. 26 we have demonstrated the impor-
tance or relating the identity operator of the effective
impurity Fock space to the bare impurity Fock space.
However, the identity operator is special in the sense that
it does not obey Eq. 39

⟨Ω̂ad⟩eff = ⟨1⟩eff = 1 ̸=
∑

j

χ∗
j

∂θ∗j
∂θi

= 0 , (46)

since the identity can not influence the RG-flow as
it has no influence on the Hamiltonian and therefore

∂θ∗
j/∂θi = 0. In the bare Hilbert space, Ω̂ad behaves the

same as a regular observable, for which Eq. 39 holds.
Thus, it follows from Eq. 42 that knowledge of ⟨Ω̂ad⟩bare
does not allow to establish a relationship between ⟨ĥi⟩eff
and ⟨ĥi⟩bare through rescaling ⟨ĥi⟩bare with ⟨Ω̂ad⟩bare.
Hence, the importance of Eq. 26 comes not from account-
ing for scale differences, but from demonstrating that the
optimization problem Eq. 4 is overdetermined when us-
ing the projectors P̂QS as effective interactions and this
holds at all scales due to Eq. 46.

V. RESULTS

As proof of principle we only study mappings for the
AIM, which can be solved completely using Wilson’s
NRG (see Appendix C for the details of the calculations).
We can use the analytical mapping to the minimal model
Eq. 20 with the coupling JSW as comparison for our re-
sults. This mapping gives us also a reference value for
the Kondo temperature

TK(D,JSW ) = αD
√
ρ0JSW exp[−1/ρ0JSW + γρ0JSW ] ,

with ρ0 = 1/2D the density of states of the bath at
the Fermi level, γ = π2/4 and α = O(1). Our tests
consist of performing the minimization of the KLD for
the minimal model, the 1e-imp and the 2e-imp for an
AIM with 8V 2/Ud = 0.3D which leads to a constant
TK(D,JSW ). The interaction strengths are drawn from
between 0.01 ≤ Ud/D ≤ 100 such as to cover the cases
Ud/D ≪ 1 and Ud/D ≫ 1. The true Kondo tempera-
ture for the bare and effective models is extracted from
the impurity entropy S(T ) [60], as shown in Fig. 3 d) for
different optimized effective models and the correspond-
ing bare model. In the following we us the definition
S(TK) = 0.5.
The first example is the minimization of the KLD for

the minimal model Eq. 20, which contains only the RG-
relevant spin-exchange term. The associated coupling
J gets strongly renormalized and as a result ∂J∗

∂J has a
different functional form for bare and effective model de-
pending on whether Ud/D ≪ 1 or Ud/D ≫ 1. In the
case of Ud/D ≫ 1 the AIM is effectively already in a LM
fixed point and thus the flow of the AIM and the mini-
mal model are coinciding, which means that because of
matching the spin-spin exchange term the minimal model
is also able to match TK . This behaviour is clearly shown
in Fig. 3 a) in green. When Ud/D = O(1) the free orbital
fixed point plays a significant contribution in the flow of
the AIM, which explains the behaviour in Fig. 3 a) as
matching the observable is now no longer equal to match-
ing TK . Thus, the minimal model is not fit to yield good
approximations of the T bare

K based on knowledge of the
observables. As a result the relative error ∆(T eff

K , T bare
K )

diverges for Ud → 0.
To understand more realistic scenarios only the pa-

rameter range Ud/D < 1 is of importance, which is
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FIG. 3. Performance metrics for the optimized effective mod-
els. Here we compare the bare sAIM (points) with the results
of F-learning (blue lines), and UML employing the minimal
(green), 1e (orange) and 2e (red) models. As a figure of merit,
panel a) shows the Kondo scale TK for these models, while
b) gives the relative error of the effective T eff

K with respect
to the bare T bare

K . Panel c) shows the dependence of RG-
relevant and -irrelevant operators on Ud. To illustrate the
relative quality of the various effective models, in panel d) we
show their impurity entropy (lines), compared with bench-
mark results for the sAIM (points), for representative bare
Ud = 0.4. Throughout we have used 8V 2/Ud = 0.3.
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FIG. 4. Panel a) and b) compare different configurations of
Eq. 28 as effective Hamiltonians. The top left panel of a)

shows the observables for the ĤJU
eff model, while the others

show the observables of the Ĥ1e−imp
eff for different eliminated

interactions. The panels in a) are labelled by the eliminated
interaction θQS = 0. Panel b) compares the relative error of
TK for these four models.

where the most improvement is needed over the minimal
model. This can be achieved with the most general SU(2)
symmetric Hamiltonian we can define on Hbath

0 ⊗Hmol
eff .

However, keeping all projectors in Eq. 28 can not con-
verge the KLD. At least one of the projectors must
be eliminated. To help to choose which one we intro-
duce the Frobenius scalar product (FSP) on the operator

space ⟨Â, B̂⟩ = tr
[
Â† · B̂

]
and the corresponding norm

∥Â∥ =

√
⟨Â†, Â⟩. Using the FSP any projector ĥi can be

decomposed into its contribution from the FP Hamilto-

nian ⟨ĥi, Ĥ∗⟩/∥Ĥ∗∥2 = αi and an RG-irrelevant operator

⟨ĥi, Λ̂i⟩/∥Λ̂i∥2 = βi, with ⟨Λ̂i, Ĥ
∗⟩ = 0. The operator Λ̂i

can easily be found after one round of the Gram-Schmidt

procedure Λ̂i = ĥi−αiĤ
∗. The decomposition of the pro-

jector θiĥi = θi(αiĤ
∗ + βiΛ̂) = γiĤ

∗ + λiΛ̂i can be used
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for a substitution

∂

∂θi
F({K}, θi)

∣∣∣
θi=0

=

[
βi

∂

∂λi︸︷︷︸
RG irrelevant

+αi
∂

∂γi︸︷︷︸
RG relevant

]
F({K}, λi, γi)

∣∣∣
γi=λi=0

,

(47)

which tells us that the larger αi the stronger ⟨ĥi⟩ flows
under RG. For the example of the minimal model it is
trivially βi = 0 and the only contribution to the flow
is RG-relevant. The projectors P̂QS (Eq. 28) on the
other hand have a non-trivial decomposition. To ren-
der the overlap parameter αi comparable we introduce

α̃i = |⟨ĥi, Ĥ∗⟩/∥Ĥ∗∥∥ĥi∥|, which is normalized with re-
spect to the effective interaction. This provides a means
to compare the strength of the renormalization of the
effective interactions and therefore to decide which inter-
action to eliminate. For the effective interactions of ĤJU

eff

and Ĥ1e−imp
eff the FSP with Ĥ∗ = Ŝd · Ŝ0 is:

Ŝd · Ŝ0 (n̂0 − 1)
2
P̂0,1 P̂0,0 P̂±1,1/2

α̃ ≈ 1 0 0.5 0.87 0

Based on the values of α̃i the ideal Hamiltonian is
Ĥ1e−imp

eff with θ0,0 = 0, as that excludes the term that
gets renormalized the strongest. We put this hypothe-
sis to the test by optimizing all four possible Hamilto-
nians, starting with ĤJU

eff . In ĤJU
eff we have already set

L = 0, which means that the minimization of the KLD
can be converged. As Fig. 4 a) shows, the observables
can be matched for any Ud, however Fig. 4 b) shows
that the relative error ∆(T eff

K , T bare
K ) of the Kondo tem-

perature is roughly equal to what can be obtained with
the minimal model. This shows that the naive inclusion
of RG-irrelevant terms does not improve the inference
of energy scales, as is to be expected from Eq. 47. A
very similar result in terms of ∆(T eff

K , T bare
K ) is produced

by optimizing Ĥ1e−imp
eff with θ1,0 = 0. However, Fig. 4

a) shows that the observables that get optimized match

in bare and effective model for all Ud, while ⟨P̂0,1⟩ only
matches if Ud/D → ∞. That implies that in this limit

⟨Îeff⟩eff → ⟨Ω̂†
ad · Îeff · Ω̂ad⟩bare, which is clearly the case

as double and zero-occupation states of the impurity are
strongly suppressed. Also having θ±,1/2 = 0 does not

improve ∆(T eff
K , T bare

K ), but keeps it roughly at the same
quality as the minimal model. Only when eliminating the
strongest flowing observable θ0,0 = 0 the relative error
seizes to diverge for Ud/D → 0, as Fig. 4 a) shows. The
results of minimizing the KLD with θ0,0 = 0 are shown as
orange line in Fig. 3 a) which follows the bare TK curve
orders of magnitude closer than the minimal model curve
(green). The corresponding coupling parameters for the
optimized 1e-imp model can be mapped to the parame-
ters of Eq. 31. The coupling of the RG-relevant term can
be isolated and compared to the coupling for the minimal
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FIG. 5. Panel a) compares the 2e-imp effective Hamilto-
nian with (red) and without (purple) the off-diagonal terms
Eq. 35. For the 2e-imp with the off-diagonal terms, panel b)
shows the evolution of TK with respect to parameter update
steps (epochs). The four panels of c) show the evolution of
the relative error of observables with respect to the epoch.
The observables are colour coded with the quantum numbers
(Q,S, T ). Plotted for Ud = 0.4.

model, which was tuned to reproduce the bare free en-
ergy [43]. Both couplings show a great correspondence,
meaning that 1e-imp provides a good balance between
capturing thermodynamic observables and energy scales.
Just like for the minimal model the limit Ud/D ≫ 1
yields the SW result where J → 0.3 and thus, the RG
irrelevant term U0 → 0 vanishes.

This shows that the FSP provides a reliable way to
identify ill-fitted interactions for the optimization. It
also exemplifies that observables with at most a mod-
erate flow (α̃ ≈ 0.5) are best suited for the KLD distin-
guishability measure. Thus, 1e-imp with θ0,0 = 0 shows
an enormous improvement over the observable-matched
minimal model. We now show that the performance of
the effective model can be systematically improved by
including more RG-irrelevant terms in the form of the
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2e-imp Hamiltonian.
The projectors of the 2e-imp effective Hamiltonian are

constructed from the basis |Q,S, T, sz;m⟩ Appendix B,
which are defined on Hbath

1 ⊗Hbath
0 ⊗Hmol

eff . In this basis
there are a total of 15 sz-multiplets with several degen-
erate spin-charge subspaces and in particular a four-fold
degeneracy of the subspace Q = 0, S = 1/2, as shown
in Eq. 33. Transitions between multiplets are not pro-
hibited by symmetries. Thus not including such tran-
sitions means limiting the expressiveness of the model,
while however guaranteeing a convex loss function. The
impact of including the off-diagonal terms Eq. 35 can be
quantified using the FSP. An optimized representation
of any operator X̂ using Ĥn−mol

eff ({θ}) can be found by
minimizing the normalized FSP [61]

L({θ}, X̂) = 1−

∣∣∣
〈∑

i θiP̂i, X̂
〉∣∣∣

∥∥∥
∑

i θiP̂i

∥∥∥ · ∥B̂∥
. (48)

In the following optimization of Eq. 48 are carried out
using vanilla gradient descent. To satisfy T bare

K ≈ T eff
K in

the limit Ud/D ≫ 1 the effective Hamiltonian must be
able to represent the Kondo Hamiltonian Eq. 20. With
X̂ = Ŝd · Ŝ0 it can be determined that including the
off-diagonal terms optimizing Eq. 48 yields L({θop}, Ŝd ·
Ŝ0) = 0, whereas without the off-diagonal terms the rep-

resentation is limited to L({θop}, Ŝd · Ŝ0) ≈ 0.3. This is
an enormous difference in expressiveness and since the
Ud/D ≫ 1 limit is important to satisfy, we prioritise
generality over convexity in the case of 2e-imp and in-
clude the off-diagonal elements. Note that choosing T̂
as a defining operator for the 2e-imp basis means that
with and without off-diagonal elements we can find {θop}
such that L({θop}, T̂ ) = 0. Including the off-diagonal
terms leads to a total of 25 interactions in the 2e-imp
Hamiltonian. Again, the interaction with the largest α̃
is omitted from the Hamiltonian. The minimization of
Eq. 4 can still be carried out using GD, however local
minima can be encountered. We have found that run-
ning in to local minima can be avoided by initializing
the optimization with the expectation values of the bare

model ⟨P̂QS;t,t′⟩bare initialize−−−−−→ θQS;t,t′ . This has the ad-
vantage that symmetries of the model are automatically
respected and small bare expectation values lead directly
to small effective parameters.

We have established that 2e-imp model is with the
off-diagonal terms capable of representing every possi-
ble real SU(2) symmetric Hamiltonian on the effective
Fock space. However, it is incapable to represent all pos-
sible SU(2) symmetric Hamiltonians on the bare Fock
space. As a result we find that minimizing the KLD is
only approximately possible, since there are observables
that can not be simultaneously matched, despite that one
observables has been omitted. We give an example for
this in Fig. 5 c), where the relative error of the expecta-
tion values of all diagonal projectors is shown for every
step of the optimization. The figure shows that most

observables converge exponentially fast, while some are
seemingly stationary. While this means that the opti-
mization can not reach the minimum of the KLD, the
parameters however converge and so does the TK as seen
in Fig. 5 b). The results of the minimizations for all
Ud are shown in Fig. 3, we find an improvement of the
relative error of the Kondo temperature (Fig. 3 b) ) of
an order of magnitude with respect to the 1e-imp result
in the Ud/D ≪ 1 regime. This result can be compared
to the convex 2e-imp optimization problem without off-
diagonal terms as done in Fig. 5 b). As expected the
more general effective Hamiltonian performs better for
Ud/D ≫ 1, however the less general Hamiltonian yields
improved accuracy at Ud/D ≪ 1. This can be attributed
to the off-diagonal elements that include terms that are
more RG-relevant, which is clearly necessary to perform
well at Ud/D ≫ 1 but in the Ud/D ≪ 1 regime these
observables are stronger renormalized and hence impact
the performance. However, the impact on the perfor-
mance of 2e-imp is small compared to the improvement
over 1e-imp, as shown in Fig. 5 b).

An other metric that indicates how well an effective
model captures the bare model are observables that get
not explicitly matched during the optimization process.
The spin exchange term is very interesting in that regard,
as it is the only RG-relevant term in the system and thus
experiences the strongest renormalization. As expected,
Fig. 3 c) shows that at Ud/D ≫ 1 all effective models co-
incide with the bare model. For Ud/D ≪ 1 the minimal
model is trivially still perfectly matching the bare model.
However, we find that while 1e-imp performs worse than
the Z-matched minimal model, the 2e-imp greatly im-
proves over both. An other insightful observable is the
density operator on the 0-orbital (1− n̂0)

2, which is RG-
irrelevant and does only get weakly renormalized. In fact
2e-imp and the Z-matched minimal model reproduce the
bare value in the Ud/D ≫ 1 and Ud/D ≪ 1 regimes. The
most significant deviations occur at Ud/D ≈ 1, they are
however still small. The advantage of this analysis is
that other than the TK , observables are necessarily com-
putable without solving the entire bare model and thus,

allow cross comparison with ∆(⟨ĥi⟩eff , ⟨ĥi⟩bare).
This shows that energy scales and general thermody-

namic observables can be captured by matching only a
specific set of observables. The quality of the approxi-
mation can be improved systematically by incorporating
more RG-irrelevant terms in the effective Hamiltonian.

At the example of the single Anderson impurity model
we have shown how to compensate the renormalization
of the effective observables compared to the bare observ-
ables. The mapping of the AIM on the 2e-imp model
is used to exemplify the mapping procedure for more
complicated models. The method becomes especially in-
teresting when models are consider that lie beyond the
capabilities of NRG. The learning process can be carried
out with only thermodynamic observables, thus every nu-
merical method that can compute static observables can
be used to minimize the KLD – this does also include ab-
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FIG. 6. Panel a) shows the evolution of optimized parameters

of Ĥ1e−imp
eff with temperature for the sAIM. The correspond-

ing observables for the sAIM and optimized effective model
are shown in b). The temperature axis is logarithmic, but
includes a cut to T = 0 to indicate that optimization can be
done using only ground state properties if required.

initio methods. While some ab-intio methods are based
on the variational principle and thus operate at T/D = 0
(that is on the ground state [62, 63]), methods based
on imaginary time evolution favour high temperatures
T/D ≳ 10−2 [64, 65]. Thus, it is important to verify
that the here presented learning method can operate at
high temperatures and at the level of the ground state to
be compatible with a large variety of solvers. Regarding
high temperatures, for the example of the AIM the learn-
ing can be performed once the bare model is in the local
moment phase, this happens for T/Ud = O(0.1). In more
generally terms, that are also applicable to more realistic
molecules, this translates to T/(Eex,1 − Eg) = O(0.1).
Once the AIM is in the local moment phase we find nu-
merically that the observables become temperature in-
dependent and can be computed with the ground state
only. This is shown in Fig. 6, where the result of the

trained parameters, the bare and effective observables
are compared. Fig. 6 reveals a useful feature, that is for
T/Ud > 1 the bare and effective observables can not be
matched and thus, the algorithm is protected from mak-
ing wrong predictions. However, to properly assure that
the temperature is low enough to perform the learning a
convergence test should reveal a weak or strong temper-
ature dependence of the observables in question.

VI. OUTLOOK AND DISCUSSION

In this work we demonstrate that through the com-
bination of the omission of the identity from the RG-
flow and through the RG-analysis of all possible impurity
quantum-number subspace projectors, low-energy scales
of impurity models can be inferred by knowing only the
corresponding thermodynamic observables.
To apply this concept in future to realistic molecular

devices it is necessary to compute ⟨P̂QS⟩bare. For meth-
ods that operate in second quantization we present here
a straightforward way to construct the bare projectors
P̂QS that project onto the quantum number states |Q,S⟩.
First we introduce the auxiliary operators

X̂Q = Q̂−Q (49)

ŶS = Ŝ2 − S(S + 1) , (50)

where Ŝ2 is the total spin operator of the extended im-
purity and Q̂ the total charge operator of the extended
impurity. The operator X̂Q eliminates all contributions

with charge Q to a state |n⟩ and similarly ŶS eliminates
all contributions with total spin S. Using these opera-
tors we can now write the projector onto the multiplet
subspace of Q and S as

P̂QS =
1

NQS

∏

Q′ ̸=Q

X̂Q′ ×
∏

S′ ̸=S

ŶS′ , (51)

where

NQS =
∏

Q′ ̸=Q

(Q−Q′)
∏

S′ ̸=S

(S(S + 1)− S′(S′ + 1)) ,

(52)

is the normalization constant.

However, when one plans to use the full orbital
description of all atoms in the system and compute

⟨Ω̂†
ad · P̂QS · Ω̂ad⟩ using ab-initio methods, then the for-

mulation Eq. 51 of P̂QS is inappropriate. Observables
and energies for ab-initio methods are typically expressed
as reduced density matrices (RDM) [66]. For a given
basis of molecular orbitals {ϕi}Mi=1 we can express the
spinless single particle RDM (1-RDM) as

ρ1(r
′; r) =

M∑

ij

1Di
jϕi(r

′)ϕj(r) , (53)
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where 1Di
j the 1-RDM. The 1-RDM essentially expresses

a single particle wave-function

ψ(r) =

M∑

i

diϕi(r) , (54)

which then gives

1Di
j = di × dj = ⟨ψ|ĉ†i ĉj |ψ⟩ . (55)

The 1-RDM, is not a many body object, although it is
related to the 2-RDM 2D as [66]

2Dpq
st = 2 1Ds

p ∧ 1Dq
t +

2∆pq
st (56)

where 2∆ is a so-called cumulant. The cumulant en-
codes the relations between multiple determinants. The
tensor Dpq

st = ⟨ψ|ĉ†pĉ†q ĉsĉt|ψ⟩ encodes two-body correla-
tions. The construction of the N -RDM is possible for
an arbitrary number for particles N , however it becomes
prohibitively expensive rather quickly.

It becomes immediately apparent by looking at Eq. 51
that P̂QS is an N -body operator, when N is the number
of particles in the extended bare impurity Hilbert space.
As just discussed, that is not tractable in the ab-initio
framework. This means the projectors P̂QS need to be
simplified to be compatible with ab-initio methods. In
the following we outline a possible method to achieve the
reduction of the complexity of P̂QS by approximating it
with two-body operators.

Using the Frobenius scalar product, we have intro-
duced the loss function Eq. 48, which can be used to
find the best possible representation of an operator X̂
using a linear combination of a specific set of operators

{ĥi}. This can also be used to variationally find an opti-

mal decomposition of P̂QS in to 1- and 2-body operators.
It is straightforward to write down a basis of operators
for the bare Hilbert space

Â ∈ Ξn ∈ {{ĉ†i ĉj}, {ĉ†i ĉ†j ĉk ĉl}, {ĉ†i ĉ†j ĉ†k ĉ
†
l ĉmĉnĉoĉp}, . . . } ,

(57)
retaining only the 1- and 2-body terms, this can serve

as the basis {ĥi} for the approximate representation of

P̂QS . It is important to note that the basis Eq. 57 is
over-complete and therefore any optimal representation
of P̂QS according to Eq. 48 is not necessarily unique. If
the basis Ξn is complete the decomposition is unique and
can be achieved like a regular spectral decomposition of
a vector using the Frobenius scalar product

θi =
⟨P̂QS , ĥi⟩
|| ĥi ||

, ĥi ∈ Ξn . (58)

However, constructing a complete operator basis on the
bare Hilbert space can be challenging. The variational
approach can find optimal representations of any opera-
tor even for an over-complete basis and the value of the
optimized loss function can serve as an error estimation

for the decomposition, making this a controlled approach
to obtain a 2-body approximation of the operators P̂QS .
However, tests of this approach exceed the scope of this
manuscript and the integration of the above framework
with ab-initio methods is left for future work.

VII. CONCLUSION

In this paper we have introduced the “UML” frame-
work, based on unsupervised ML techniques, to optimize
a variational Hamiltonian. In a well-defined sense, the
optimized effective Hamiltonian is the “best fit” descrip-
tion at a given complexity level to capture the physics of
some bare quantum impurity problem. We show that the
loss function is convex for the considered effective models,
rendering the optimization with GD as efficient as pos-
sible. A result of the optimization procedure is that the
thermal expectation values of the effective interactions
in the effective model get matched to the corresponding
bare expectation values. Care must be taken however,
since thermodynamic observables are not invariant un-
der RG and so bare an effective models with different
RG flows may have different static expectation values.
Thus, the naive matching of observables does not imply
that low-energy scales, such as the Kondo temperature,
are correctly recovered. We confirm this directly, already
at the simplest possible example of the Anderson-Kondo
model mapping. To mitigate this we identify and con-
struct the best observables to match, based on an analy-
sis of their RG relevance. We show that this can be done
while maintaining convexity of the optimization, and that
low-energy scales can be recovered. As shown by the
RG-analysis, the accuracy of these effective models can
be systematically improved by increasing the complexity
of the effective impurity. Although this clearly offers no
advantage at the level of the single impurity Anderson
model, the approach is general and systematic, meaning
that complex systems beyond reach of existing methods
can be boiled down to tractable effective models.
An important aspect of the UML framework is that it

can be performed at high temperatures without compro-
mising precision, which allows to combine QMC meth-
ods with NRG for the optimization process. The bare
model can be solved in QMC and the necessary observ-
ables can be obtained for the optimization of the effec-
tive model, which is solved repeatedly and cheaply dur-
ing the optimization process using NRG. This opens the
door to applying the algorithm to vastly more complex
systems that are inaccessible to brute-force NRG calcu-
lations. CT-QMC [67] methods can be used to obtain
the effective model for complex systems at (relatively)
high temperatures, and then these effective models can
be solved completely and cheaply down to T = 0 using
NRG. In principle, ab-initio methods may also be used
to compute approximations of the required observables
to perform the UML. This may permit the future study
of hitherto intractable systems.
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Appendix A: Convexity of the loss function

For a general Hamiltonian, that can be bi-partitioned
Ĥ = Ĥ0+ Ĥ1, one can compute the partition function as
an expansion in powers of Ĥ1 by [58],

Z =

∞∑

n=0

(−1)n

n!
Tτ

∫ β

0

dτ1...

∫ β

0

dτn

× tr
[
e−βĤ0Ĥ1(τn)...Ĥ1(τ1)

]
, (A1)

where τ is the imaginary time. This expansion is dis-
cussed extensively in the context of continuous time
quantum Monte Carlo (CT-QMC) [67–69]. In the case

of hybridization expansion CT-QMC [69] Ĥ1 = Ĥhyb de-
scribes the hybridization between a non-interacting bath
Ĥbath and an interacting quantum impurity Ĥ imp. For
the following discussion, we therefore consider Hamilto-
nians of the form,

Ĥ0 = Ĥbath + Ĥ imp (A2a)

Ĥ1 = Ĥhyb =
∑

k

∑

σ

V σ
k d̂

†
σ ĉkσ +H.c. , (A2b)

where we assume that the hybridization tensor is diago-
nal in the spin quantum number σ [69]. For this type of
Hamiltonian Eq. A1 becomes,

Z =

∞∑

n=0

∫ β

0

dτ1...

∫ β

τn−1

dτn

∫ β

0

dτ ′1...
∫ β

τ ′
n−1

dτ ′n

∑

a1...an

a′
1...a

′
n

∑

k1...kn

k′
1...k

′
n

V a1

k1
V

a′
1∗

k′
1
...V an

kn
V

a′
n∗

k′
n

(A3)

tr
[
Tτe

−βĤbath

c†k′
na

′
n
(τ ′n)ĉknan

(τn)...ĉ
†
k′
1a

′
1
(τ ′1)ĉk1a1

(τ1)
]

× tr
[
Tτe

−βĤimp

d̂a′
k
(τ ′n)d̂

†
an
(τn)...d̂a′

1
(τ ′1)d̂

†
a1
(τ1)

]
.

Eq. A3 can be interpreted as sum over all possible dia-
grams obtained by allowing electrons to hop between the
impurity and the bath. Since the bath is non-interacting
it can be integrated out and using Wick’s theorem the

antiperiodic hybridization function can be obtained,

det
ij

[
V σi

ki
V

σ′
j∗

k′
j

tr
(
Tτe

−βĤbath

ĉ†kiσi
(τi)ĉk′

jσ
′
j
(τ ′j)

)]

= Zbath det
ij

[
V σi

ki
V

σ′
j∗

k′
j

⟨Tτ ĉ†kiσi
(τi)ĉk′

jσ
′
j
(τ ′j)⟩bath

]

= Zbath det(∆
(x)) , (A4)

where x = (n, {ki, k′i, ai, a′i, σi, σ′
i, τi, τ

′
i}ni=1) denotes an

impurity diagram in terms of the sequence of impurity
operators [58] such that,

∫ β

0

dτ1...

∫ β

τn−1

dτk
∑

a1...an

∑

k1...kn

7→
∑

x

. (A5)

Following the approach of Ref. [52], we bring the impu-

rity operators into the eigenbasis {(Eα, |α⟩)} of Ĥ imp and

thus, e−τĤimp

can be trivially evaluated, with

d†a(τ) = e−τiĤ
imp

d†ae
τiĤ

imp

=
∑

α,α′

eτ(Eα′−Eα) |α⟩⟨α′| ⟨α| d(†)a |α′⟩ (A6)

and instead of occupation diagrams we ob-
tain diagrams involving impurity eigenstates
{α}x ≡ {α1...αk, α

′
1...α

′
k}x. Thus, Eq. A1 can be

rewritten in terms of the weights of the sum of the
eigenstate diagrams

Z/Zbath =
∑

x

∑

{α}
Λ{α}x

det(∆x)e
−⟨Ĥimp⟩{α}x , (A7)

with Λ{α}x
denoting the contribution from impurity op-

erators in the impurity eigenbasis

Λ{α}x
=

n∏

i=1

⟨αi| da′
i
|α′

i⟩ ⟨α′
i| d†ai

|αi+1⟩ (A8)

and ⟨Ĥimp⟩{α}x
the average impurity energy over a dia-

gram

⟨Ĥ imp⟩{α}x
= (A9)

n∑

i=1

[
Eαi

(τ ′i − τi−1) + Eα′
i
(τi − τ ′i)

]
+ Eαn

(β − τn) .

Having reformulated the expansion of the impurity parti-
tion Eq. A3 as Eq. A7 we now look to prove the convexity
of KLD loss function Eq. 4.

To show the convexity of Eq. 4 it does suffice to show
that the free energy log(Z) is convex in the variational
parameters θθθ. The core assumption of our calculation is
that the effective impurity Hamiltonian is constructed as
follows:

H imp =
∑

i

θiĥi, [ĥi, ĥj ] = 0 , (A10)
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which is the case for the effective models in the main
text. For the following proof it is convenient to define a
weight w for eigenstate diagrams to reformulate Eq. A7,

Z = Zbath

∑

x

∑

{α}x

w({α}x) , (A11)

w({α}x) = e−⟨Ĥimp⟩{α}xΛ{α}x
det(∆x) , (A12)

where we also assume that w({α}x) > 0, such that w
acts as a probability distribution upon normalization. To
show that log(Z) is convex we need to show its Hessian
is positive semi-definite,

∂θi∂θj log(Z) ≽ 0 . (A13)

In the following, we use the shorthand notation ∂i for ∂θi
for concision. It is straightforward to compute the first
order derivative using the fact that the trace is invariant
under circular shifts,

∂i ln(Z) = − 1

Z

∫ β

0

dτ tr
[
Tτe

−
∫ τ
0

dτ ′Ĥ ĥi(τ) e
−

∫ β
τ

dτ ′Ĥ
]

= − 1

Z

∫ β

0

dτ tr
[
e−

∫ τ
0

dτ ′Ĥ−
∫ β
τ

dτ ′Ĥ ĥi(τ)
]

= − 1

Z

∫ β

0

dτ
∑

α

e−βEα ⟨α| e−τEα ĥi e
τEα |α⟩

= −β tr[ρ̂ ĥi] = −β⟨ĥi⟩ .

However we can also carry out the derivative directly on
the diagrammatic expansion of the partition function,

∂i log(Z) =
1

Z ∂i
[
Zbath

∑

x

∑

{α}x

e−⟨Ĥimp⟩{α}xΛ{α}x
det(∆x)

]

=
1

Z

[
Zbath

∑

x

∑

{α}x

∂iw({α}x)
]
. (A14)

It holds that a given eigenbasis {(Eα, |α⟩)} of Ĥ imp de-
pends in the following way on the parameters θθθ,

∂iEα = ⟨α| ĥi |α⟩ , (A15)

∂i |α⟩ =
∑

α̸=β

⟨β| ĥi |α⟩
Eα − Eβ

|β⟩ . (A16)

With the assumptions Eq. A10 in place all operators in
the Hamiltonian are mutually commuting, implying that
they share a common set of eigenvectors. This property
allows us to trivially evaluate these derivatives,

∂iEα = ϵαi (A17)

∂i |α⟩ = 0 , (A18)

with ĥi |α⟩ = ϵαi |α⟩. With these relationships it is
straightforward to show that,

∂jΛ{α}x
= 0 (A19)

∂j⟨Ĥ imp⟩{α}x
= ⟨ĥj⟩{α}x

. (A20)

This allows the calculation of the derivative of w, which
amounts to,

−∂iw({α}x) = ⟨ĥi⟩{α}x
w({α}x) . (A21)

This shows that w is a generating functional of moments

of ⟨ĥi⟩{α}x
. We therefore write,

−∂i log(Z) = − 1

Z

[
Zbath

∑

x

∑

{α}x

∂iw({α}x)
]

(A22)

= Ew

[
⟨ĥi⟩{α}x

]
. (A23)

Accordingly the second order derivative becomes,

∂j∂i log(Z) = Ew

[
⟨ĥi⟩{α}x

⟨ĥj⟩{α}x

]
(A24)

−Ew

[
⟨ĥi⟩{α}x

]
Ew

[
⟨ĥj⟩{α}x

]
, (A25)

which can be identified as the covariance. Since the co-
variance is a positive-semidefinite matrix, we have,

∂j∂i log(Z) = covw
[
⟨ĥi⟩{α}x

, ⟨ĥj⟩{α}x

]
≽ 0 , (A26)

making the Hessian of log(Z) positive semi-definite and
the same applies to the Hessian of the KLD loss function
Eq. 4 under the aforementioned assumptions Eq. A10.

Appendix B: Double extended basis

To construct the projectors of the 2e-imp effective
Hamiltonian, we require the basis |Q,S, T, sz;m⟩ on the

double extended Fock space Hbath
1 ⊗Hbath

0 ⊗Himp
eff . The

first step in the construction is to determine the charge Q̂

and total spin Ŝ
2
eigenstates |Q,S⟩. For the occupation

basis we use the labelling convention:

|orbital 2 (L), orbital 1 (R), local moment (M)⟩ . (B1)

Thus, the Hilbert space is spanned by the states:
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|−2, 1/2, sz;m⟩ |−1, 1, sz;m⟩ |−1, 0, sz;m⟩
|0, 0,⇑⟩ |↑, 0,⇑⟩ 1/

√
2(|↑, 0,⇓⟩ − |↓, 0,⇑⟩)

|0, 0,⇓⟩ |↓, 0,⇓⟩ 1/
√
2(|0, ↑,⇓⟩ − |0, ↓,⇑⟩)

1/
√
2(|↑, 0,⇓⟩+ |↓, 0,⇑⟩)

|0, ↑,⇑⟩
|0, ↓,⇓⟩

1/
√
2(|0, ↑,⇓⟩+ |0, ↓,⇑⟩)

|0, 3/2, sz;m⟩ |0, 1/2, sz;m⟩ |0, 1/2, sz;m⟩
|↑, ↑,⇑⟩

√
2/3 |↑, ↑,⇓⟩ −

√
1/6(|↓, ↑,⇑⟩+ |↑, ↓,⇑⟩) |↑↓, 0,⇑⟩

1/
√
3(|↓, ↑,⇓⟩+ |↓, ↓,⇑⟩+ |↑, ↓,⇓⟩) −

√
2/3 |↓, ↓,⇑⟩+

√
1/6(|↓, ↑,⇓⟩+ |↑, ↓,⇓⟩) |↑↓, 0,⇓⟩

1/
√
3(|↓, ↑,⇑⟩+ |↑, ↑,⇓⟩+ |↑, ↓,⇑⟩) |0, ↑↓,⇑⟩

|↓, ↓,⇓⟩ |0, ↑↓,⇓⟩√
1/2(|↓, ↑,⇑⟩ − |↑, ↓,⇑⟩)√
1/2(|↓, ↑,⇓⟩ − |↑, ↓,⇓⟩)

The states |2, 1/2, sz;m⟩ , |1, 1, sz;m⟩ and |1, 0, sz;m⟩ can
be obtained straightforwardly by replacing all 0 entries
with ↑↓. It is important to note that using only Q and S
quantum numbers, the Q = −1, S = 1 subspace is two-
fold degenerate (m ≤ M = 2) and the Q = 0, S = 1/2
subspace is threefold degenerate (m ≤ M = 3). There-
fore, using only the projectors onto the Q and S quantum
number subspaces limits the expressibility of our effec-
tive model. Full tunability of the model requires that
we can address each basis state individually. The next

step is thus to lift these degeneracies. We may do this
by diagonalizing the hopping operator in the degenerate
subspaces,

T̂ =
∑

σ

ĉ†Lσ ĉRσ + ĉ†Rσ ĉLσ . (B2)

In the |−1(1), 1⟩ and |−1(1), 0⟩ sub-spaces we can find

a common eigenbasis |Q,S, T, sz;m⟩ of T̂ and Ŝ
2
that

allows to completely lift the multiplet degeneracy:

|−1, 1,+1, sz;m⟩ |−1, 1,−1, sz;m⟩
1
√
2(|↑, 0,⇑⟩+ |0, ↑,⇑⟩) 1

√
2(|↑, 0,⇑⟩ − |0, ↑,⇑⟩)

1/
√
4(|0, ↑,⇓⟩+ |0, ↓,⇑⟩+ |↑, 0,⇓⟩+ |↓, 0,⇑⟩) 1/

√
4(|0, ↑,⇓⟩+ |0, ↓,⇑⟩ − |↑, 0,⇓⟩ − |↓, 0,⇑⟩)

1
√
2(|↓, 0,⇓⟩+ |0, ↓,⇓⟩) 1

√
2(|↓, 0,⇓⟩ − |0, ↓,⇓⟩)

Here we have used that

T̂ |0, ↓⟩ = − |↓, 0⟩ .

Thus, the symmetric combination of |−1(1), 1(0), sz;m⟩
states is associated to the negative T = −1 eigenvalue of
T̂ and the asymmetric combination to the positive eigen-
value T = 1 of T̂ .

In the Q = 0 subspace one can show that the hopping

has no effect on the quadruplet and the doublet. However
the Q = 0, S = 1/2 subspace behaves non-trivially under
the hopping:

T̂ |↑↓, 0,⇑⟩ = |↓, ↑,⇑⟩ − |↑, ↓,⇑⟩
T̂ |0, ↑↓,⇑⟩ = |↓, ↑,⇑⟩ − |↑, ↓,⇑⟩

T̂ (|↓, ↑,⇑⟩ − |↑, ↓,⇑⟩)/
√
2 =

√
2(|↑↓, 0,⇑⟩+ |0, ↑↓,⇑⟩)

We can combine these states such that they become
eigenstates of T̂ :

|0, 1/2, 0, sz;m⟩ |0, 1/2,+2, sz;m⟩ |0, 1/2,−2, sz;m⟩√
2
3 |↑, ↑,⇓⟩ −

√
1
6 (|↓, ↑,⇑⟩+ |↑, ↓,⇑⟩) 1√

4
(|↓, ↑,⇑⟩ − |↑, ↓,⇑⟩+ |↑↓, 0,⇑⟩+ |0, ↑↓,⇑⟩) 1√

4
(|↓, ↑,⇑⟩ − |↑, ↓,⇑⟩ − |↑↓, 0,⇑⟩ − |0, ↑↓,⇑⟩)

−
√

2
3 |↓, ↓,⇑⟩+

√
1
6 (|↓, ↑,⇓⟩+ |↑, ↓,⇓⟩) 1√

4
(|↓, ↑,⇓⟩ − |↑, ↓,⇓⟩+ |↑↓, 0,⇓⟩+ |0, ↑↓,⇓⟩) 1√

4
(|↓, ↑,⇓⟩ − |↑, ↓,⇓⟩ − |↑↓, 0,⇓⟩ − |0, ↑↓,⇓⟩)

1√
2
(|↑↓, 0,⇑⟩ − |0, ↑↓,⇑⟩)

1√
2
(|↑↓, 0,⇓⟩ − |0, ↑↓,⇓⟩)
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The fourfold degenerate multiplet is now almost com-
pletely lifted. Only the |0, 1/2, 0, sz;m⟩ subspace is still
twofold degenerate. This last degeneracy can be lifted by

introducing a further operator,

Ŵ = n̂L↑ n̂
L
↓ + n̂R↑ n̂

R
↓ ,

which has the eigenvales W ∈ {0, 1} in the
|0, 1/2, 0, sz;m⟩ subspace. Instead of introducing a new

label for only this subspace, the eigenvalues for T̂ and Ŵ
are added together in the T label. This gives the states:

|0, 1/2, 1, sz;m⟩ |0, 1/2, 0, sz;m⟩√
2
3 |↑, ↑,⇓⟩ −

√
1
6 (|↓, ↑,⇑⟩+ |↑, ↓,⇑⟩) 1√

2
(|↑↓, 0,⇑⟩ − |0, ↑↓,⇑⟩)

−
√

2
3 |↓, ↓,⇑⟩+

√
1
6 (|↓, ↑,⇓⟩+ |↑, ↓,⇓⟩) 1√

2
(|↑↓, 0,⇓⟩ − |0, ↑↓,⇓⟩)

We have thereby succeeded in reducing the dimension
of each subspace spanned by these labels to M = 1, as
desired.

Appendix C: Details of NRG calculations

All calculations in this work were carried out using
Wilson’s NRG method [60, 70] using the full density ma-

trix approach [71, 72], which allows the precise calcula-
tion of the static observables discussed here. The im-
purity entropy, which is used to estimate TK was com-
puted using standard thermodynamic NRG [70]. For the
simulation of bare and effective models, the number of
kept states is MK = 2000 and we use a Wilson chain dis-
cretization parameter of Λ = 2.5 at a Wilson chain length
of N = 40. Total charge and spin projection quantum
numbers are exploited.
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coulomb interaction in transition metals from con-
strained random-phase approximation, Physical Review
B 83, 121101 (2011).

[6] N. P. Bauman and K. Kowalski, Coupled cluster down-
folding theory: towards universal many-body algorithms
for dimensionality reduction of composite quantum sys-
tems in chemistry and materials science, Materials The-
ory 6, 1 (2022).

[7] H. Zheng, H. J. Changlani, K. T. Williams, B. Buse-
meyer, and L. K. Wagner, From real materials to model
hamiltonians with density matrix downfolding, Frontiers
in Physics 6, 43 (2018).

[8] R. Pariser and R. G. Parr, A semi-empirical theory of the
electronic spectra and electronic structure of complex un-
saturated molecules. i., The Journal of Chemical Physics
21, 466 (1953); A semi-empirical theory of the electronic
spectra and electronic structure of complex unsaturated
molecules. ii, 21, 767 (1953).

[9] H. C. Nguyen, R. Zecchina, and J. Berg, Inverse statis-
tical problems: from the inverse ising problem to data
science, Advances in Physics 66, 197 (2017).

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning
(MIT Press, 2017).

[11] H. S. Bhat, K. Ranka, and C. M. Isborn, Machine learn-
ing a molecular hamiltonian for predicting electron dy-
namics, International Journal of Dynamics and Control
8, 1089 (2020).

[12] Z. Wang, S. Ye, H. Wang, J. He, Q. Huang, and
S. Chang, Machine learning method for tight-binding
hamiltonian parameterization from ab-initio band struc-
ture, npj Computational Materials 7, 1 (2021).

[13] R. C. Sawaya and S. R. White, Constructing hubbard
models for the hydrogen chain using sliced-basis density
matrix renormalization group, Physical Review B 105,
045145 (2022).

[14] M. Nakhaee, S. Ketabi, and F. Peeters, Machine learning
approach to constructing tight binding models for solids
with application to bitecl, Journal of Applied Physics
128, 215107 (2020).

[15] M. Prüfer, T. V. Zache, P. Kunkel, S. Lannig, A. Bon-
nin, H. Strobel, J. Berges, and M. K. Oberthaler, Exper-
imental extraction of the quantum effective action for a
non-equilibrium many-body system, Nature Physics 16,
1012 (2020).

[16] S. Yu, Y. Gao, B.-B. Chen, and W. Li, Learning the
effective spin hamiltonian of a quantum magnet, Chinese
Physics Letters 38, 097502 (2021).

[17] T. Schuster, M. Niu, J. Cotler, T. O’Brien, J. R.
McClean, and M. Mohseni, Learning quantum sys-
tems via out-of-time-order correlators, arXiv preprint



20

arXiv:2208.02254 (2022).
[18] I. Buluta and F. Nori, Quantum simulators, Science 326,

108 (2009); I. M. Georgescu, S. Ashhab, and F. Nori,
Quantum simulation, Reviews of Modern Physics 86, 153
(2014).

[19] P. Barthelemy and L. M. Vandersypen, Quantum dot
systems: a versatile platform for quantum simulations,
Annalen der Physik 525, 808 (2013); T. Hensgens,
T. Fujita, L. Janssen, X. Li, C. Van Diepen, C. Re-
ichl, W. Wegscheider, S. Das Sarma, and L. M. Vander-
sypen, Quantum simulation of a fermi–hubbard model
using a semiconductor quantum dot array, Nature 548,
70 (2017).

[20] W. Pouse, L. Peeters, C. L. Hsueh, U. Gennser, A. Ca-
vanna, M. A. Kastner, A. K. Mitchell, and D. Goldhaber-
Gordon, Quantum simulation of an exotic quantum crit-
ical point in a two-site charge kondo circuit, Nature
Physics 19, 492 (2023).

[21] A. Anshu, S. Arunachalam, T. Kuwahara, and
M. Soleimanifar, Sample-efficient learning of interacting
quantum systems, Nature Physics 17, 931 (2021).

[22] N. Boulant, T. Havel, M. Pravia, and D. Cory, Robust
method for estimating the lindblad operators of a dissipa-
tive quantum process from measurements of the density
operator at multiple time points, Physical Review A 67,
042322 (2003).

[23] J. Zhang and M. Sarovar, Quantum hamiltonian identi-
fication from measurement time traces, Physical review
letters 113, 080401 (2014).
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Reconstructing effective hamiltonians from nonequi-
librium (pre-) thermal steady states, arXiv preprint
arXiv:2308.08608 (2023).

[27] K. G. Wilson, Renormalization group and critical phe-
nomena. i. renormalization group and the kadanoff scal-
ing picture, Phys. Rev. B 4, 3174 (1971).

[28] S. D. G lazek and K. G. Wilson, Renormalization of
hamiltonians, Physical Review D 48, 5863 (1993).

[29] P. Kopietz, L. Bartosch, and F. Schütz, Introduction to
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